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ONE-DIMENSIONAL CONTINUOUS
PSEUDOREPRESENTATIONS OF THE GROUP SL(2,Q,)
ARE IDENTITY REPRESENTATIONS

A. 1. SHTERN

ABSTRACT. We introduce the notion of discontinuity set for a locally rela-
tively compact pure pseudorepresentation of a topological group and establish

its simplest properties.

§ 1. INTRODUCTION

We need some definitions, which are given below in the simplest form
sufficient for our purposes. Let G be a group, and let 7 be a locally bounded
(i.e., bounded on some neighborhood of the identity element) mapping of G
into the Banach algebra of continuous linear operators £(E') on some normed
vector space E such that m(eq) = 1g (e stands for the identity element of G
and 1 for the identity operator on E) and

[7(g192) — m(g1)m(g2)[| <

for all g1,g2 € G and some € > 0; then 7 is said to be a quasirepresentation
of G on E with defect €. A quasirepresentation is said to be a pseudorepre-
sentation if

m(g") = A(n, g)m(9)" Aln, g)~*
for all g € G and all positive integers n, where
A(n,g) € L(E)
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and
|A(n,g) — 1| < d(e)

for some increasing positive function ¢ on (0, +00) with lim._,od(e) = 0. A
pseudorepresentation is said to be pure if A(n,g) = 1g for all g € G and all
positive integers n (see [1]). For specific features concerning one-dimensional
pseudorepresentations, see [2].

§ 2. PRELIMINARIES

Let us consider the group G = SL(2,Q,) of 2 x 2 matrices over the field
Qp of p-adic numbers (p is a prime) with determinant one. Let K be the
compact subgroup of G formed by the matrices u = (‘; 2) with ad—bc =1 in
Qp and a,b, ¢, d € O, where O, is the ring of p-adic integers (i.e., if |- | stands
for the p-adic valuation, then |al, ||, |c|,|d| < 1). As is well known (and can
readily be seen), every element g € G can be represented as a product of an

element v of K and an element r of the subgroup

R={r(\p=(),").}

where p € Qp and A belongs to the multiplicative group Q) of the field Q,,.
This representation is obviously not unique.

§ 3. MAIN THEOREM
The following assertion is the main result of the paper.

Theorem 1. Fvery one-dimensional continuous pseudorepresentation of the
group G = SL(2,Q,) with sufficiently small defect (¢ < \/3/6) is the one-

dimensional identity representation.

Proof. Let ™ be a one-dimensional pseudorepresentation of G with a defect
€ < 1/6. Since the group R is obviously solvable, it follows from the fun-
damental property of a one-dimensional pseudorepresentation [2] that the
restriction of 7 to R is an ordinary representation of R/

Note that, if 7 is unbounded, then 7 is an ordinary unbounded representa-
tion of G. One can immediately see that the only ordinary one-dimensional
representation of G is the identity representation, and hence 7 is bounded;
this means that the restriction of 7 to R is an ordinary unitary character
of R. Clearly, every mapping of this kind takes the elements of the subgroup

N ={n(n) = (14).n € Qp}



One-dimensional continuous pseudorepresentations

to one.

On the other hand, the group K is (topologically) amenable (as a compact
group), and therefore it follows from the continuity assumption for 7= and
from the fundamental property of pseudorepresentations that the continuous
restriction of 7 to K is an ordinary (one-dimensional) representation of K.
Therefore, this restriction is equal to one on the commutators. Since the
commutators generate the whole group K, it follows that the restriction of
to K is the identity representation of K.

Finally, let us use the well-known formula

r(a,0) = wn(a wn(a)wn(a ), a € Qy,

where

w= ()

Since it is clear from the consideration of the restriction to K and N that
m(w) =1 and

m(n(a)) =7w(a ) =1
for every a € Q;, this formula shows that the restriction of the unitary

pseudorepresentation 7 to the group {r(a,0),a € Q,} belongs to the ball

with center at 1 and radius less than /3. Therefore, the image of this
restriction is equal to {1}. Thus, the image of 7 is a union of subgroups
belonging to a small neighborhood of 1 in the circle T, and hence this image
coincides with 1, which completes the proof.

§ 4. DISCUSSION

The result can be extended to semisimple Chevalley group over Q,.
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