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ON FRACTIONAL n-ABSORBING IDEALS OF INTEGRAL
DOMAINS
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ABSTRACT. Let R be an integral domain and n a positive integer. In this
paper, we introduce the concept of a fractional n-absorbing ideal of R
which is a generalization of a strongly prime ideal. Various ring theoretic
properties of fractional n-absorbing ideals are studied. In particular,
some conditions under which a strongly primary ideal is a fractional
n-absorbing ideal are considered.
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1. INTRODUCTION

Let R be a commutative ring with a non-zero identity. A prime ideal P of
R is a proper ideal of R with the property that for a,b € R, ab € P implies
a € P or b e P. In the literature, there are several different generalizations
of prime ideals (see for example [3, 4, 9]). One useful generalization is the
notion of n-absorbing ideal which was firstly investigated by Badawi [4]
for n=2, and then it has extensively studied for each positive integer n by
Anderson and Badawi [1]. In recent years, 2-absorbing ideals have been
generalized in several directions (see for example [6, 7, 8, 11, 12]). For a
positive integer n, a proper ideal I of a commutative ring R is called an
n-absorbing ideal if whenever ay...an+1 € I for ap,...,an41 € R, then
there are n of the a;’s whose product is in I. Prime ideals have also been
generalized to strongly m-absorbing ideals [1]. A proper ideal I of a ring
R is said to be a strongly n-absorbing ideal if whenever Iy ---I,11 C I for
ideals I1,...,In41 of R, then the product of some n of the I;’s is contained
in I. It is evident that a 1-absorbing ideal and a strongly 1-absorbing ideal
are just a prime ideal. Clearly, a strongly n-absorbing ideal of R is also an
n-absorbing ideal of R, and it has been conjectured that these two concepts
are equivalent. It has been shown that they agree in every commutative ring
for n = 2 [4, Theorem 2.13], and in Priifer domains for any positive integer
n [1, Corollary 6.9].

Another generalization of prime ideals is the concept of strongly prime
ideals introduced by Hedstrom and Houston [10]. In fact, a non-zero proper
ideal P of a domain R with quotient filed K is called a strongly prime ideal
of R if for all a,b € K, ab € P implies that a € P or b € P.

In this paper, we introduce the concept of fractional n-absorbing ideal of
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an integral domain R, which is a generalization of strongly prime ideals on
the one hand and a generalization of n-absorbing ideals on the other.

Definition 1.1. Let R be an integral domain with quotient filed K. For
a positive integer n, a proper ideal I of a commutative ring R is called a
fractional n-absorbing ideal if wheneveray ...ant1 € I foraq,...,ant1 € K,
then there are n of the a;’s whose product is in I.

With this definition, fractional 1-absorbing ideals are just strongly prime
ideals. Naturally, it would have been better for us to name fractionally n-
absorbing ideal by strongly n-absorbing ideal, but due to the use of this term
by Anderson and Badawi in another sense we prefer that to use "fractional
n-absorbing” for our definition.

It is clear that every fractional n-absorbing ideal of an integral domain R
is an n-absorbing ideal. However, as Example 1.2 shows, the converse need
not be true. It is easily seen that a fractional n-absorbing ideal is fractional
m~absorbing for all m > n. Now, if I is a fractional n-absorbing ideal for
some positive integer n, then define

pr(I) =min{n | I is a fractional n-absorbing ideal of R};
otherwise, set ur(I) = co (when the context is clear we just write p(I)). As
in [1], w(I) = min{n | I is an n-absorbing ideal of R}. Since every fractional
n-absorbing ideal of an integral domain R is also an n-absorbing ideal, we

have w(I) < u(I). This inequality may be strict as the following example
shows.

Example 1.2. Let R = Z be the ring of integers and K = Q be the filed of
rational numbers. Consider the ideal I =47 of R. Then by [1, Theorem 2.1
(d)], I is a 2-absorbing ideal of R. In particular, by [1, Theorem 2.1 (b)], I is
an n-absorbing ideal for all n > 2. However, it is not a fractional 2-absorbing
ideal of R, since %%4 e I, but %% ¢ 1, %4 ¢ I and %-4 ¢ I. In fact, there is
no positive integer n such that I = 47 is a fractional n-absorbing ideal of R.
Because for every positive integer n, we can choose n distinct prime integers
Py--ospn. Now, if a1 = Drap = 22,0 ap g = B2 a, = B2 a4 = 4,
then clearly aj---ap+1 € I, but no product of any n of the a;’s is in I.
Hence I is not a fractional n-absorbing ideal of R for each positive integer
n and so u(I) = oco. Note that w(l) = 2.

2. BASIC PROPERTIES OF FRACTIONAL n-ABSORBING IDEALS

In this section, we give some basic properties of fractional n-absorbing
ideals, and investigate the stability of fractional n-absorbing ideals with
respect to some usual ring constructions. We recall that every fractional
n-absorbing ideal of an integral domain R is an n-absorbing ideal, but the
converse is not true in general (Example 1.2). We start by giving conditions
under which these concepts are equivalent.

Theorem 2.1. Let R be an integral domain with quotient field K, and I
an ideal of R. Assume that for each x € K\ R, =1 C I. Then I is a

2-absorbing ideal of R if and only if I is a fractional 2-absorbing ideal of R.
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Proof. Let I be a 2-absorbing ideal of R, and abc € I for a,b,c € K. If
a,b,c € R, then there is nothing to prove. Hence, we may assume that
a ¢ R. Thus by the assumption bc = a~!(abc) € I, which shows I is a
fractional 2-absorbing ideal. The converse is clear. (]

Theorem 2.2. Let R be a valuation domain and I a proper ideal of R. Then
I is an n-absorbing ideal of R if and only if I is a fractional n-absorbing
ideal of R.

Proof. Let I be an n-absorbing ideal of R. Assume that a;j - an4+1 € I for
aly...,ap41 € K. Ifay,...,ap41 € R, then there is noting to prove. Assume
that a; € K \ R for some 1 < j <n+ 1. Since R is a valuation domain, we
must have aj_l € R. Hence a1 ---aj_1aj41- - Qpy1 = aj_l(al ceapt1) € 1
Thus [ is a fractional n-absorbing ideal. The converse is clear. g

Corollary 2.3. Let R be a valuation domain with quotient field K and n a
positive integer. Then the following statements are equivalent for an ideal I
of R:
(1) I is a fractional n-absorbing ideal of R;
(2) I is a P-primary ideal of R for some prime ideal P of R and P"™ C I;
(3) I =P™ for some prime ideal P(=rad(I)) of R and integer m with
1 <m <n. Moreover, u(P"™) =n for a non-idempotent prime ideal
P of R.

Proof. Tt follows from Theorem 2.2 and [1, Theorem 5.5]. O

Corollary 2.4. Let R be a valuation domain with quotient field K, and M
be its unique maximal ideal. Then M™ is an n-absorbing ideal for all positive
integer n.

Proof. Use (2) = (1) of Corollary 2.3. O

Proposition 2.5. Let R be an integral domain with quotient field K, I is
a fractional 2-absorbing ideal of R and x € K\ R. Then for each a € I,
cither z=*a € I or za € I.

Proof. Let x € K\ R and a € I. Then we have a = 2z~ 'a € I. Hence,
cither 2z~ € I or 7 'a € I or wa € I, since I is a fractional n-absorbing
ideal of R. But I is a proper ideal and so we must have either za € I or
rla el ]

Proposition 2.6. Let R be an integral domain with quotient field K. If
Py, ..., P, are strongly prime ideals of R, then Py N---N P, is a fractional
n-absorbing ideal of R. Moreover, u(PyN---NP,) < n.

Proof. We proceed by induction on n, the number of strongly prime ideals.
Assume that n = 2, and aja0a3 € P; N Py for some a1,a9,a3 € K. Since
Py is a strongly prime ideal of R, we may assume that a; € P;. Now
ajasaz € Ps implies that either a; € Py or as € P or ag € P». Hence, either
a1 € PLNPyor ajas € PPNP; or ajagz € PLNP,. Thus Py NP, is a fractional
2-absorbing ideal of R. Now, assume that n > 2 and the result holds for
n—1. Letai---apy1 € PrN---N P, for some ay,...,a,+1 € K. Since Py
is a strongly prime ideal of R, we may assume that a; € P;. By induction
hypothesis P» N --- N P, is a fractional (n — 1)-absorbing ideal of R and so
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aj - apy1 € PaN---N P, implies that there are n—1 of a;’s whose product is
in I. If a; is one of these a;’s, then we are done. Otherwise, we may assume
that ag - --a, € PoN---NP,, and therefore ajas - --a, € P,N---NP,, which
completes the proof.

The “Moreover” statement is clear. [

Proposition 2.7. Let R be an integral domain with quotient field K and P
a prime ideal of R. If I is a fractional n-absorbing ideal of R containing I,
then I/P is a fractional n-absorbing ideal of R/P.

Proof. First note that the filed of fractions of the domain R/ P is isomorphic
to Rp/PRp. Let @ai,...,an11 € Rp/PRp such that ai---any1 € I/P.
Then aj---any1 € I. Since a1,...,an+1 € Rp C K and [ is a fractional
n-absorbing ideal of R, we conclude that a; = a1 ---ajaj_1---apt1 € I for
some 1 <j<n+1 Thus @i - @1 a1 any1 € I/P. Hence I/P is a
fractional n-absorbing ideal of R/P. (]

Theorem 2.8. Let R and R’ be integral domains with the quotient fields K
and K’ respectively. Assume that f : K — K’ is a ring homomorphism
with f(R) C R'. Then the following statements hold:

(1) If J is a fractional n-absorbing ideal of R, then f~1(J) is a fractional
n-absorbing ideal of R. Moreover, ur(f=*(J)) < pr/(J).

(2) If f is surjective and I is an ideal of R containing ker(f), then f(I)
is a fractional n-absorbing ideal of R’ if and only if I is a fractional
n-absorbing ideal of R. Moreover, ur/(f(I)) = pr(I). In particular,
this holds if f is an isomorphism.

Proof. (1) Let a1,...,an41 € K be such that aj---ap41 € Y.
Then f(a1) - f(ant1) = flar---apnt1) € J. Since J is a strongly
n-absorbing ideal of R’, we may assume that f(a1)--- f(an) € J. It
follows that f(aj---a,) € J and so ay ---a, € f~1(J).

The “moreover” statement is clear.

(2) Let I be a fractional n-absorbing ideal of R, and by ---by41 € f(I)

for some by,...,b,11 € K'. Then for each 1 < i < n+ 1 there exists
a; € K such that f(a;) = b;. Thus we have a1 ---an+1 € I, since
ker(f) C I. Since I is a fractional n-absorbing ideal of R we may
assume that aj - - - a, € I, and therefore by - - - b, € f(I). Conversely,
assume that f(I) is a fractional n-absorbing ideal of R’. Note that,
we have f~Y(f(I)) = I, since ker(f) € I. Now, by (1), I is a
fractional n-absorbing ideal of R.

The “moreover” and “in particular” statements are clear.

O

Corollary 2.9. Let R C R’ be an extension of integral domains and J a
strongly n-absorbing ideal of R'. Then JNR is a fractional n-absorbing ideal
of R. Moreover, ur(J NR) < pug/(J).

Proof. Consider the inclusion map f : R — R’. Clearly, f can be extended
to a homomorphism f : K —s K’ defined by f(r/s) = f(r)/f(s). Now, the
result follows from Theorem 2.8(1). |

Theorem 2.10. Let R be an integral domain with quotient field K and I
an n-absorbing ideal (or in particular a fractional n-absorbing ideal) of R.
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Assume that S is a multiplicatively closed subset of R such that 0 ¢ S and
INS = 0. Then Is is a fractional n-absorbing ideal of Rs. Moreover,
prs(Is) < wr(I).

Proof. Note that Rg is an integral domain since 0 ¢ S. Moreover, the
quotient field of Rg is K. Let a1,...,an4+1 € K besuch that aj ---an4+1 € Ig.
Then there are elements ¢ € R\ {0} and z1,...,2,4+1 € R such that

aj - QApy1 = (Il?l/t)--'(fl?n+1/t) =x1---xn+1/t"+1 € Ig.

Thus 21 - - - 41 € I. Since [ is a fractional n-absorbing ideal of R there are
n of the z;’s whose product is in I, and thus there are n of the a;’s whose
product is in Ig. O

Proposition 2.11. Let R be an integral domain with quotient field K. If I
is a fractional n-absorbing ideal of R, then rad(I) is a fractional n-absorbing
ideal of R and a™ € I for all a € rad(I).

Proof. Since I is a fractional n-absorbing ideal, it is an n-absorbing ideal and
so a™ € I for all a € rad(I). Let ay---apy1 € rad(I) for ay,...,an+1 € K.
Then af ---ay,; = (a1---any1)" € I. Since I is a fractional n-absorbing
ideal of R, we may assume that af---al € I. Thus a; ---a, € rad({), and
therefore rad(I) is a fractional n-absorbing ideal of R. The second part is
clear. 0

3. FRACTIONAL n-ABSORBING, STRONGLY PRIME AND STRONGLY
PRIMARY IDEALS

Let R be an integral domain with quotient field K. Recall that w(I) <
wu(I) for each ideal I of R. In contrast to Example 1.2, w(I) = p(I) may
happen, as the next theorem shows.

Theorem 3.1. Let R be an integral domain with quotient field K. Let I be
a fractional n-absorbing ideal of R such that I has exactly n minimal prime
ideals, say P1,...,P,. Then Py---P, C I. Moreover, w(I) = u(I) =n.

Proof. Since every fractional n-absorbing ideal is an n-absorbing ideal, by
[1, Theorem 2.14], we have P;---P, C I and w(I) = n. The “moreover”
statement follows from the fact that w(I) < p(I) < n. O

Corollary 3.2. Let R be an integral domain with quotient field K. Let I
be a fractional n-absorbing ideal of R such that I has exactly n minimal
prime ideals, say Pi,..., P,. If the P;’s are comazimal, then I = Py --- P,
Moreover w(I) = p(I) =n. In particular, this holds if dim(R) < 1.

Proof. By Theorem 3.1, we have P, --- P, CI C PoN---NP,and P1N---N
P, = P;--- P, since the P;’s are comaximal. Thus I = P, --- P,.
The “moreover” and “in particular” statements are clear. 0

Corollary 3.3. Let R be an integral domain with quotient field K, and I be
a fractional n-absorbing ideal of R such that I has exactly n minimal prime
ideals, say Pyi,...,P,. Then Ip, = P;p, (in Rp,) for all1 <i < n.

Proof. By Theorem 3.1, we have P;--- P, CI C P; forall 1 <1i <n, and
we get the result by localizing these inclusions at F;. 0
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Recall that, a proper ideal I of an integral domain R with quotient field
K is called a strongly primary ideal of R if whenever ab € I for a,b € K,
then a € I or b € rad(I) (see [5]). It is clear that every strongly primary
ideal of an integral domain R is a primary ideal, but the converse is not true
in general. For instance, if I = 47, then I is a primary ideal of the ring
of integers Z but not a strongly primary ideal of Z (because 3 - % € I but

3¢ rad(l) and 3 ¢ rad(I)).

Lemma 3.4. Let R be an integral domain with quotient field K. If I is a
strongly primary ideal of R, then rad(I) is a strongly prime ideal of R.

Proof. Tt is clear that rad(I) is a proper ideal of R. Let ab € rad(I) and
a ¢ rad(I) for a,b € K. Then there exists n > 1 such that a"b" € I;

however, no positive power of a” is in I. It follows that " € I, since I is
strongly primary. Thus b € rad([). O

If R is an integral domain and [ is a strongly primary ideal of R with
rad(I) = P, then I is called a strongly P-primary ideal of R. In the following
theorem, we consider the relationship between fractional n-absorbing ideals
and strongly primary ideals.

Theorem 3.5. Let P be a strongly prime ideal of an integral domain R with
quotient field K, and I a strongly P-primary ideal of R such that P™ C I
for some positive integer n. Then I is a fractional n-absorbing ideal of R.
Moreover, u(I) < n. In particular, if P" is a strongly P-primary ideal of
R, then P™ is a fractional n-absorbing ideal of R with p(P™) < n, and
w(P™) =n if PPt c P,

Proof. Let ay---apy1 € I for ay,...,anr1 € K. If one of the a;’s is not in P,
then the product of the other a;’s is in I, since [ is strongly P-primary. Thus
we may assume that every a; is in P. Since P" C I, we have a1 ---a, € I.
Hence [ is a fractional n-absorbing ideal of R.

The “moreover” and first part of the “in particular” statements are clear.
Now suppose that P"*! ¢ P". Then there are ay,...,a, € P such that
ai---an € P"\ Pl Thus no product of n — 1 of the a;’s is in P" since
otherwise a1 ---a, € P"H, a contradiction. Hence P™ is not a fractional
(n—1)-absorbing ideal of R and therefore u(P™) = n, since P" is a fractional
n-absorbing ideal of R by the first part. O

Next, we see that Theorem 3.5 fails if the condition P® C I for some
positive integer n is removed. For this, we shall need to the following lemma.

Lemma 3.6. Let R be a valuation domain of dimension one, with mazximal
ideal M and quotient field K. Then every nonzero proper ideal I of R is a
strongly M -primary ideal of R.

Proof. Note that every nonzero proper ideal of R is an M-primary ideal of
R. Let I be a nonzero proper ideal of R and ab € I for a,b € K. If a,b € R,
then since I is an M-primary ideal of R, we have a € I or b € rad(I) and so
we are done. Thus we may assume that a € K\ R. Since R is a valuation
domain, we must have a=! € R. So ab € I implies that b € I. Hence I is a
strongly M-primary ideal of R. (]
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Example 3.7. Let R be a one-dimensional valuation domain with mazimal
ideal M and quotient field K. If M is not principal, then M = M?, and
hence (0) and M are the only n-absorbing ideals of R for any positive integer
n by Corollary 2.3. Now if I is an ideal of R such that (0) C I C M, then
by Lemma 3.6, I is a strongly M-primary ideal of R but not a fractional
n-absorbing ideal for all positive integer n.

Let I be a proper ideal of a ring R. For x € R, let I, = {y € R | yz €
I} = (I :p x). We next investigate when I, is a fractional n-absorbing ideal
of R.

Lemma 3.8. Let R be an integral domain and I o fractional n-absorbing
ideal of R. Then for allz € R\ 1, I, = (I :g x) is a fractional n-absorbing
ideal of R containing I. Moreover, u(Iy) < u(I) for all x € R.

Proof. Letay ---apy1 € (I :g z) foray,...,ant1 € K. Since (zay)ag - - ant1
€ I, we have either as - --an+1 € I or product of za; with n — 1 of the a;’s
for 2 <i<mn+1isin I. In either case, there is a product of n of the a;’s
that is in I;. Thus I is a fractional n-absorbing ideal of R. Clearly I C I,.

The “moreover” statement is clear if z € R\ I by above. If z € I, then
I, = R, and so p(I;) =0 < u(I). O

Theorem 3.9. Let R be an integral domain with quotient field K, n > 2
and I C rad(I) a fractional n-absorbing ideal of R such that I has exzactly n
minimal prime ideals, say Pi,...,P,. Suppose that x € rad(I) \ I, and let
m(> 2) be the least positive integer such that x™ € I. Then every product
of n —m~+1 of the P;’s is contained in Iym1 = (I :g 2™ 1)

Proof. Note that m < n, since I is a fractional n-absorbing ideal of R; so
n—m+1>1 Let F ={Q1,...,Qm-1} CG={P,...,P,} and D = G\ F.
Then D contains exactly n — m + 1 of the P;’s. Since x € rad(I) \ I, we
have x € Q; for every 1 < i < m — 1, and thus 2™ ' € Q1 Qm_1.

Moreover, ( [ Q)( [[ P) =P+ P, C I by Theorem 3.1. Hence, we have
QeF  PeD

g™ L[ PCI, andso [[ PC Lim. O
PeD PeD
The proof of the following result is similar to that of Theorem 3.9, and
so is omitted.

Theorem 3.10. Let R be an integral domain with quotient field K, n > 2
and I C rad(I) be a fractional n-absorbing ideal of R such that I has ezactly
n minimal prime ideals, say Py,..., P,. If x € rad(I)\ I, then every product
of n — 1 of the P;’s is contained in I, = (I :p x).

Theorem 3.11. Let I be a strongly P-primary ideal of a domain R with
quotient field K such that P™ C I for some positive integer n (for example,
if R is a Noetherian ring), and let x € P\ I. If 2™ ¢ I for some positive
integer m, then (I :g ™) = Iym is a fractional (n — m)-absorbing ideal of
R.

Proof. First note that m < n, since P* C I and 2™ ¢ I; son—m > 1. It
is easy to show that, I,m is a strongly P-primary ideal of R. Since P" C I,
we have x™P"~™ C I, and thus P"™"™ C I,m. Hence I;m is a fractional
(n — m)-absorbing ideal of R by Theorem 3.5. O
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