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ON REAL CONTINUED FRACTIONS

AMRAN DALLOUL

ABSTRACT. In this paper, we give some improvements to results ob-
tained by G.Nettler, [2] and T.Okano, [4] related to the irrationality
and transcendence of continued fractions.

1. INTRODUCTION

The Theory of continued fractions plays a central role in Number Theory.
It firstly appeared to get good rational approximations to irrational numbers.
Recently, it is widely used to get integer solutions to Pell’s equation and
other related topics.
In 1973, G.Nettler gave wonderful formulas for sum, difference, quotient,
product and exponentiation of two simple continued fractions. His brilliant
work had led him to obtain sufficient conditions on the1 elements of two

simple continued fractions A = a1+ —L+—, B = bj +—1— in order that
a2+ %T 62+ hzT

the six numbers A, B, A + B, A.B*! be ali irrationals and transcendentals
as follows:

Theorem 1.1 (Nettler,[2], Theorem 4.15). Consider the continued fractions
1
A=ay+—F— B=bi+ ———.
az + as-lh- ba + bs-li-

If % > b, > a)™, for all large n, then the siz numbers A, B, A + B, A.B*!
are all irrationals.

Theorem 1.2 (Nettler,[2], Theorem 5.6). Consider the continued fractions

1
A=a+ —B=b+ ———7—.
) + az+... b2 + ba+...
If % > by > a?[fl,for all large n, then the siz numbers A, B, A+ B, A.B*!
are all transcendentals.
Later, he relaxed the condition % > b, > ag’fl to a, > b, > agl"__lly, (3].

y(n—1)
n—1

Also, T.Okano, improved the last one to a, > b, > a
constant such that v > 16, [4].

Many results have been made towards this direction, for example, T.T6pfer
proved the following, [5]:

, where v is any

Theorem 1.3. Let a = ag + alTll_ be a continued fraction and Q, be
ag+...

denominator of the n'* convergent of . Suppose that e,c € R* and k € N.
If the following inequality

Ok = CQ;
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holds true for infinitely many n € N, then « is transcendental.

Also, Hanel, Jaroslav, [1], proved for given k continued fractions

A =a;1 + lel_’i =1,2,.., k. If the following conditions:
2. a3+
. log(logai,)
imsup —————= =
n—00 n

n 1
ai+17n22 > Qip > (1 + E)(alin + 1)
hold true for 1 < i < k and n > 1, then the sequences (a;y )n>1 are continued
fractional algebraically independent. As a corollary we find for given two

continued fractions A = aj + —L+—, B = by + —L—. If the following
GZ+W b2+b3+...
conditions:
log(log b
lim sup M =00
n—00 n

n 1
an2®" > b, > (1+ g)(an +1)

hold true for n > 1, then the six numbers A, B, A+ B, A.B*! are all tran-
scendentals.

Our work is on the road, where we also give some improvements to the
above results.
Our results read as the following:

Theorem 1.4. Consider the continued fractions

A=a1+ ,B=0b +

_1
asz+...

by +

-
a2 + 2 bs+...

If % > b, > a}_1,Yn > 2, then the siz numbers A, B, A+ B, A.B*! are all
irrationals.

Theorem 1.5. Consider the continued fractions

1
A=ay+———— B=b+

as + e by +

_1 -
b3+...

If %> b, > a}ﬁl,‘v’n > 2. then the siz numbers A, B, A+ B, A.B¥! are all
transcendentals.

In our results the sequences (ay), (by) tend to infinity slower than the
sequences in Jaroslav’s result.

2. PRELIMINARIES

Lemma 2.1. Let
1 1 1 Pe

An)=a;+ ——..— =1
as+ a3+ +ap a

11 1 pb
B(n)=by + ——...—— = -1

+b, Qb
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be the n'* convergents of A and B respectively. Then, we have for alln > 1
the following:
az +by agboeF3  E3l) E,1F,
An)+B(n)=ay +b + — === 972 | ,
() +Bn) =1+ b+ e e B B TR, _ F,
Ep = QnQu(Qn_1Q5 5+ Q) _1Q% )

Fp=Q% ,Q) 5(QaQ% 1 +Q%Q0 )

az — by azbaH3 G3Hy Gn_1H,
B(n)— A(n) = by —ay + 2202 _02b2Hs  Gslla ,
() ) =b—a ag.bo+ G3 — H3+ Gy — Hy+  +G, — H,

Gn=QQ%(Q5_1Q% 5 —Qh_1Q%_,)
H,=Q% ,Q% (QQ%_; —QQ%_ 1)

A(n) _ ﬂ b1by — aia9 a2.b1(b1b2 + I)Jg I3Jy I,_1J,
B(n) by ag.bl(ble + 1)+ I3 — J3+ Iy — J,+77 +1I, — Jn,
In = QuP(QnPr 1 — Q5@ 1)

In = Z—2P£—2( ZPS—1 - Q?LPTI;—I)

ajas +biby +1 asbaL3 K3L,4 Ky 1Ly
A(n)Bn)=atby + ——————— - > — .. ,
(n)B(n) o asba+ K3 — L3+ Ky — Ly+ +K,—L,
K= QQ0(Q% _oPy + Qb P y)
Ln = Q5 »Qb »(QaPs 1 + Q% P

Proof. see [2]. O

Lemma 2.2. Let A =a1+ @Tll— and (3 be any constant such that 3 > 4.
agz+...

8
If a, > a®_, vn >2 ,then Q% < a3 +6, where & is any constant such that

n—1°
§ > 0. In particular, Q% < a?
Proof. Using the same argument in [4](Lemma 3), we find that
n 1 n
a
1+ — ;-
Qn < H( + ai)Hal
i=1 =1
Therefore, there exists a positive constant M > 0 such that [];" (1 + ail) <
M.
Using the condition a,, > aﬁ_l, Vn > 2, we find that
1 1

Q% <M(af" " )(ai"7)..... (a,% Y(an)

5ttt

<May,
I+ 4+ L+ i+
<May, BB "
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Since a,, —» 00, then so is a3, where ¢ is any constant such that § > 0. This
implies that for all large n, M < al. Also, the condition § > 4 implies that

6‘%1 < g Hence, combining these inequalities, we get the desired result. [

Using the same argument, one can prove the following;:

Lemma 2.3. Let A = a1 + alel_ and B be any constant such that 8 >
ag+...

8
m'ﬂs

11.5. If a,, > a®_, v > 2, then Q% < ap

n—13

that & > 0. In particular, Q% < a? < a,41.

, where § is any constant such

The following well-known theorem is a criterion for the irrationality of
generalized continued fractions. It states as the following:

Theorem 2.4. (2] Let e1,€a,...,€n, ..., d2,d3, ..., dp, ... be integer numbers.
If the following conditions are hold
1)ey, e, ...,en,...,da,ds, ....,dy, ... are positive,

2) ey > dy, for all large n,

then the generalized continued fraction e; + dz

—2—— converges to an
62+%_
P

irrational number.

The following Theorem will be used to get results concerning the tran-
scendence of continued fractions. It states as the following:

Theorem 2.5. (Roth Theorem,[3]) Let o be a real number and let € > 0 be
a fixed constant. If the inequality

1
q2+r

o -2 <
q

has infinitely many solutions (p,q) € Z x Z*, then « is a transcendental
number.

Lemma 2.6. Let C = e + dizdg be the continued fraction ex-
62+4e3+---+end-f.,.
pansion of either A &+ B,A.B or % (as in Lemma 2.1), and let S—'; =
el + 62+—i2dz be the nt" convergent of C.
93 en

If & > b, > ad_1,¥n > 2, then all of the quantities E,,Gp, Ky, I, (in
Lemma 2.1) are strictly less than (Q2%)3.
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Proof. Using Lemma 2.2 and the condition of lemma, we find the following:
205 1@ =2(an1Q5 s + Qs ) Qi
=201 (@5 ) + @5 Q% )
(Using Lemma 2.2) <2(an 1(Q%_5)* + a%73Q,“172)
(Using the condition of Lemma ) <2(an,1(Qn,2) + anﬁQZ&)
<282 (an1Qss + ans)
(Using Lemma 2.2 and the condition of Lemma) <2Q%_, (an 162 5+ a; 1)
(Using the condition of Lemma) <2Q%_, (anq.anq + an,l)

QZ_2(4ai_1)
<Q5_s(ad_y)
(Using the condition of Lemma) <a,Q5_; < Qw.
Hence,
(1) 2Q% _1Qn_o < Qp for all large n.
Now, we have
En = Qa@Qu(Qn Q5 o+ Q) 1Q% )
(since an > by, ¥n > 1, Q% > Q% ¥n > 2) < (Q%)*(2Q%_,Q%_,)
(Using relation (1)) < (Q2)*(Q%) = (Q2)°
Applying the same argument we get the same result to the rest by con-
a b
sidering the relation gﬁ, < 2a7 and % < 2bjiie, P! < 2a1Q% and Pﬁ <

261Q% ]
Using the same argument, one can prove that

Lemma 2.7. Let C = e; + diﬂg be the continued fraction ex-
ezt t g ft—

pansion of either A + B, AB or % (as in Lemma 2.1), and let S’i =

el + %— be the nt" convergent of C.

e3+.. JrJl
If & > b, > a}z 1,Vn > 2, then all of the quantities Ey,Gpn, Ky, I, (in

Lemma 2.1) are strictly less than (Q%)*°
Proof. As in the previous Lemma, one can check that

1
2.1 5 05
2Q5_1Qn—2 < ;1@ 2 < anQp_o < (QR)

We prove the last inequality as follows:
From the assumption, we have

85
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So,
12 12
(2) Qn < ap’® < ap’
Thus,
Qn >anQp 1
(using relation (2)) >(Q%)#Q?_,
10 22 22
>(Qr-1)12Qn_1 = (Qh_1)2 = QF > (Q_1)%2.
Since the relation holds true for all large n, it also can be satisfied if we
replaced each n by n — 1. Hence, Q%_; > ( ?LJ)%. Therefore,

Qh > (@51 > (@) > (Qh o)™
Therefore,
(3) Qn > (Qn_2)*™.
On the other hand, we have (Q%)!% > (Qz)ﬁ So,
(Q2)*" > (Q)(@Q)35 > an (@) 5.

Hence,
1
(@Q7)* >an[(Q7)55]°

(Using relation (3)) >a,(Q%_,)°.

Thus,
25 1
(@)% > an(@5 )" = (Q0)™° = (QR) " > ai @} s
Hence,
1
(@)™ > ai Q.
Therefore,
(4) 205 1Qn-2 < (Q0)™ = V@5
Using the same argument as in Lemma 2.7, we get the result g
_ d ~ ;
Lemma 2.8. Let C = e + ﬁT be the continued fraction ex-
ez+...+ en‘cm
pansion of either A £ B, A.B or % (as in Lemma 2.1), and let IQJ’; =
e1 +—92_ be the n'" convergent of C.
et 3+—Ea
63 e'n:

If % > b, >al%,,Vn > 2, then E, > E2_|,Gp, > G%_| K, > K?_|,I, >

2
In—l

Proof. We prove for I,, and the rest can be done similarly. Using Lemmas
2.3 and 2.6, we find for all large n, the following:

Ayl 12 L84+ 922 105 a\10.5
2 > bn+1 > a, = (ano.s 10-5) > (Qn) 7> I

Using Theorem 4.9 in [2], we find that
I, — J, > I, _1J,,for all large n.
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So, I, > I, _1Jp. Using (4) and the property: for any positive real numbers
a,b > 0. If a > 4b, then a — b > &,( where in our case a, > 2b, =
Qn > 2Q) and Py > 2P} = Q4P > 4Q) Py = QP — Qp Py >
%Q“ 2 ), we find that J, > I,,_1. Therefore,

n* n—1
2
I,>1;
O
Lemma 2.9. Let C = e; + dizdg be the continued fraction ex-
€2+ﬁn—
63+”'+W
pansion of either A+ B,A.B or 4 (as in Lemma 2.1), and let % =
e; + d—"’ds be the n' convergent of C.
ex+

d
E3+.4.+TZ
If % > b, > al?,Vn > 2, then Q5 < (Q%)>>

Proof. We prove for A+ B and the rest can be done similarly.
Since a, > b,, then the elements of the continued fraction of A + B are
positive integers. This implies that (Q¢) forms an increasing sequence. So,

Qn = enQf_1 + dnQf o < (en +dn)Q5_1 < (en +dn)(en—1+ dn-1)Q5, 5 < ... < H(ei +d;)
=2
Hence,

n
Qi < M| [(EisF, + Ei — F),
i=4
Where M is some positive constant depending on the first elements a1, a9, as, b1, b2, bs.
According to the assumption % > b, > al? ,¥n > 2, (as in the pre-
vious lemma) we find that E, — F, > E,_1F,,for all large n > N. So,
E, > E,_1F, Thus for all large n we have

n
Q5 <M [[(EirF, + E; — F))
i=4

n
<M [[(EBierF + Ey)
i=4
E; 1 F;
E;

<MﬁEi(1+ )

i=4
n
<M [[ Bt +1)
i=N
<M2"Ey....Ey,
1 1
(using lemma 2.8) <M12"E3L+§+”+2"ﬁv

<npy T
1
<M EX E?
(using lemma 2.7) <M1(QZ)2'05(2'5) < (Q2)>?
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In fact, we have E, > a,.b, > (212")(21%") = 22(12") > 220n_ g5 on <
1
Eq° O
3. PROOFS OF THE MAIN RESULTS

Now, we are able to prove the main theorems as follows:

Proof. Proof of Theorem 1.4. First of all, Irrationality of A and B follows
from the fact that any simple continued fraction is irrational.
Now, we prove for 4 % According to [2], and the condition a,, > by, Vn > 1, we

find that the elements of the continued fraction of % (as explained in Lemma
2.1) are positive integers. Using Lemmas 2.2 and 2.6, and the assumption
of theorem, we find that

a 4.75 025
"2+1 > byy1 >ap = (an®  * )2 > (Q%)3

Using Theorem 4.9 in [2], we find that
I, — Jn > I, _1J,, for all large n.

Using Theorem 2.4, we find that is an irrational number.

For A + B: Since a, > by, Vn 2 1, it follows that the elements of the
continued fraction of A+ B (as explained in Lemma 2.1) are positive integers.
Using the same argument, we find that

475+025

Ap41
et >bn+1>a = (an?

2
Using Theorem 4.3 in [2], we find that

E, — F, > E,_1F,,for all large n.

So, A+ B is an irrational number (using Theorem 2.4). The same argument

)* > (Qn)° >

can be applied to prove the irrationality of A — B and A.B. O
Example 3.1. Let
A=2"+ ! B =26 ¢ ! .
27 4 _31—’ 26() y 1
+... ™ 2674
D

It is clear that % > 26(7"7Y) 5 95(T"7Y) vy > 2. Using Theorem 1.4, we
find that the six numbers A, B, A + B, A.B*! are all irrationals.

Proof. Proof of Theorem 1.5. First, transcendence of A and B follows from
Theorem 1.3 and Lemma 2.3 (where we put k =1,e =1 and ¢ = 1).

. - _ da ry _ Py
Now, For A+ B: Let C := A+ B = e + po—— and or = or +
e3+.4.+ﬂnT"m
Q’; ,Vn > 1. Then, we have
b 1 1 2 1

Usmg, l(‘mmas 2.3 and 2.9, we hnd for all large n
1 1 1 1 1

< — = < < < .
G%Q (a: 75+(1)02§)10.5 (Q%)1045 (Q%);_z(mf’) (Q%)Q.OIQ

<
Qa n+1 Qb Qn+1 Q%thq bn+1

<

1

12°
ap
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Using Roth Theorem, we find that C is transcendental.

For % Let C := % =e + d42d3 and g: = ?—"Z’,V’I’L > 1. We have
%<a1+—<2a1 and—_%,VnZi’). So, we get
SER71
1B PGk
Pb pa
B
Fo _ PiPy o Py P it
_A Qth—i_Q“Qb—B@
= 77
Bai
P Py Py P}
|- ge-5
B
Pb Py Py B ph
a(A-gr)|  |or(B- gk
S Pb + pb
Bgi &
‘A B Pa‘ 2a1 _ ﬁ
=B B Qs
4a1b1 ‘A— Pb
4a1b1 2
N B Qan+1

We can choose n sufficiently large such that Q% > 2%. So, 52,,—% < 1.

Hence, we obtain the following:

‘C Fn < ! < ! < ! < !
Qul ~ Qb T bayr al? T (Q)R0Y
Using Roth Theorem, we find that C is transcendental. The cases of A.B
and A — B can be done similarly. O
Example 3.2. Let
_ ol4! 1 _ 513(149) 1
A=2" + SYZEn I ,B=2 + Q13(14T) 1 il
A5 2By
+2it +2:_3f14 )

It is clear that # > 21301477h) 5 912014"7Y) 'y > 2 Using Theorem 1.5,
we find that the six numbers A, B, A + B, A.B*! are all transcendentals.
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