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Abstract

Topological indices are graph invariants computed usually by means of
the distances or vertex degrees of molecular graphs. In chemical graph
theory, topological indices have been successfully used in describing the
structure and also predicting certain physico-chemical properties of chem-
ical compounds. Atom-bond connectivity (ABC) index has been applied
to the study of the stability of alkanes and to the strain the energy of
cycloalkanes. The atom bond connectivity (ABC) index of a graph G is
defined as

deg(u) + deg(v) — 2

ABO(G) = Y deg(w)deg(v)

weE(G)

where E(G) denotes the set of edges of G and deg(u) and deg(v) are the
degrees of the vertices u and v, respectively.

Recently, for several applications, the entire versions of the topological
indices are defined and studied. In this versions of the topological indices,
not only the vertices or the edges are considered in calculations. Both of
them are used instead. In this research, we introduce and study the entire
atom bond connectivity index of a graph. Exact values of this index for
some families of graphs are obtained and some important properties of this
new index are established.
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1 Introduction

Let G be a finite connected graph with vertex set V(G) and edge set E(G). Let
deg(v) denote the degree of a vertex v € V(G). In chemical graph theory, we
usually make use of graphs to represent molecular structures. One of the most
useful tools to study and predict various properties of molecular graphs is the
topological indices which are used directly as simple numerical descriptors in
quantitative structure property relationships (QSPR) and quantitative structure
activity relationships (QSAR) [§].

In 1998, Estrada et al. [13] proposed a topological index based on the de-
grees of vertices of graphs, which is called the atom-bond connectivity index and
denoted by ABC index for short. This index is defined in [13] for a graph G by

deg(u) + deg(v) — 2
ABC(G)= > :
wiEi) deg(u)deg(v)

Initially, in the light of the existing close relationship between the ABC index
and the heats of formation of alkanes, the ABC index became an efficient tool
to study the thermodynamic properties of organic chemical compounds [13]. In
2008, Estrada [9] elaborated a novel quantum-theory-like justification of the ABC
index and explained the stability of branched alkanes.

It has become a tradition to try to discover several modifications of some exist-
ing topological index for their new applications similar to the ones of the existing
index. These trials usually end with a few papers discussing some purely math-
ematical properties instead of giving actual applications. Farahani [20] proposed
the edge version of the ABC index as follows

Z degr(c)(e) +degrc)(f) — 2.

ABC.(G) = degrc(e)degrc)(f)

efeE(L

This recently introduced version of the ABC index has been applied up to now
to the study of the stability of alkanes and to strain the energy of cycloalkanes.

Following this, in this paper, we introduce the entire version of the ABC in-
dex of a graph denoted by ABC¢(G). The motivation to do that is as follows.
The classical topological indices defined by means of either vertex or edge de-
grees are useful to calculate only one type of a property. But for example, the
intermolecular forces depend on the interactions not only between the atoms but
also between the bonds and even between atoms and bonds. Therefore in recent
years, people started to study entire versions of topological graph indices. Exact
values of the entire ABC index for some families of graphs are obtained and some
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important properties of this new index are established. Some useful applications
and recent results related to the entire topological graph indices can be found in
[1] and [3].

2 Some general results on ABC¢(G)

Definition 2.1. Let G = (V, E) be a simple graph and let

B(G) ={{z,y}: {z,y} CV(G)U E(G) and the elements x and y either adjacent
or incident to each other} .

Then the entire atom bond connectivity index of G is defined by

deg(z) + deg(y) — 2

& _
ABC(G)= Y deg(@)deg(y)

{zy}CB(G)
Observation 2.2. For any graph G with m edges, we have
M (G)

where My (G) denotes the first Zagreb index of G.
The relation between the ABC, edge ABC and entire ABC indices is as follows:
Observation 2.3. For any graph G,

deg(v) + deg(e) — 2
2 deg(v)deg(e)

Proposition 2.4. For any k-regular graph G on n vertices with k > 2, we have

ABC(G) = ABC(G) + ABC.(G) +

v is incident to e

kn kn 3k —4
ABCE(G) = vE— 1+ g —64+ 22, [ 222
©) V2 4 V2 \ k(k—1)

Proof. Let G be a k-regular graph on n vertices with £ > 2. Then G has l%n
edges and L(G) has

nk* nk  kn(k—1)

edges. Therefore,

kn [2k—2 kn(k—1) [2k—2+2k—2—2 k4 2k—2—2

2 —_— _—

ABCH(G) = Pt \/ P L Yy wo Ty
n kn kn | 3k—4
LI SNy SR ity
NG 3 0+ B\ R =)
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Corollary 2.5. For any complete graph K, with n > 3 vertices,

£ O n(n —1) — n(n —1) 3n—7
ABC(KQ__V§¢__§+——Z—— dn — 10 + 7 D2

Corollary 2.6. For any cycle graph C,, with n > 3 vertices,
ABC(C,) =2V2n

Proposition 2.7. For any path graph P, with n > 3 vertices,

ABCWR):%@n71<

V2
Proof. Let P, be a path graph with n > 3 vertices labeled by vy, vs,--- , v, and
n — 1 edges labeled by ey, es, -+ ,e,_1. The vertices v; and v,, are of degree one

and the edges e; and e,_; are of degree one. All other vertices and edges are of
degree two. Therefore

24+2-2 1+2-2
ABC%BJ:,L;?I—4n—3)+2w—i§——
N [2+2-2 )+2/1+2f2
1 2

24+2-2 1+2-2 1+1-2
- - = /== Z 4o /- =

Vg 9+ ¢ SR ¢ 1
2

=2v2n — @

(n—4
2(n —

Proposition 2.8. For any complete bipartite graph K,

¢dﬂa+wm+b—®+2®]

b
ABC!(K,) = aMa+b—m+25VZI€i§+ et

7

Proof. Let the vertices of K,; be labeled by vy, va, -+ , V4, Vat1, Vata, - ; Up-
Then

b+a—2 1 2(a+b—2)—2
e _ L2 2\ _
ABCE (K,p) =aby|— +<2@b+ba) @) r——

b a+(a+b—2)—2+ab b+(a+b—2)—2
ala+b—2) bla+b—2)

B ab ab[(a+b)(a+b—4) + 2ab]
= ab(a+b2)+E\/a+b3+\/ Py - .
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Proposition 2.9. Let G be the k-bridge graph Q(ay,as,--- ,a;). Then
k
ABCH(G) =2v2) " a;i + V2(k + 1)Vk — 1 - 3k/V2.
i=1

Proposition 2.10. Let G be the wheel graph W,, with n + 1 vertices. Then

1
ABCE(G) = < +y/5+ f)n+n,/"+
n—|—3 n(n — 1)\/>
g [T+ =
n+1
n+2 2n—1
+2n,/
n -+ 1 n(n + 1
Proof. Let G = W, be the wheel graph of n + 1 vertices. Then |V33| = n,

3n| = Ny [Lga| =N, [Lynt1| = 21, | Lnyinsl| = 2_ , [A34] = 2N, |[A3p41| = N
Vsl | Bl |Esns1| = 2n, |E | = 20 |Ag 4| = 20, |As i
and |Ap 41| = n. Then using Observation 2.3, we get

2 3 n+1
ABCE(G) = <§+ \/§+ \/;) n+ny/ e
n+3 nn-1) [n
+n + 5
n + 1 n+1
n+2 2n —1
+2n
V 12 3(n+1) n(n+1)
Lemma 2.11. Let s,t be arbitrary positive integers such that s,t > 4 and G =
POP,. Then

4s 44t — 24
ABC(G) =4\/§+%4—(s+t—4)\/§+(23t—5t—53+12)\/§

Proof. Let s,t be any positive integers such that s, > 4 and G = ROP,.
Let Vo = {{u.v} : wv € E(G) such that deg(u) = a and deg(v) = b}, so we
have four partition sets of the vertices of G' and it is not difficult to see that
[Vas| = 8,|Vas| =2(s+t—06),|Vaul =s+t—4and |Vig| = (s —3)(t —2) + (s —
2)(t — 3) = 2st — bs — 5t + 12. Then

ABC(G) :8\/2—?;2+2(s+t—6)\/¥+(5+t—4) il

4+4-2
16

+ (2st — bs — 5t + 12)

ds 44t — 24
Hence, ABC(G) = 4\/§+%+(s+t—4)\/§+(2st—5t—5s+12)\/§

43
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Lemma 2.12. [25] If s,t > 4, then

ABC,(G) = %\/g(% + 25— 16) + %\/Z(st bds— 24) 4 ,/%(& +6m — 32)

10 8v/2 5 2 8
+%(6ts—18t—18$+52)+T\/_+4\/;+8\/;+§,

Theorem 2.13. Let s,t be any positive integers such that s,t > 4 and G =
P,OP,. Then,

ABC!(G) =4v2+ WJF(s+t—4)\/§+(23t—5t—5s+12)\/§

+50/32+ 25— 16) + 3y [T (st + 45 — 24) + [ (6t + 65 — 32)
+Y30(6ts — 18t — 185 + 52) + &2 +4\/§+8\@
+§+4\/§+%+(4s+4t—24),/%+(25+2t—8)(\/§+./%).

Proof. Let s,t be any positive integers such that s,t > 4 and G & P, P,. By
using Observation 2.3, we have

Z deg(v) + deg(e) — 2'

&£ —
ABCE(G) = ABC(G) + ABC.(G) + deg(v)deg(e)

vis incident to e

Z deg(v) + deg(e) — 2
v incident to e deg(v)deg(e)
where x is an edge in G, y is a vertex in G and z is incident with y such that
deg(x) = a and deg(y) = b. Then we have |As2| = 8, |As3| = 8, |Ass| =
4(s = 3) +4(t —3) = 4s+ 4t — 24, [As3| = 2(s —2) +2(t — 2) = 25 + 2t — 8,
|A574| =2s+2t—38 and |A6,4| = (S — 3)(t — 2) Then,

deg(v) + deg(e) — 2 3 4 5
> degDdeald) 8\/%—# 8\/;4— (45 4 4t — 24)\/;

v incident to e

+(23+2t—8)\/g+(23+2t—8)\/;+(s—3)(t—2) 28—4

1
:4\/§+76+(4s+4t—24) %

+ (2s+2t—8)\/g+ (25 + 2t — 8)\/%+ (5—3)(t—2)\/§. (2.1)

To get , let A,y be the set of all subsets {z,y}
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Then by Lemma 2.11 |, Lemma 2.12 and Eqn. 2.1 we get:

4 4t — 24 5
ABCE(G) = 4\/§+%+(s+t_4)\/; (25t 5t 55412 ,/ - \/> 2%4+25—16)
1 /7 3 v 10
+§\/;(st+4s—24)+\/ (61 + 65 — 32) + Y= (61 — 181 — 185+ 52)

8\/_4—4\/»-1—8\/7-1— +4\/_+—+(4s+4t—24)\/?
PPN I )

Lemma 2.14. For any positive integers s > 4 and t > 3, if G = P, C}, then

ABC(G) = (% + \/g)t + \/%15(23 —5).

Proof. Let s >4 and t > 3. Let V,, = {{u.v} : wv € E(G) suchthat deg(u) =
aanddeg(v) = b}. We have three partitioning sets of the vertices of G and it is not
difficult to see that |Vas| = 8, |V 3| = 2¢t, V34| = 2t and |Vy 4| = t(s—2) +t(s—3).

Then, we get
ABC(G) = (é + \/E)t +4/ E1&(23 —5)
-3 3 16 '

Lemma 2.15. [25] For any positive integers s > 4 and t > 3, if G = P,OC,,
then

1
ABC.(G) = V10st +(— + 2\/>+ 3_ _ 970)

Theorem 2.16. For any positive integers s > 4 and t > 3, if G = P, Cy, then,

ABCE(G) = <\/§+ M?m/ﬁ) st
4 5 5 [3 V6 27 3V30 9v10 20 \/§ \/7 10
+<§+\/;+5\/;+7+ e 3 +\/§+ =t 57/ t.

Proof. Let s,t be any positive integers such that s > 4and t > 3. If G = P,OC},
then by Observation 2.3, we have

oo deg(v) + deg(e) — 2
ABC?(G) = ABC(G) + ABC.(G)+ Y deg(v)degle)

v incident to e

Z deg(v) + deg(e) — 2

deg(0)deg(e) let B, be the set of all subsets {z,y}

To get

v incident to e
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where x is a vertex in GG, y is an edge in G and z is incident with y such that
deg(xz) = a and deg(y) = b. Then we have |Bs4| = 4t, |Bss| = 2t, |Bys| = 2t,
and |Byg| = 2t(s — 2) + 2¢(s — 3). Hence

deg(v) + deg(e) — 2 [3+4—2 [3+5—2
=4\ ——— + 2t | ——
Z deg(v)deg(e) t 12 et 15

v incident to e

4452 4+6-2
+ 2ty | g (25 = 2) + 26(s = 3)y | 5y —
120 8 7 10 4

Then by Lemma 2.11, Lemma 2.12 and Eqn. 2.2, we get

ABC?(G) = (\/§+ \/§+\/ﬁ> st
4 5 5 /3 V6 27 3v30 910 20 V@ vﬁ 10
+<§+¢;+§¢;+3~+5 + - +M§+ =t g—vﬁt.

Graph operations of basic molecular structures are frequently found in new
chemical compounds, nanomaterials and drugs in the fields of chemical and phar-
maceutical engineering. The phenomenon provides us some hints on the signifi-
cance and feasibility of the research on the chemical and pharmacological prop-
erties of these molecular structures. The definition of the join graph operation is
given as follows: If we are given two graphs G and H and two vertices v; € V(G),
u; € V(H), the join graph is obtained by merging v; and u; into one vertex [25].
Then we can show

Lemma 2.17. Let P,, C,, be path and cycle graphs of n > 4, m > 3 disjoint
vertices, respectively. If G = P, + C,,, then

ABC(G) = g(n +m—1).

Proof. Let P,, C,, be path and cycle graphs of n > 4, m > 3 disjoint vertices,
respectively. If G = P, + C,,, then it is easy to see that |Vi2| =1, |Va3| = 3 and
[Vas| =n—34+m—2=n+m—5. Hence

14+2-2 2+3-2 [242-2 2
ABC«D::¢ +2 +3¢ +6 +(n+m—5) —iz——<=%;m+m—n.

Lemma 2.18. [25] Let P,, C,, be path and cycle graphs of n > 4, m > 3 disjoint
vertices, respectively. If G = P, + C,,, then

AB@KD:%an+m—$+2
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Theorem 2.19. Let P,, C,, be path and cycle graphs of n > 4, m > 3 disjoint
vertices, respectively. If G = P, + C,,, then

ABC4(G) = 2v2(n +m — 5) + 4.

Proof. Let P,, C,, be path and cycle graphs of n > 4, m > 3 disjoint vertices,
respectively. If G = P, + C,,, then by Observation 2.3, we have

Z deg(v) + deg(e) — 2.

&£ —
ABCE(G) = ABC(G) + ABC.(G) + deg(v)deg(e)

v incident to e

, it is easy to show that |A; 1] = 1,

deg(v) + deg(e) — 2
To calculate
v incid;nt to e deg(v)deg(e)

|A3’3| = 3, |A211| = ]., |A2,3| = 3| and |A272| = 2(n—3)+2(m—2) = 2n+2m —10.

Then
deg(v) + deg(e) — 2 1+1-2 4 1
> gc(ie)(v)df((e)) =V 2 +3'\/;+\£
v incident to e 9 9
2+3—-2 2+2-2
+3,/+T+(2n+2m—10),/+T.

deg(v) + deg(e) —2  2v/2
2 deg(v)deg(e)

Hence by Lemma 2.17, Lemma 2.18 and Eqn. 2.3, we get
ABC*(G) = 2v2(n+m — 5) + 4.

Therefore,

(n+m—23)+2. (2.3)

[N

v incident to e

Lemma 2.20. Let P,, S,, be path and star graphs of n > 4, m > 4 disjoint
vertices, respectively. If G = P, + Sy, then

ABC(G):,/”;I+ m(m —1) — mT‘l

Proof. Let P,, S,, be path and star graphs of n > 4, m > 4 disjoint vertices,
respectively. If G = P, + S,,, then it is easy to see that |Vio| = 1, |Vim| =m—1,
[Vam| =1, and |Vas| = n — 3. Then

1+2-2 1 —2 2 -2 24+2-2
ABC(G):,/JFTHm—n\/ s +\/ R R T

vn—1 m—1

= +m(m—1) =/ ——.

\/5 m

47
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Lemma 2.21. [26] Let P,, S,, be path and star graphs of n >4, m > 4 disjoint
vertices, respectively. If G = P, + S,,, then

ABCL(G) = mT_Z\/2m—4+ (m—1), /% +/2n.

Theorem 2.22. Let P,, S,, be path and star of n > 4, m > 4 disjoint vertices,
respectively. If G = P, + S,,, then

ABCS(G)=Hn_1 m(m—1) — m;+—_\/2m—4—|—\/§n
m—2 2m — 3 V2(m—1) n—4
o (fE () AT

Proof. Let P,, S,, be path and star graphs of n > 4, m > 4 disjoint vertices,
respectively. By Observation 2.3, we have

deg(v) + deg(e) — 2
deg(v)deg(e)

ABC(G) = ABC(G) + ABC.(G)+ >

v incident to e

Z deg(v) + deg(e) — 2
v incident to e deg(v)deg(e)
|Atm—1| =m =1, [Apm-1| =m =1, [Aym| =1 and [Az5] =n — 4. Then

3 deg(v) +deg(e) =2 _ [1+1-2 1 Trm_1_2
v incident to e deg( deg 6) 1 m — 1

TR W W=

1 .

To get , it is easy to show that |A; | = 1,

Therefore,

deg(v) + deg(e )—2 [m — 2 2m 3 V2(m—1) n
Z deg(v)deg(e) (m—1) ( —1 —-1) + m *

v incident to e

Hence by Lemma 2.20, Lemma 2.21 and Eqn. 2.4, we get

ABCS(G):\/n_l+\/m(m—1)—\/m—_1+m—_2\/2m—4+\/§n
m—2 2m — 3 V2m—1) n—4
A= M e =
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In the next Theorem, we define some new concept regarding to the entire indices.
The first and the second modified entire Zagreb indices are respectively denoted
by Mf* and M{* where

1
M (G) = —
2€V(G)UE(G) (deg(x))
and 1
MC = D )

x is either adjacent
or incident to y

Theorem 2.23. For any graph G with n vertices and m edges, we have

ABC4(G) < \/(2m + %)(n +2m + In(L(G)) — 2M$*),

where M§* is the second modified entire Zagreb index, In(L(G)) is the inverse
sum degree of line graph of the graph G and M,(G) is the first Zagreb index of
G.

Proof. Let G be a graph with n vertices and m edges. Then we have

deg(z) + deg(y) — 2
deg(z)deg(y)

ABCH(G) = )

{z.y}CB(G)

By using Cauchy-Schwarz inequality, we get

(24} CB(G) deg(x)deg(y) wrihe  deg(@)deg(y)
1 1 5

S PRETED S N LA . 5

\/ {z.y}CB(G) deg(z) ~ deg(y) deg(z)deg(y)

1 1 L !
“EON Y G+ 2 st St

€E(Q) z€V(GQ) zyeE(

Z#)

, deg(x)deg(y)

{zy}CB(G
= [IB@|n+m+ Y Lo Ly o
z€V(Q) zyeE(G) de‘g(l‘) deg(y)

_ \/|B(G)|(n +2m + In(L(G)) — 2M£¥)

= \/(Qm + %)(n +2m + In(L(G)) — 2M5*).
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