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A NOTE ON DISCRETE DEGENERATE RANDOM
VARIABLES

TAEKYUN KIM!, DAE SAN KIM?, LEE-CHAE JANG?, AND H. Y. KIM*

ABSTRACT. In this paper, we introduce two discrete degenerate random
variables, namely the degenerate binomial and degenerate Poisson random
variables. We deduce the expectations of the degenerate binomial random
variables. We compute the generating function of the moments of the
degenerate Poisson random variables, which leads us to define the new type
degenerate Bell polynomials, and hence obtain explicit expressions for the
moments of those random variables in terms of such polynomials. We also
get the variances of the degenerate Poisson random variables. Finally, we
illustrate two examples of the degenerate Poisson random variables.

1. Introduction

As is well known, the sample space S is the set of all possible outcomes of an
experiment and an event is any subset of the sample space. For each evant E
of the sample space, we assume that a number P(E) is defined and satisfies the
following three conditions:

() 0< P(E) <1, (i6) P(S) = 1,
(i17) For any sequence of events Ey, Es,--- with E; N E; =0 (i # j),

P(U;,En) =Y P(Ey).
n=1
We refer to P(E) as the probability of the evant E, (see [4, 7, 13, 16] ). Two
events E and F are said to be independent if P(EF) = P(E)P(F), (see [11, 16]
). A random variable X is a real valued function defined on a sample space.
If X takes any values in a countable set, then X is called a discrete random
variable. If X takes any values in an interval on the real line, then X is called
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a continuous random variable. For a discrete random variable X, we define the
probability mass function p(a) of X by

p(a) = P{X = a}, (see [8, 9, 11, 16] ). (1.1)

Suppose that n independent trials, each of which results in a ”success” with
probability p and in a ”failure” with probability 1 — p, are to be performed. If
X represents the number of successes that occur in n trials, then X is called
the binomial random variable with parameters n,p, which is denoted by X ~
B(n,p). For X ~ B(n,p), the probability mass function is given by

p(i) = <7;>pi(l—p)"_i, i=0,1,2,---, (see[7,13,16] ).  (1.2)

A Poisson random variable indicates how many events occured within a given
period of time. A random variable X, taking on one of the values 0,1,2,---, is
said to be a Poisson random variable with parameter «(> 0) if the probability
mass function of X is given by

i

p(i):P{X:i}:e_“%, i=0,1,2,- . (1.3)

Note that 3% p(i) = e~ 32, & = e=@e® = 1. For n > 1, the quantity
E[X™] of the Poisson random variable X, which is called the n-th monent of X,
is defined by

E[X" = Zi"p(i)7 (see[8, 9, 11, 16] ). (1.4)

When n = 1, E[X] is refered to as the mean or the expectation or the first
monent of X.
For A € R, the degenerate exponential function is defined as

es(t) = (L+ )%, ex(t) =er(t), (see [3, 5,10, 12, 14]). (1.5)

When t = 1, we write ex(1) = ey = (1 + A)*. It is known that the degenerate
Stirling numbers of the second kind are defined by

@ar =D Son(n,D(z), (n>0), (see [1,2,6,15]), (1.6)
=0

where (2)ox =1, (Z)pr =z = A)---(z—(n—=1A) (n>1), (z)o=1,(T)n =
z(x—1)---(x —n+1), (n>1). From (1.6), we note that

%(ex(t) — 1)k = 252”\(71’@%’ (k>0), (see [9,10]). (1.7)
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From (1.7), we get
k
22 (D)0 s = San(), 0= (19)
T 1=0

Note that limy— S2.(n, k) = 7 Zf:o (’;)(fl)k’ll" = Sa(n, k), where Sa(n, k)
are the ordinary Stirling numbers of the second kind. In [10], the degenerate
Bell polynomials are defined by

’I'l

@(ex(®-1) ZBeln,\ —,. (1.9)
From (1.7) and (1.9), we have
Bel, »(x Z Sox(n, k)zk,  (n>0). (1.10)

Let us assume that the probability of success in an experiment is p. Then we
might wonder if the probability of success in the ninth trial is still p after failing
eight times in a ten trial experiment. Because there is a psychological burden for
one to be succesful. It seems plausible that the probability is less than p. This
speculation motivated our study of discrete degenerate random variables. In
view of this, we will define and study the discrete degenerate random variables
in relation to the assumption that the more successful the experiment is, the
more likely it is to succeed. In this paper, we consider the degenerate binomial
and the degenerate Poisson random variables and obtain expressions for their
moments.

2. Degenerate random variable

In this section, we assume that p is the probability of success in an exprement
and that the higher the number of successes in the experiment, the higher the
probability of success. For A € R, X, is the degenerate binomial random variable
with parameters n,p if the probability mass function is given by

Py(i) = P{X) = i} = ( >(p)1,\(1— Pn-ir

)n,)\ ' (2.1)
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where ¢ = 0,1,2,---. If X, is the degenerate binomial random variable with
parameters n, p, then we denote it by
X)\ ~ B)\(n7p) (22>

From (2.1), we note that

- .1
;p)\(l) - (]-)n,)\

Now, we observe that

e

Il
=]

> (7)@nat - phin (2.3

@t ian =3 (1) @irtacin (120, 2.
By (2.3) and (2.4), we get
oo . 1 n n
>0 = iy 2 () @att ~ e

O (p+1l-phr=1 (2.5)

Let Xy ~ Byx(n,p). Then we have

—

E[X,] =Y ipa(i)
=0

1)n,)\ 5\t~ 1
- (1)”m Z:_O (nz 1) ()i — iA1= P)n_1_ir
_ " n\ e~ (n—1
(D, (Dn—1 Do zz_;z< ; >(p), AL =Pl
. np B An(n —1) )\Qn(n 1) n—2i
B (1)n A (l)nil’)\ (1)77,,)\ (1)7172,)\ (1)n : ;
= s o W )
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Therefore, by (2.6), we obtain the following theorem.

Theorem 2.1. Forn € N, let X\ ~ By(n,p). Then we have

BX] = iy 2o W
A k=1

Note that limy_,o E[X)] = np = E[X], where X is the binomial random
variable with parameters n, p.

For A € R, X, is the degenerate Poisson random variable with paprameter
a > 0 if the probability mass function of X is given by

. . _ al(1);,
P\(i) = P{X) =i} = ¢; () (i')“, (2.7)
where i =0,1,2,3,---. From (2.7), we note that
oo o0 i
— (o4 (l)l A
SR = et (@) Y T = e (@)ea(a) = 1
i=0 i=0
We observe that
em(ex(t)—l) _ e—memex(t) _ e_wzei(t)g
k=0
=> (e Z(k),mﬁ — (2.8)
n=0 k=0
From (1.9) and (2.8), we have
I z*
Belya(z) =€ Y (k)n, A (n>0), (2.9)
n=0

where Bel,, x(x) are the degenerate Bell polynomials given by

n

oo
ex(ex(t)*l) = Z Belyz,/\(x)%'
n=0 '

129



130

T. Kim, D. S. Kim, L-C Jang and H. Y. Kim

Let X be the degenerate Poisson random variable with parameter o« > 0. Then
the expectation of X is given by

_ ad (Ji 1 I
B = o5 o) Y0 T,
i=0 ’
_ —~ a
= e)\l(a) Z (’L — 1), (1)1,)\
i=1
-1 > (){i+1
=eyta)) ] i (Lit1,7
i=0
o0 O(i b
= ae) () Z (DAl —iA)
i=0
= aej'(@) ) o7 (Dix — adey(a) > w7 (Lind
i=0 i=0
=a — a\E[X,]. (2.10)
Thus, by (2.10), we get
e
E[X)] = T o (2.11)

Therefore, by (2.11), we obtain the following theorem.

Theorem 2.2. Let X be the degenerate Poisson random variable with param-

eter a« > 0. Then we have
«

TN
Let X be the degenerate Poisson random variable with parameter o > 0.
For n € N, the moments of X are given by

E[X] =) i"pa(i) = e5'(@) ) al(.ll)i’*i". (2.12)
=0 i

1
i=0

E[X,]

Let X be the Poisson random variable with parameter « > 0. Then the
probability mass function of X is given by
i

Pli)=P{X=i}=e %, i=0,12 .
i!
Note that, by (2.9), we have

E[(X)nal = EIX(X = A) -+ (X = (n = 1)A)]
k

k=0 ’

= Bel, x(a). (2.13)
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From (2.12), we note that

[eS) ) ; oo
n ai(1)in O int"
D BRI = e (@) ) —5= )
n=0 i=0 n=0
o0 C(i
=@ G b’
= e (a)er(aeh). (2.14)

by
exH(z)er(ze’) =) ﬂn,k(m)ﬁ' (2.15)

Here we note that the generating function in (2.15) is obtained from that in (1.9)
by replacing e” by ey (z) and vice versa. When = = 1, 3, (1) are called the new
type degenerate Bell numbers. From (2.15), we note that

Z Bra(z t =e; (z)ex(ze")

n=0

Il
o
> |
!
—~
8
S—
x>
INNgk
—~
=
S—r
bl
>
8
=| %

I

o

> |

-
—~
o)
[
pauleN

S (W, m’,%’,’) e (2.16)
k=0

Thus, by comparing the coefficients on both sides of (2.16), we get

oo k"
Ba(@) = e (@) Y (1) ,\wk— (2.17)
k=0
Therefore, by (2.12) and (2.17), we obtain the following theorem.

Theorem 2.3. Let X be the degenerate Poisson random variable with param-
eter a > 0. Then we have

E[Xj\l] :ﬁn,k(a)’ (TLEN)
In addition, if X is the Poisson random variable with parameter o > 0, then

E[(X)na] = Belpa(a), (neN).
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Let X, be the degenerate Poisson random variable with parameter o > 0.
Then we have

EX3) = 60 3 G0

=a+a(l = NE[X,] — aAE[X}].
By Theorem 2.2, we get
(1+aNE[X} =a+a(l - \)E[X)]

a+a(1—,\)< a >

1+ a)
o+ o?
S \l4+ar/’
Thus, we have
a+a?
EX}]=+——. 2.18
[ )\] (1 + 04)\)2 ( )
The variance of random variable X, denoted by Var(X)), is defined as
Var(X)) = B[(X) — B[X)])’]
= B[X3] - (E[X)])?
(2.19)
From (2.18) and (2.19), we can derive the following equation (2.20),
Var(Xy) = E[X}] — (E[X,])?
2 2
_ + o o _ « (2.20)

(I+aN)?2  (1+an)?  (1+aN)?
Therefore, by (2.20), we obtain the following theorem.
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Theorem 2.4. Let X be the degenerate Poisson random variable with param-
eter a > 0. Then we have

a
(1+aX)?’

Example 2.1. The number of traffic accidents occuring during the day at some
sections of the highway in downtown Seoul is said to follow the degenerate Pois-
son random variable with parameter 4. The probability of no traffic accident
today is

VCL?”(X)\) =

Py(0) = P{X) =0} = e, ' (4).

Example 2.2. Suppose the probability that each guest entering Kim’s cloth-
ing store in Hapcheon will buy clothes is p. Assuming that the number of guests
entering Kim’s store follows the degenerate Poisson random variable with param-
eter a > 0, let’s compute the probability that the owner won’t sell any clothes.
Let’s say X is the number of clothes sold and N is the number of customers who
entered the store. Then

PA(0) = P{Xy =0} = Y P{X =0| N =n}Py\{N =n}
n=0

n

= S PAX = 0] N = ndes (@) S (1)
n=0 '

If n people enter the store, the probability of not selling any clothes is (1 — p)™.
Hence,

o0

P{x=0=Y" a —le’;(l)n,A e ()
n=0

=5 (@er(a(1 - p)).
3. Conclusions

In this paper, we introduced two discrete degenerate random variables, namely
the degenerate binomial and degenerate Poisson random variables. Their details
and results are as in the following. We defined the degenerate binomial random
variables with parameter n,p in (2.1) and deduced their expectations in Theorem
2.1. We also defined the degenerate Poisson random variables with parameter
a > 0in (2.7). We obtained their expectations in Theorem 2.2. Then, by
computing the generating function of the moments of those random variables in
(2.14), we were naturally led to define the new type degenerate Bell polynomials
in (2.15). We observed explicit expressions for those polynomials in (2.17) and
found explicit expressions for the moments of the degenerate Poisson random
variables in terms of the new type degenerate Bell polynomials in Theorem 2.3.
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Finally, by calculating the second moments of the degenerate Poisson random
variables, we were able to get the variances of those random variables in Theorem

24.

Finally, we illustrated two interesting examples of the degenerate Poisson

random variables in Exampes 2.1 and 2.2.
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