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SKEW(ﬁl + ufo + vfB3 + uvfy + ’U2“65 + quﬁﬁ)-
CONSTACYCLIC CODES OVER F, +ul; +vFq+ uvFq+ UQFq +
w?Fy

RAMEZ AL-SHORBASSI', MOHAMMED AL-ASHKER?, AND GAMAL ISMAIL?

ABSTRACT. In this paper, we study (0 — 3)-constacyclic codes over the
ring R = Fy + uF, + vFy + wwFy + v*Fy + w®F,, with v = 1, v* = v,
uwv = vu, ¢ = p™ and p is an odd prime. The structural proper-
ties of (0 — B)-constacyclic codes over the ring R are studied. Fur-
ther, generating polynomials and idempotent generators for (6 — 3)-
constacyclic codes over the ring R are studied.
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1. INTRODUCTION

Calderbank et al. [2] studied the structure of cyclic codes over Zpa, Dinh
et al. [6] determined the structures of cyclic and negacyclic codes of length
n over finite chain ring . Boucher et al. [3, 4] introduced skew cyclic codes
using skew polynomial ring Fylx, 0], which is non-commutataive ring and
considered the structure of cyclic codes closed under a skew cyclic shift over
Fylz,0].

There are a lot of papers that study skew cyclic codes over a ring, Siap
et al. [7] examined skew cyclic codes of arbitrary length. Cyclic codes over
the ring R = F; + uF, + vl 4+ uvF, were studied , and gave a formula for
the number of skew cyclic codes of length n over the ring R = Fy + ufFy +
vlFy 4+ uvly, where u? =u, v2 =v, uv = vu, ¢ = p™ and p is an odd prime,
see [12].

Skew constacyclic codes over F, +vF, with v? = 0 were studied with two
cases when n is even and when n is odd and gave an example that construct
constacyclic and skew constacyclic code over F3 + vF3, see [10].

The properties of skew cyclic codes over the ring Fym +ulF,m were studied,
which generated by monic right divisor of ™ — A, where X is a unit, see
[11].

Skew cyclic and skew (a1 +uag +vas+uvay)-constacyclic codes over Fy+
ulFy+vF +uvky with u? = u, v? = v, uv = vu, ¢ = p and p is an odd prime
were studied. Also generated polynomials and idempotent generators for
skew cyclic and skew (1 + uae + vag + uvay)-constacyclic codes were de-
termined, see [5] .

Skew cyclic codes over the ring R = F, +ul, + vF, +uvF,+ v F,+w?F,
studied, where v® = v, u? = 1, ¢ = p"™ and p is an odd prime, more over the
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Gray map, automorphism 6 on Fy, the skew polynomial ring Fy[z, 0] was
defined, see [9, 13].

In this paper, we study skew constacylic codes over the ring R = Fj +
uF,+vF,+uwF, +v2F, +uw?F,, where v® = v, u> =1, ¢ = p™ and p is an
odd prime.

The plan of the paper is organized as follows:

In Section 2, we define the Gray map ¥: R — Fqﬁ, and use Chinese
Remainder Theorem to write the ring R as R = (1 — v*)R @ (27 10? +
27 1)R @ (271? — 27 )R, and found B; such that ;> = B, Bi3; = 0,
B1+ B+ B3+ Ba+Bs+ s =1, where 1 <4,5 <6 and i # j.

In section 3, we define C a linear code of length n over R as C' = @?:1 3;C;
and give some familiar structural properties over R.

In section 4, we define (6 — 8)-constacyclic codes over R, and generate
(80— 3)-constacyclic codes by monic polynomial f (x) which is a right divisor
of (™ — ) in Fy[z, 0]. Finally idempotent generators of (6 — 3)-constacyclic
codes are determined, and give some examples.

Section 5 concludes the paper.

2. PRELIMINARIES

Let R = Fy 4+ ulFy + vF, + wkF, + v*F, + w?F; = {a + ub + vc + uvd +
v?e + uwv?fla,b,c,de, f € Fy} with v3 = v, u? =1, ¢ = p™ and p is an odd
prime, this ring is a Frobenius ring but not local. Recall from [13] a map
which defined by
U: R— FS
U(r) = ¥(a + ub+ ve + uvd + vie + w?f) = (a,b,a +c+e,b+d+ f,a—
c+eb—d+ f) called the Gray map, which implies that there exist z, y, z,
w, I, m such that
za+yb+ za + zc+ ze + wb + wd + wf +la—lc+le + mb—md+mf =
a+ub + ve + uvd 4+ v2e + uv? f to give the system of 6 equations as follows:
r+z4+10=1 yt+w+m=u z—Il=w
w—m=uv z+1=12 w+m =uv
one can solve this system by Maple as follows:
solve({z+z+1 =1L, y+w+m =u,z—l = v,w—m = uv, z+1 = v, w+m =
wv?}, [z,y, 2, w, 1, m])to have the solution
z=1-02 y=—uv’+u z=2"M?+27 1y
w=2"1uw?+27luw =22 -2y m = 2" luw? — 27w
1—v?% 2702 + 271y, | = 2752 — 271y satisfies ([8], Lemma 2.1) and by
Chinese Remainder Theorem the ring R can be written as

R=(1-v)Ra 2" +2"w)Re (271 - 271v)R.

Let R, = F,+uF, with u? = 1 be non chain ring. Then R = R, +vR, +
V2R, and let
Br=2l1+u)(1-0%)  B=271(1—u)1—?)

B3 =411 +u)(v+v?) By =471 —u)(v+0?)
fs=4""1+u)(~v+0v?)  fo=4""(1-u)(~v+0?)

Note that 3> = 8, 8;i3; = 0, B1 + B2 + B3 + Ba + B5 + f6 = 1, where
1<i4,7 <6 andi# j, and every element r in R can be written uniquely as
r= Z?:l a;fi, where a; € Fy,.

For any element r = a + ub + vc + uvd + v’e + wv?f in R, we define the
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Lee weight of r as w,(r) = wy(a,b,a+c+e,b+d+ f,a—c+e,b—d+ f),
where wy is the Hamming weight for g-ary codes, and the Lee weight
for the codeword = = (z1,x2,...,2,) € R™ denoted by wr(x) = wr(z1) +
wr(x2) + - -+ wr () = 250 wr ().

The Lee distance between x and y defined as dr(z,y) = wr(z —y) =
>y wi(z; —y;) and the Lee distance for the code C is defined by dr,(C) =
min{dy(z,y)|x # y,Vz,y € c}.

Let x = (z1,22,...,%n),y = (Y1,Y2,- .., Yn), then the Fuclidean
inner product of x and y in R" is x -y =Y /" | T;y;.

If C is a code, the dual code of C denoted by C+ = {z € R"|z -y =
0,Vy € C}, if C C C*, then C is called sel f-orthogonal, if C = C*, then
C is called sel f-dual.

Theorem 2.1. The Gray map V: R — Fq6 is linear and dp(z,y) =
dp (V(x), ¥(z)).

Proof. Let © = a+ ub+ ve + uvd + v?e + uv? f andy:d+ul;+vé+uvd+
v2é + uv f, then W(z) + U(y) = (a+ 4,0+ b, (a +c+e)+ (G+ ¢+ 6), (b+
d+f)+(b+d+¢é),(a—cte) (G—é+¢é),(b—d+ [)b—d+ f) = V(z+y).
For any a € Fy, we have ¥(ax) = (aa, ab,a(a+c+e),a(b+d+ f), ala—
c+e),alb—d+ f)) = a¥(z), which implies that ¥ is linear .
Now di(z,y) = wr(z —y) = wp(¥(z —y)) = wr(¥(z) - Y(y)) =
dr(¥(z), U(y))- 0

Theorem 2.2 (][9], Proposition 3.2). Let C be a code of length n over R, if
C' is self-orthogonal, so is ¥(C).

Lemma 2.3 ([13], Lemma 2.3). Let C be a code of length n over R with
rank K and minimum Lee distance d, then ¥(C) is a [6n,k,d] linear code
over Iy.

3. LINEAR AND SKEW CycrLi¢c CODES OVER R

In this section we use the decomposition method over the ring R to show
some familiar structural properties over R.

Let B;, 1 < i < 6 are codes over Fy, we define their direct sum by
D8y Bi= {30, bilbi € By}

For any element 7 = a + ub+ vc+uvd +v2e+uv? f € R, we can written 7
as 7= Bra+Pab+ f3(atc+e)+pBa(b+d+ f)+P5(a—c+e)+ Be(b—d+ f),
where a,b,c,d, e, f € Fy and r = a+ ub+ ve +uvd + v’e + wv’ f € R is unit
if and only if a, b, (a+c+e), (b+d+ f), (a—c+e), and (b—d+ f) are
units in Fj.

Let C be a linear code of length n in R and let
Cy ={a € F"|a+ ub + ve+ uvd + v?e + w?f € C, for some b,c,d,e, f}
Co = {b € F;"|a+ ub+ ve+ uvd + v’e + uwvf € C, for some a,c,d,e, f}
Cs ={a+c+e€ F"la+ub+ve+uvd+vie+uf € C, for someb,d, f}
Ci={b+d+ f € F,"|a+ub+ve+uvd+v?e+u?f € C, for some a,c,e}
Cs={a—c+e€ F"la+ub+ve+uvd+vie+uf € C, for someb,d, f}
Co = {b—d+f € F,"|a+ub+vc+uvd+v?e+uw’f € C, for some a,c,e}.

Then Cy, Cs, C3, Cy4, C5 and Cp are linear codes of length n over Fy, with
C=a_fiCiand | C|=|C1|-[Co|-|C5]-[Cy|-[C5]-|Cs
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Let C' = ®;_,5:C; be F; module, and let G; be the generator matriz of g-
ary linear codes C; respectively, where 1 < ¢ < 6, then the generator matrix

p1C1
. B2 . .
of Cis G = ) , and the generator matriz of ¥(C) is U(G) =
BsCe
(51Ch)
(52C%)
¥(B6C6)

Let §; be the automorphisms of R defined as ‘ ‘ ‘
0;(a+ub+ve+uvd+v2e+uv’ f) = a? +ubP’ +vcP +uvdP’ +v2eP’ +uv? fP
the skew polynomial ring is R[z,0;] = {f(z) = a0 + a1z + -+ - + anz"|a; €
F,,0 <i<n}={>",az'a; € F,}, where the multiplication is defined
by the basic rule za = 60;(a)z, where a € Fj;, while the addition is the usual
polynomial addition.

Definition 3.1. A subset C' of R™ is called skew cyclic code of length n if
C is a submodule of R™, and if ¢ = (co,¢1,...,cn—1) € C, then oy,(c) =
(Hi(cn_l), 91‘(60), ey Hi(cn_g)) eC.

Theorem 3.2. Let C = ®;_,5;C; be a linear code of length n over R. Then
Ct =ab 80t

Proof. The proof is similar to proof of ([5], Theorem 7). O

Theorem 3.3. Let C' = @?:1/31'01' be a linear code of length n over R,
where C;, 1 < i < 6 are linear codes of length n over Fy,. Then C is
skew cyclic code with respect to the automorphism 0; over R if and only if
Ci, 1 < i <6 are all skew cyclic codes over Fy.

Proof. The proof is similar to the proof of ([1], Theorem 3.4).

Let (c1%,¢9%,...,¢,') € C, 1 <4 < 6. Assume that ¢; = Z?:l Bicj, then
¢ = (e1,¢2,...,¢n) € C. Let C be a skew cyclic code with respect to the
automorphism 6; over R, then oy, (c) = (0;(cn),0i(c1),...,0i(cn—1)) € C.
We have that oy, (c) = E?=1 Bi(0i(c), 0i(ch), ..., 0:i(c!,_1)). Hence
(Qi(c;),ei(cﬁ),...,Gi(cﬁhl)) S CZ‘, for 1 < i < 6. We have Cl, 02, Cg, 04,
Cs, and Cg are skew cyclic codes with respect to the automorphism 6; over
F,.

qunversely, assume that C, Co, C3, Cy, C5, and Cg are skew cyclic codes

with respect to the automorphism 0; over Fy, and let ¢ = (c1,¢2,...,¢,) €
C, with ¢; = Z?Zl Bicj, then (c1%, 2%, ..., ¢,") € C, where 1 < i < 6.

Now O'gi(c) = (Hi(cn),ei(cl),...,Hi(Cn_1)) eC. O

As we know that it is not easy to find the exact number of skew cyclic
codes over [R, 6;], and there idempotent generator over R for the important
reason that the skew polynomial is non-commutative. For this the condi-
tions ged(n, k) = 1, and ged(n,q) = 1 allow us to know the existence of an
idempotent generator e(z) € [R,6;]. Also if f(z) is a monic right divisor of
z" —1 with C =< f(z) >, ged(n, k) = 1, and ged(n, q) = 1, then there exist
an idempotent polynomial, such that C =< e(z) >, see [5, 9, 13].
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4. SKEW (B1 + uBa + vfB3 + uvfs + v2B5 + uv?Bs)-CONSTACYCLIC
CODES OVER R

In this section we recall the definition of S - constacyclic code and (6 — 3)-
constacyclic codes over R = F, +uF, +vF; +uvF, +v:F, + uww?F, and give
some results on skew S-constacyclic code over R.

Definition 4.1. Let 8 be a unit in R. A linear code C of length n over R
is called B-constacyclic code if for every ¢ = (cq,c1,...,cn—1) € C, we have
(Bcn,l, Ccoy .- ,Cn,Q) eC.

Note that if 3 = 1, then a -constacyclic codes is cyclic codes, while if
= —1, then a S-constacyclic codes is called negacyclic codes.

Definition 4.2. Let 8 = 1 +ufs+vP3+uvfs+v2 05 +uv?Bs be a unit in R,
where 3; € Fg* and 6 be the automorphism on R. A linear code C of length
n is said to be skew constacyclic code or specifically (6 — )-constacyclic
Codes over R if and only if C is invariant under the (0 — ()-constacyclic
shift vector 193 : R — R" defined as m9p(c) = 19(co,¢1,-..,Cn1) =
(50(871—1)7 9(00)7 EERE) ecn—Q)'

For any codewords as a polynomial, a skew (-constacyclic code C of
length n over F, with respect to automorphism 6 is left Fy [z, §]-submodule
of Fylz,0]/ < 2™ — @ > generated by a monic polynomial f(z) which is a
right divisor of (z™ — ) in Fy[x, 0], see [7, 13] .

Note that there is a one-to-one correspondence between the skew cyclic
codes and skew (-constacyclic codes over R of odd length, see [5].

Theorem 4.3. Let 8 = 1 + ufo + vB3 + uvfs + v285 + wvBs be a unit
in R, C = 69?:1,6’1;07; be a linear code of length n over R. Then C is (3-
constacyclic codes over R if and only if Cy, Cy, C3, Cy, Cs and Cg are
skew [31-constacyclic code, skew B2-constacyclic code, skew (81 + B3 + B5)-
constacyclic code, skew (B2+ B4+ Bs)-constacyclic code, skew (81— B3+ Os)-
constacyclic code and skew (B2 — B4 + Bs)-constacyclic code of length n over
F, respectively.

Proof. Let r = (ro,71,...,mn—1) € C, where r; = B1a; + B2b; + Bs¢; + fad; +
Bsei + Befi, 0 < i <n—1.

Let a = (ag,al, RPN ,an,l), b= (bo, bl, PN ,bnfl), Cc = (Co, Cly... ,Cnfl),
d = (do,dl, I ,dn_l), e = (60,61, e ,en_1) and f = (fo, fl; e ,fn_l), SO
acC,beCy,ceCs,deCy,ecCsand f e C.

Suppose that Ci, Co, Cs3, C4, C5 and Cg are skew (31-constacyclic code,
skew S2-constacyclic code, skew (81 + 83 + 35 )-constacyclic code, skew (52 +
B4 + Bs)-constacyclic code, skew (81 — B3 + (5)-constacyclic code and skew
(B2 — B4+ Bs)-constacyclic code of length n over Fy respectively. So 73, (a) €
C1, 78,(b) € Co, g 185445(c) € O3, T3,484485(d) € Cu, Tp—py465(€) € Cs
and 7, g,+4,(f) € Cé.

Now Tﬁ(’f’) = TB1+uBo+vB3+uvBi+v2Bs+uv?Bg (r) = (,391‘(7’71_1), 91‘(7’0), ey
97;(67»,2)) = ((B1+U/32+v/33+uvﬁ4+v255—Hw2ﬁ6)6’i(rn,l), 9@(7‘0), ey Hi(CT,Q))
= P17, (a) + Ba7p, (D) + P37y 18545 (C) + BaTpat-a+56 (d) + B578,—p3+85 (€) +
B6Tpy—patps(f) € ®_16;C; = C, which implies that C' is -constacyclic code
over R.
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Conversely, Let a = (ag,a1,...,an-1) € C1, b = (b, b1,...,bp_1) € Co,
Cc = (Co, Cly. -y Cn—l)
e Cs, d = (do,dl,...,dnfﬂ € Oy, e = (60,61,...,671,1) € Cs and f =
(fos f1,- -5 fn—1) € Cg, let 1y = Bra; + Babi + Bsci + Badi + PBsei + PB6 fi, where
0<i<n-—1,thenr=(ro,r1,...,7n-1) € C.

Suppose that C' is S-constacyclic code over R, so
3 (T) = T8y +uB24vBs+uvBatv2Bs+uv?Be (T’) eC.
78(r) = B178, (@) + 5275, (b)+837, + 85+85 (€)+ P72+ pat-ps () + 8576, 3485 (€)
+B678,—pa+8s(f).- Which implies directly that 74,(a) € C1, 75,(b) € Co,
81483455 (€) € U3, 785484156 (d) € Cu, 78,5155 (€) € Cs and 73, g, 1.5, (f) €
Cs. Hence Cp, Cy, C3, C4, C5 and Cg are skew (-constacyclic code,
skew [s-constacyclic code, skew (81 + B3 + B5)-constacyclic code, skew
(B2 + B4 + Bs)-constacyclic code, skew (51 — 33 + 35)-constacyclic code and
skew (82 — B4 + fs)-constacyclic code of length n over Fy, respectively. O

Now, we want to study skew constacyclic codes generated by Monic Right
Divisor of z, —  as 8 = B1 + uBa + vBs + uvPs + v2B5 + uv?Bs is a unit
in R, with n = km, where n is the length of codes and k is the order of
the automorphism 6. A generator matrix of the (6§ — §)-constacyclic code
generated by g(z) is given. See [11], where g(z) is a Monic Right Divisor
of 2, — (B1 4 ufa + vB3 + uvfy + v B5 + uv?Bs).

Lemma 4.4 ([11], Lemma 3.1). Let C be a code of length n over R. Then
C is (0 — B)-constacyclic if and only if C+ is (§ — 3~1)-constacyclic. In
particular, if 5% = 1, then C is (0 — B)-constacyclic if and only if C* is
(0 — B)-constacyclic.

Corollary 4.5. Let C = @?zl/ﬁic,- be a skew [-constacyclic code of length
n over R. Then the dual code C+ = <\>§:1ﬁicﬁ is skew B~ '-constacyclic
code over R, where Cit, Cyt, Cst, Cyt, Cst and Cg- are skew B~ '-
constacyclic code, skew 8o~ -constacyclic code, skew (B1+ B3+ B5) " t-consta
cyclic code, skew (P + B4+ P) "' -constacyclic code, skew (1 — (3 + f5) -
constacyclic code and skew (B2 — B4 + Bs) ~'-constacyclic code of length n
over Fy respectively, where 8 = 31 + uB2 + vB3 + uvfy + v2Bs + uv?Bs and
n = mk, where k =|< 6 >| the order of the ring automorphism.

Proof. Let B = 1 + ufs + vB3 + uwvBs + v285 + uv?Bs be fixed by 0 and
n = mk, where n is the length of a code C and k =|< 6 >|, then be Lemma
4.4, C+ is(0 — B~1)-constacyclic over R.

Since 8 = B1 +ufa + v+ uvfs+ v s +uwv?Bs = 161 + PP + B3(B1 +
B3 + B5) + Pa(B2 + Ba + B6) + B5(B1 — B3 + B5) + Pe(P2 — Ba + Bs). Tt
follows3 =1 = 181" + Bafo " + B3(B1 + B3 + B5) " + Ba(Ba+ B+ Bs) ' +
Bs(B1 — B3 + Bs) " +B6(B2 — Ba+ Bs) ', so we have C1 -, Cot, C3t, Cyt, Ot
andCg™ are skew 31 ~'-constacyclic code, skew 85~ '-constacyclic code, skew
(1 + B + B5)~L-constacyclic code, skew (B2 + B4 + Bs) ~'-constacyclic code,
skew (1 —f3+35) " '-constacyclic code and skew (2 — 34+ 6) ~'-constacyclic
code of length n over Fj respectively. O

Theorem 4.6. Let 3 = 81 + uBs + vB3 + uvBy + v2B5 + wBs and C =
B8, B8iCi be (0 — B)-constacyclic code over R, where § the automorphism of
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R, then there exist a polynomial f(x) in R[z, 0], which is a right divisor of
2" — B =2a" — (B1 + uPa + vfB3 + uvPy + v2Bs + uv?fBs) and C =< f(z) >.

Proof. Firstly want to show that C' =< f(z) >

Let f;(x) be generator of C; for i =1,2,3,4,5,6. Then 3, f;(x) are gener-
ators of O for 1 < i < 6. Take f(z) = 3.0, Bifi(x) and £ =< f(zx) >, then
£CC.

On the other hand 8;fi(z) = Bif(z) € £, for 1 < i < 6, which implies
that C C £ . Hence C = £ =< f(z) >.

Since f;(x) are right divisors of z™ — S, 2" — B2, ™ — (1 + B3 + B5),
" — (Ba+Pa+Ps), ™ — (81— B3+ B5) and ™ — (B2 — B4+ Bs) respectively,
so there exist h;(x), where 1 <4 < 6 such that
2" — B = hi(z) x fi(x), 2" — B2 = ha(2) * fo(z), 2" — (B1+ B3+ P5) = ha(x) =
fa(@), 2 — (B + Ba+ Bs) = ha(w) # fa &), 7" — (B — Bs + B5) = ha(x) * f (x)
and z" — (B2 — B4 + Bs) = he(z) * fe(x). Also [Z?:1 Bihi(z)] * f(z) =
Bihi(z) * f; = 2™ — (B1 + uPa + vB3 + uvBs + v? s + uv?Bs)] = 2™ — 3, which
implies that f(xz) is a right divisor of 2™ — §. O

Corollary 4.7. Let 3 = 1 + ufy + vf3 + uvfy +v2Bs + uv?Bg be a unit in
R, each left submodule of R[x, 0]/ < x™— B > is generated by single element.

Theorem 4.8. Let f = 1 + uBs + vf33 + uvfy + v2f5 + uwv?Ps, and C =
DY, B:C; be (6—P)-constacyclic code over R, let ged(n, k) = 1 and ged(n, q) =
1. Then there exists an idempotent generator e(z) = 3.0 Biei(z) €
Rz, 0]/ < 2™ — 8 > such that C =< e(z) >, where e1(z) € Fylz,0]/ <
" — P >, ea(x) € Fylz, 0]/ < a™ — o >, e3(x) € Fylx, 0]/ < 2" — (b1 +
B3+ B5) >, ea(x) € Fylx, 0]/ < a™ — (B2 + Ba+ B6) >, es(x) € Fylz,0]/ <
" — (B1 — B3 + Bs) > and es(x) € Fylx,0]/ < 2™ — (B2 — Ba + Bs) > are
idempotent generator of Cy, Co, C3, Cy, Cs and Cg respectively.

Proof. By the same argument of ([7], Theorem 16), we have that C1, Co, Cs,
Cy, Cs and Cg are cyclic codes, which implies that C; =< e;(z) >, where
1 <4 <6 and e;(z) are idempotent generators of C; respectively € Fy[z, 6]
. Then we have e(z) = Y.°_, B;ei(z) is an idempotent generator of C. [

Theorem 4.9. Let C' be a skew [3-constacyclic code of length n over R, let
k be the order of the automorphism and n be the length of the code with
ged(n, k) =1. Then C is a B-constacyclic code of length n over R.

Proof. The proof is similar to the proof of([5], Theorem 22).

Let ged(n, k) = 1, then there exist an integers a, b, such that ak = 1+ bn.
Let ¢(x) = cog+ 1zt + -+ c,_12" L € C. Then zic(x) € C, 1 < i < ak.

Now z%¢(z) = 29 Z?:_Ol ¢zt = Ofkcoa:“k + 49;1’“011“‘”“"'1 + -+ kacn_l
xak+n71 — Cox1+bn + 01I2+bn 4o+ Cn_lxn+bn — ﬂb(COIL‘ + 011‘2 RS
Cn_ox™ 1 4+ B2 1),

Hence BP2%c(x) = cox + 12’ 4+ -+ cp02™ '+ ¢,_18 € C. So C'is a
[-constacyclic code of length n over R. O

Corollary 4.10. Let ged(n,k) = 1. If f(x) is a right divisor of " — f8
in the skew polynomial ring R[z,6;], then f(x) is a factor of x™ — 3 in the
polynomial ring R|z].
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Example 4.11. We construct the field Fas = Fy2 = Fs[] as a ring of poly-
nomials over Fy5 modulo the irreducible polynomial x>+ + 1, with x = a =
0.02+1.a04+0.1. Now, ¢ =5 and take n = 4 with Frobenius automorphism
0 : Fos — Fos defined by 0(a) = o , the factorization of x* — 1 mod-
ulo 5 is (x* — 1) = (x — 1)(z + 1)(x + 2)(z + 3), and the factorization of
2t + 1 modulo 5 is (z* + 1) = (22 + 2)(2® + 3). Take fi(x) = fo(x) =
fg(l') = f4($) = f5($) =T+ 17 fﬁ(x) = Z2 + 37 let Bl = 17 /81 +62 = 17
Br+Pe+Ps=1, P14+ P+ B3+ ps=—1, P14+ P2+ B3+ Ps+ P =—1 and
B+ B2+ B3+ Pa+ Bs+ s = —1.

Now this system can be solved by Maple as follows:

solve(fy = 1,01+ P2 =1,81+ B2+ B3 =151+ Pa+ B3+ s = —1, 61+ P2+
B3+ Ba+Bs = —1,01+ Ba+ B3+ 1+ Bs + s = —1), 81, B2, B3, Ba, Bs, Bs)-
mod 5 to have [[f1 = 1,82 = 0,83 = 0,64 = 3,85 = 0,86 = 0]], so we
compute 3 by Maple as follows:

B1:=1,8:=0,03:=0,04 := =2,05 :=0, s := O,evala(ﬂl + uf2 + vfhs +
uvBa+v? Bs+uv?Bs) mod 5 to have B = B1+ufBe+vBs+uvfa+v?Bs+uv? B =
1+ 3uwv.By the same way one can have C =< B f1(x) + Pafa(x) + B3 fa(x) +
Bafa(x)+Bs f5(x) + Po fo(x) >=< (B1+ P2+ B3+ Ba+Ps) fr(x)+Ps fo(x) >=<
(14 4v + uv + v + duv®)(z + 1) + (1 — w)(v — v*)(z2 +3) >. Then
C =< (1+4v+u + 0>+ duw?)(z+ 1)+ (1 —u)(v —v?) (2> + 3) > is
a self-dual skew (1 + 3uv)-constacyclic code of length 4 over R = Fa5 +
uFos + vFhys + uvFos + v2Fos + uv?Fas, where u? = 1, v3 = v, uv = vu.

Example 4.12. We construct the field Fy = Fy2 = F3[2c + 1] as a ring of
polynomials over F3 modulo the irreducible polynomial 2 +1, with o?+1 = 0.
Now, ¢ = 3 and take n = 5 with Frobenius automorphism 60 : Fo — Fy
defined by 0(a) = o , the factorization of z° — 1 modulo 3 is (z° — 1) =
(x — 1)(z* + 23 + 2% + 2 + 1), and the factorization of ° + 1 modulo 3 is
(@5 +1)=(x+1)(2z* — 23+ 22 -2 +1).

Take fi(z) = fo(z) = fa(z) = (¢* +2° +2° + x + 1), fa(z) = fs5(z) =
fo(x) = (2t =23+ 22 —x+1), let B =1—2u+v — uv, we have f; = 1,
Bi+PB2 = —1, f1+Ba+Ps =1, pr+Pa+Bs+Ps = —1, Bi+B2+03+61+05 = 1
and By + P2 + B3+ fa + B5 + B = —1.

Compute 81 + B2 + B3 and B4 + B5 + B by Maple as follows:
Ezpand(2=1(1 4+ u)(1 — v?) + 2711 — u)(1 — v?) + 4751 + u) (v + v?)) mod
3 to have 1 + v + uv + uv?

Ezpand(4~1(1 — u)(v + v?) + 4711 + u)(—v + v?) + 4711 — u)(—v + v?))
mod 3 to have 2v + 2uv + 2uv?.

Then we have f(z) = B1fi(z) + Bafo(z) + B3 f3(x) + Bafa(x) + Bsf5(z) +
Bef1(6) = (B1+ B2+ B3) f1(z) + (Ba+B5 + B6) f3(x) = (1+v+uv +uv®)(z* +
B4+l +r+ 1)+ Qut2uw+2u?)(zt — P+t —r+ 1) =2t + (1 —v—
ww — uv?)x® + 22 + (1 — v — uwv — w?)x + 1 is aright divisor of ° — (1 —
2u+v —uv) in R[0,z] and by Theorem 4.9 since ged(n, k) = ged(5,3) = 1,
then C =< f(z) > is a (1 — 2u+v — wv)- constacyclic code of length 5 over
R = Fy+uFy +vFy+uvFy 4+ v?Fy +ww?Fy, where v? =1, v® = v, uv = vu.

5. CONCLUSION

In this paper, we considered (6§ — ) - Constacyclic codes over the ring
R=F,+uF;+vF, +uvF, + ’UQFq + uszq, with u?2 = 1, v® = v, wv = vu,



Skew (B; +,B5+,B5+,,B,+ 285+ ,,286) constacyclic codes over

q = p™ and p is an odd prime. For future resaearch one can study skew

constacyclic codes over the rings Fj[u,v,w]/ < u? v w? uw — vu,vw —

wu, uw — wu >= I, +uly, + vF, + wkF, + uwk), + uvwkF), + vwk), + uwwk),
or Fylu,v,w]/ < u?,v*wuv — vu,vw — wo,uw — wu >= Fy + uF, +
vly + wly + wkFy + uwly + vwly + uvvwly, where u? = v? = w? =0,
uv = vu, YW = wvanduw = wu.
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