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Abstract

Matching number of a graph is one of the intensively studied areas in graph theory due
to numerous applications of the matching and related notions. Recently, Delen and Cangul
defined a new graph invariant denoted by €2 which helps to determine several graph theoretical
and combinatorial properties of the realizations of a given degree sequence. In this paper,
using K deletion process, the maximum and minimum matching numbers of all so-called
fundamental realizations of a given degree sequence.

1 Introduction

121Let G = (V, F) be a graph with vertex set V' = {vy,va, - ,v,} andedge set E = {eq,eq, - - ,

em} . n and m are called order and size of graph G, respectively. If there is an edge e that con-
nects the vertices v and w, then v and w are called adjacent vertices and in such a case e is called
incident to v and w. The degree of a vertex v is the number of edges that are connected to v and it
is denoted by d,,. If the degree of a vertex v is one, then it is called pendant vertex and a vertex w
that is connected to v is called quasi-pendant vertex or support vertex. An edge that is incident to
a pendant vertex is called pendant edge. A vertex of degree zero is called an isolated vertex and a
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graph consisting of only isolated vertices will be called a null graph. A null graph of order n will be
denoted by V,,. The smallest and biggest degrees of vertices in a graph G are denoted by § and A.
If there is a path between every couple of vertices of a graph G, then G is called a connected graph.
A graph that is not connected is called a disconnected graph. For example, [V,, is disconnected for
n > 1. A maximal connected subgraph of G is called a component. A connected graph has only
one component and if a graph has more than one components, then it is disconnected. A graph
without any cycle is called acyclic and a graph with at least one cycle is called cyclic. An edge that
connects a vertex v to itself is called a loop. If there are at least two edges between two vertices,
then these edges are called multiple edges. An edge that exists between two vertices of a cycle but
not along the cycle is called a chord. An area that is bounded by a cycle in the graph is called a
region. The area outside of the graph is not counted as a region.

A matching is a set of disjoint edges such that no two of them have a common vertex. A
maximum matching is a matching with the maximum possible number of edges. The number of
edges that exist in the maximum matching of G is called matching number of GG and we denote it
with v(G). Several relations between matching number, nullity, chromatic number, independence
number and also the minimum and maximum nullity conditions are studied in [2, 8, 11, 16—18].

Written with multiplicities, a degree sequence is shown as
D= {1<a1)’2<a2>’3<a3>’ .. Am)}

where a;’s are non-negative integers. If there are some isolated vertices in the corresponding graph,
then we also have the term 0(%0) in the degree sequence D of the corresponding graph. If the degree
sequence of a graph G is equal to D, then G is called a realization of the degree sequence D. To
avoid ambiguity, a degree sequence can be stated in a non-decreasing order without multiplicities
as D = {d1,d2,-~- ,dn}.

For a realizable degree sequence, several graphs having the same degree sequence may exist.
Shortly, realization of a degree sequence is not unique. For instance, there are two completely
different graphs in Fig. 1 but their degree sequences are the same.
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Figure 1: Two realizations of the same degree sequence

Also, in many cases, a degree sequence may not have a realization. To determine the real-
izability, the most well-known result is known as the Havel-Hakimi process. In addition to this,
some algorithms, can be found in [1, 3, 4, 9, 10, 13, 14, 19]. Besides realizability, determining the
topological and combinatorial properties of realizations of a degree sequence is really important in
graph theory and it is related to research areas such as molecular chemistry, computer sciences, etc.

Up to now, several topological invariants were defined by many mathematicians and chemists.
The most famous one is Euler characteristic. Euler characteristic of a graph G is defined as x(.5) =
n —m-+r where n, m, and r are the numbers of vertices, edges and regions of graph G and it must
be noted that in calculating r, the infinite region outside the graph is also counted. Recently, Delen
and Cangul defined a new graph invariant in relation to Euler characteristic. This invariant gives
several combinatorial and topological information about the realizations of a degree sequence and
it is denoted by 2(D) or {2(G). They classified all graphs into three main classes according to their
omega values. In each of these three groups, they defined the notion of fundamental realizations.
In this paper, we study the maximum and minimum matching numbers amongst all corresponding
fundamental realizations.

2 Omega invariant

Delen and Cangul defined a new graph invariant ((G) for a graph G that gives lots of topological
and combinatorial information about graph realizations of a degree sequence. Let us give the
definition of 2(G) and some properties first.

Definition 2.1. [5] Let D = {1(‘“), 2la2) 3las) ... A(“A)} be the degree sequence of a graph G.
Q(Q) is defined as

QG) = —a1+a3+2a4+3a5 +4as +5a7 + -+ (A —2)an
= Zle(i—2)ai.

Theorem 2.1. [5] Let G be a graph. Then Q(G) = 2(m — n).
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It is clear that for any graph G, Q(G) is even by the previous theorem. Also, for a degree
sequence D, if (D) is odd, then D is not realizable. In the literature, next lemma is well-known
and called the hand-shaking Lemma. Hand-shaking Lemma is the most practical criteria for real-
izability.

Lemma 2.1. Let G = (V, E) be a graph with n vertices and m edges. Then

Zn: dy, = 2m.
i=1

Q(G)

Theorem 2.2. [5] Let G be a graph with ¢ components. Then r = =5 + c where r is the number

of regions in G.
Let us calculate the Q(G) and r in the next example.

Example 2.1. A graph G with 13 edges and 8 vertices is given in Fig. 2. The degree sequence of
graph G is D = {11, 2(V) 3(3) 4(1) 52}

Figure 2: A graph G with Q(G) = 10

Q(G) = —a1 + a3+ 2a4 + 3as5 + 4ag + baz + - + (A — 2)aa
=-1-1+1-3+2-1+3-2=10.

Moreover, we can calculate Q(G) = 2(m — n) = 2(13 — 8) = 10 similarly. By Theorem 2.2,
r = %G) +c = % + 1 = 6. In Fig. 2, we see that the number of regions is 6 and 4 of them is

bounded by C3’s, one of them is bounded by a Cy and one of them is bounded by a loop.

In the next theorem, Delen and Cangul gave the relation between Euler characteristic and
Omega invariant.

Theorem 2.3. [5] Let G be a graph. Then x(G) = r — %G) where r is the number of regions in
G.
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3 Upper bounds and lower bounds for the matching number of fun-
damental realizations of a given degree sequence

Recently, Delen and Cangul defined three fundamental forms (realizations) of graphs with respect
to a given degree sequence D. These forms were defined for (D) > 0, Q(D) = —2 and (D) <
—4. These forms are respectively called a cyclic fundamental realization, an acyclic fundamental
realization and a mixed fundamental realization of D, see [5-7].

Definition 3.1. [5] Let D = {l(al), 2(a2), 3(“3), ‘.- ,A(“A)} be a realizable degree sequence. If
Q(D) > 0, then a connected realization of D that consists of a cycle of length n — a1 having ay
pendant edges around the cycle and a total of % loops, multiple edges and chords is called a cyclic
Sfundamental realization of D.

Definition 3.2. [5] Let D = {1(‘“), 2(“?), 33) ... ,A(GA)} be a realizable degree sequence. If
Q(D) = —2, then a connected realization of D that consists of a path of order ag +az+- - - apn +2
where ay pendant edges are incident to the vertices of the path is called an acyclic fundamental
realization of D. In the literature, this acyclic realization is called a caterpillar tree.

Definition 3.3. /5] Let D = {1(“1), 2(“2), 3(“3), e ,A(“A)} be a realizable degree sequence.
If Q(D) < —4, then a realization of D that consists of a main component as a cycle with length

as+az+---an and —Q(D) /2 times Ko complete graphs is called a mixed fundamental realization
of D.

We now recall a useful process for determining matching number of a graph by using some
induced subgraphs of the given graph.

Let G be a graph that has at least one pendant vertex and inherently one pendant edge. The
operation of taking out a pendant vertex together with its adjacent vertex from G is called a Ko
deletion operation, see [15] and [12]. Recall that when we are taking out a vertex from G, all the
incident edges are also taken out. The process of applying consecutive K9 deletion operations until
having an induced subgraph without pendant vertices is called a Ky deletion process. A crucial
subgraph is defined as follows, see [15]: If there is no pendant vertex in G, then the crucial sub-
graph of G is itself. If there are pendant vertices in GG, then the subgraph obtained at the end of a
K> deletion process is called a crucial subgraph of G. A crucial subgraph of G is denoted by G.
For the sake of simplicity, in this paper the number of K, deletions that we need to get G’ from
G is denoted by v(G). Note that all crucial subgraphs of G are shown to be isomorphic, see for
details, [12, 15]. In Fig. 3 we have a graph G, we apply K> deletion process to G and we get a
crucial subgraph.
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Figure 3: Illustration of K5 deletion process

In our study, we need next lemma that was given by Tam and Huang in [12].
Lemma 3.1. Let G be a graph. Then v(G) = v(G') + v(G — G') and v(G) = v(G — G').

Theorem 3.1. Let D = {l(al),2(a2),3(“3), e ,A(%)} be a realizable degree sequence. If
QD) > 0and ay = 0, then the minimum matching number and the maximum matching num-
ber amongst all cyclic fundamental realizations of D are equal and given by

az +ag +---+an

L ]

That is, all fundamental realizations of D will have the same matching number.

In the case of a; # 0, the minimum and maximum matching numbers which can be obtained
for all the cyclic fundamental realizations of D are different and given in the next two results. In
the proofs of these results, we shall need a number p(a;) which is defined by the algorithm below:

Algorithm 3.1. Let us rewrite the degree sequence D in a non-decreasing order without multipli-
citiesas D = {dy, da, -+, dp}. Then

o Calculate the difference a1 — (d,, — 2). If this difference is positive, continue with the second
step.

e Calculate the difference a1 — (dy, — 2) — (dn—1 — 2). If this difference is positive, continue
with the third step.

e Continue calculating the differences a1 — (d, — 2) — (dp—1 — 2) — -+ — (dp—k — 2) and
stop when this difference is negative or zero. Define p(a1) = k + 1.

For (D) > 0, p(aq) is the number of vertices that exist on the cycle and incident to at least
one pendant edge in the corresponding cyclic fundamental realization G of D.
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For Q(D) = —2, p(a1) is the number of vertices existing on the path and incident to at least
one pendant edge that is adjacent to the main path of length as + a3 + - - - + aa + 2 in the corres-
ponding acyclic fundamental realization G of D.

Example 3.1. Let D = {1(9), 2(3) 3(1) 4(1); 5(2)} be a degree sequence. It is clearly realizable.
Let us rewrite Das D = {1,1,---,1,2,2,2,3,4,5 5} . Let us calculate p(ay).

e p(a1) =a1—(d, —2) = a1 — (d1g — 2) = 9— (5 — 2) = 6. Since the difference is positive,
we continue with the second step.

° a1—(dn—2)—(dn_1—2)=a1—(d16—2)—(d15—2):9—(5—2)—(5—2)23.
Since the difference is positive, we continue with the third step.

] a1—(dn—2)—(dn,1—2)—(dn,2—2) :CL1—(d16—2)—(d15—2)—(d14—2) =
9—(5-2)—(5—2)— (4 —2) = 1. Since the difference is positive, we continue with the
fourth step.

e a; — (dn—2) — (dp—1 —2) — (dp—2—2) — (dn—3 — 2) = a1 — (d1s — 2) — (d15 — 2) —
(d1a—2)—(di3—2)=9—-(5—-2)—(5—2) — (4 = 2) — (3 —2) = 0. Since, at this step,
the difference is zero, we stop and find that p(a1) =3+ 1 = 4.

Theorem 3.2. Let D = {1(a1), 2(a2) glas) ... ,A(M)} be a realizable degree sequence. Let
Q(D) > 0and let ax # 0. Also let Gy be the realization of D having the minimum matching
number amongst all cyclic fundamental realizations of D. Then

plar) + Lin_al_%p(al)_% plar) < az,
v(G1) =< play) + L%*P(GHHJ plar) = as,
play) + | == 2=p@) | pa0) > ay.

Proof. Let D be a realizable degree sequence such that 2(D) > 0. We shall use a constractive
proof. By the definition of a cyclic fundamental realization of D, we get a cycle with order as +
a3 + -+ -+ aa and a1 pendant edges adjacent to the vertices on cycle. We add the pendant edges
according to the following rule: Let us demonstrate the degree sequence of D in a non-decreasing
order without multiplicities as D = {d1, do, -+ -, d,} . Add d,, — 2 pendant edges to a vertex, say
v1, dp—1 — 2 pendant edges to another vertex, say va, and continue up to the vertex v, ,,) on the
cycle. To get the minimum matching number amongst all cyclic fundamental realizations, we must
search for the minimal value of v(G’) by Lemma 3.1 since v(G) already is fixed. For minimality
of v(G’'), we must choose a cyclic fundamental realization of D having maximum number of
null graphs in the G’. Therefore, we must place a vertex of degree 2 between every vertex pair
on the cycle as far as possible where we already added pendant edges. Hence, if p(a1) < as,
then we start applying K deletion processs. As during this process, we deleted p(aq) vertices
U1, V2, ***, Up(qy) from the main cycle and p(ay) — 1 vertices of degree two between them, the
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remaining part of the main cycle which consists of a path of length as +as+- - -+aa — (2p(a1)—1)
together with some loops, pendant edges and chords. Since the loops, multiple edges and chords are
not counted in the calculation of the matching number, we may ignore them and continue the Ko

deletion process until we get the desired result that is v(G1) = p(a) + La2+a3+m+a§_(2p(al)_1) |.
a3+-~-+aA*P(a1)+1J
> .

For the case of equality p(a1) = aq, by cancellation of ag and p(a1), we have |

Finally, if p(a1) > a2, then we have the result v(G1) = p(a1) + \_a2+a3+'“+a§7(p(al)+a2)J by

using the same method and we complete the proof by means of n = a1 +as +as+---+aa. O

Theorem 3.3. Let D = {1(“1), 2(a2) 3(a3) ... ,A(“A)} be a realizable degree sequence. Let
Q(D) > 0 and let the realization of D having the maximum matching number amongst all cyclic
Sfundamental realizations of D be G. Then

a1 + L"}&j 201 < n — a9,
v(Ge) =4 a1+ %] 2a1 = n — as,
n—ay—ax+ %] 2a1 >n—as.

Proof. Let D be a realizable degree sequence and (D) > 0. It is well known by [5-7] that
each realization of D must be a cyclic one. A cyclic fundamental realization of D is formed by
a cycle of order as + a3 + - -+ + aa and a; pendant edges incident to the vertices on the cycle.
For finding the maximum matching number amongst all cyclic fundamental realizations, we must
search for the maximal value of v(G’) of all the crucial subgraphs G’ by Lemma 3.1. Hence, we
must determine a cyclic fundamental realization of D having minimum number of null graphs in
the G’ for maximality of v(G"). For this reason, for both cases a1 < ag+ a4 + -+ + aa and a; >
asz+a4+---+aa, we place pendant edges consequtively without having any vertex between them
on the cycle part. In the first case, we add one pendant edge to a; vertices having degree greater
than 2 without having any vertex of degree two between them and cyclic fundamental realization is
completed by using chords, loops and multiple edges. Hence, if a1 < a3 + a4+ - - -+ aa, then we
get v(Ga) = aj 4 | 22Fasttea—a1 | by ysing K deletion process (we may ignore loops, multiple
edges and chords for the reason that is given in the proof of previous theorem). Also for equality
ar = az + aq + - + ap, it is clear that we have v(G2) = a1 + |4 ]. In the second case, if
a1 > a3+ a4+ - - -+ an, then first, we add one pendant edge to ag + a4 + - - - +aa vertices having
degree greater than 2 without having any vertex of degree two between them. The required cyclic
fundamental realization is completed by adding some loops, multiple edges, chords and remaining
pendant edges to the vertices having degree greater than 3 and the process is continued in this way.
Thus, we get v(Ga) = a3z +as + --- +aa + [%] and since n = a; + az +az + --- + aa, we
obtain required result. O

In the next example, we find v(G1) and v(G3) by means of the theorems above.

Example 3.2. Let D = {1(7), 2(4) 3(3) 4(1) 5(2) } We want to find the fundamental realizations of
D with minimum and maximum matching numbers. First we have Q(D) = —1-74+1-34+2-143-2 =
4, so we are in the case Q(D) > 0. First of all, let us find the v(G1). We see that as = 4 and
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p(a1) = 3. Since p(a1) < ag, v(G1) = p(a1)+ L%j =3+ LWJ =34+2=5
as shown in the first cyclic fundamental realization of D of Fig. 4. Secondly, we find the v(G2). We
have a1 = 7, and n—ay —az = 6. Since 2a1 > n—az, v(G2) =n—a;—azx+ %] = 6+ L%J =38
as shown in the second cyclic fundamental realization of D of Fig. 4.

Figure 4: The fundamental realizations of D having minimum and maximum matching numbers

The following result shows that in the special case of (D) = 0, we have a direct formula for
maximum matching number amongst all cyclic fundamental realizations of D:

Theorem 3.4. Let D = {1(‘“), 2laz) 3(as) ... ,A(“A)} be a realizable degree sequence. Let
Q(D) = 0 and let Gy be the realization of D having the maximum matching number amongst all
cyclic fundamental realizations of D. Then the maximum matching number is obtained as

I/(Gg)znfcufag—‘-L%J.

Proof. Let D = {1(@1) 2(a2) 3(as) ... 'A(2a)} be a realizable degree sequence. By the definition
of omega invariant we know the fact that Q(D) = —aq + ag +2a4 + 3a5 + - - - + (A — 2)aa. Since
Q(D) = 0it means that a; > ag+ a4+ - - -+ aa, namely 2a; > n — ag, so by the Theorem 3.3 we
obtain the formula for the maximum matching number between all cyclic fundamental realizations
that is a

I/(Gg) =n-—-a —a + L?J

O

Let D = {1(a1) 2(a2) 3(as) ... 'Alaa)} be a realizable degree sequence. If (D) = 0, then
it is clear that (G1) amongst all cyclic fundamental realizations of D corresponds to the Theorem
3.2.

Now, in the case of (D) = 0 we give another theorem related to the matching number by
using the next theorem that was given by Delen and Cangul.
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Theorem 3.5. [7] Let G be a graph having the degree sequence D = {1(‘“), 2(a2) 3las) ... Alea) }
If Q(D) = 0, then G is potentially connected and has at least one cycle. If G is connected,
then G has exactly one cycle and the order of the cycle can be every number between 1 and
as + as + -+ -+ ap, including 1 and as + a3 + - - - + aa.

Theorem 3.6. Let G be a graph having the degree sequence D = {1(“1), 2la2) 3(as) ... Alaa) }
If QD) = 0, then the matching number of a connected realization of D that has exactly one
cycle of length 1, which is a loop, is equal to the maximum matching number amongst all cyclic
Jfundamental realizations of D.

Proof. Let G be a graph having the degree sequence D = {1(‘“), 2(a2) glaa) ... Alea) } Firstly,
if Q(D) = 0, then we can obtain a connected realization of D. Let us draw a cycle with order
a2+ a3+ - - -+ ana and let us add a pendant edge to each one of a3 vertices, add two pendant edges
to each of a4 vertices. In this way, finally we add A — 2 pendant edges to each of aa vertices. At
the end of this adding operation, there are as + 2a4 + - - - + (A — 2)aa pendant edges connected
to the cycle with order as + ag + - - - + aa. Therefore, the degree sequence of this realization is

{1(a3+2a4+“.+(A72)aA), 2(a2), 3(@3), . ,A(aA)} )

Since ag + 2a4 + -+ + (A — 2)an — a1 = 0, it means that all of the pendant edges are used.
Hence degree sequence of this realization is D(G) = {1(a1), 2(a2), 3(a3), S A(C‘A)} . Secondly,
we delete a vertex from the cycle part that has the smallest degree in the realization and add a new
vertex with the same degree with the deleted vertex onto a pendant edge whose incident vertex has
the maximum degree in the realization. After that, in the new realization, we delete a vertex in
the same way and carry this vertex to the same pendant edge, similarly. We continue this process
until reaching up to only one cycle that is loop. Finally, we get a connected realization that consists
of a tree part and a loop. As a result, matching number of this connected realization of D is
pla1) + [ %]. Since ag +2a4 +--- + (A —2)apn —a; = 0, we getp(ar) = a3 +as+a---+aa.
Hence, we get the matching number of this connected realization of D as n —a1 —as + [ % | which
is the maximum matching number by Theorem 3.4. O

Example 3.3. Let D = {1(12), 2(4) 33) 4 51), 6(1)} with Q(D) = 0. In Fig. 5, we have
two connected realizations of D respectively having a cycle of order 10 and a cycle of order 1.
Matching number of first connected realization is equal to v(Gs) = 6 + L%j = 8 as shown above.
Also, we see that matching number of second connected realization is equal to v(G2). That is, both
realizations have the maximum matching numbers amongst all fundamental realizations having a
unique cycle of length 10 and length 1, respectively.
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-\V\[HI---WQ

Figure 5: Two connected realizations of D

Theorem 3.7. Let D = {1(a1), 2(“2), 3(“3), . ,A(aﬂ)} be a realizable degree sequence. Let
Q(D) = —2 and let the realization of D having the minimum matching number amongst all acyclic
Sfundamental realizations of D be G. Then

n—al—ag—l—L%WJ 2a9 > n — a1,
v(G1) =X n—ay—az+1 2a3 = n — ay,
n—ay— as 200 < n — aj.

Proof. Let D = {1(1) 2(a2) 3(as) ... 'Al9a)} be a realizable degree sequence with (D) =
—2. By the definition of acyclic fundamental realization of D, we have a path with length as +
a3 + .-+ + aa + 2 and a; pendant edges that are incident to the vertices of the path. Similar to
the proof of Theorem 3.2, we demonstrate the degree sequence of D in a non-decreasing order
without multiplicities as D = {dj, do, ---, d,} after that we place d,, — 2 pendant edges to
a vertex, say vy, d,_1 — 2 pendant edges to another vertex, say v, and we continue up to the
VerteX Ugytay+-+a, ON the path. For minimal matching number we must minimize the v(G’) by
using Lemma 3.1. In other words, we must choose an acyclic fundamental realization of D that
exists maximum number of null graph in G’. Considering this situation, there must add a vertex
of degree 2 between every vertex pair on the path as far as possible where already placed pendant
edges. Hence, if aa > a3 + a4 + - - - + aa, then we start applying K deletion process and we get
aztas+--+ap+(4—3)as+(5-3)as+- - +(A—3)an = az+as+---+an+> %, (i—3)a; null
graphs that ag+a4+- - -+aa — 1 of them are vertices of degree 2 in the desired realization, (namely
on the path) and a path Py, (4,1 a,4+4...4a,)+2- Hence, we continue to apply K deletion process on
Py (a3tast-tan)+2- Asaresult, we have v(G1) = az+as+- - ap+ | 2lastaatotay DAL
namely, we get v(G1) = ag + a4 + -+ + apn + Lazf(angaéA..Jraa)“J. For equality as = ag +
a4 + -+ - + ap, it is clear that we have v(G1) = a3 + a4 + - - - + aa + 1. Finally, in the case of
ay < ag+ag+ -+ ap, after the Ky deletion process G’ only have null graphs without any path
because of the deficiency of ag so the result is v(G1) = a3 + a4 + - - - + aa. Consequently we
complete the proof by using ag + a4 + - -+ +aa =n —a; — as. O
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Theorem 3.8. Let D = {1(“1), 2la2) 3as) ... ,A(GA)} be a realizable degree sequence. Let
Q(D) = —2 and let the realization of D having the maximum matching number amongst all
acyclic fundamental realizations of D be Gy. Then

as + 2

V(Gg):n—al—ag—i—L 2 J

Note that n — a1 — a2 = a3 + a4 + a5 - -+ + aa which is the total number of non-pendant
vertices of degree at least three.

Proof. Let us consider a realizable degree sequence D = {1(¢1) 2(a2) 3(as) ... ‘Alea)} f
(D) = —2, a acyclic fundamental realization of D is constructed a path with length of ag +
a3+ -+ -+ aa + 2 and aq pendant edges that are incident to the vertices of the path. As mentioned
before, when v(G’) is maximum, matching number v(G) of G reaches the maximum value by the
Lemma 3.1. Therefore, we must set an acyclic fundamental realization of D in the way of existing
minimum number of null graphs in G’. To do this, contrary to previous theorem, we add pendant
edges consequtively to the path without existing any vertex of degree two between them. Also, we
start adding pendant edges from third vertex of the path in order not to get more null graphs in G'.
Since Q(G) = —a1 + ag + 2a4 + 3as + - - + ap = —2, there are a; — 2 pendant edges incident
to the path. By the definition of an acyclic fundamental realization of D has a3 + a4 + - - - + aa
vertex having at least one pendant edge that is adjacent to path. Thus, we start applying the Ko
deletion process, then we have ZZA: 4(i—3)a; null graphs, one edge, and a path P,,. Consequently,
we continue to K deletion process and we get the result v(G2) = ag + a4 + -+ -+ an + L%J
Hence, we get required result. O

Theorem 3.9. Let D = {1(®) 2(e2) 3(as) ... AW} pe g realizable degree sequence. Let
Q(D) < —4 and let the realization of D having the minimum matching number amongst all mixed
Sfundamental realizations of D be G1. Then

MJ_M
2

n—a; — a + o n—a < 2a9,

D
v(Gi) = n—al—aQ—T) n —a; = 2as,
n—al—ag—@ n—ai; > 2a9.

Proof. Let D = {1(¢1) 2(a2) 3(as) ... 'Alaa)} be a realizable degree sequence and (D) < —A.
A mixed fundamental realization of D is formed as 7Q2(D) times Ky complete graphs and a cycle
with length as + a3 + - - - aa by the definition of mixed fundamental realization of D. Since
%(m is fixed number and matching number of a mixed fundamental realization of D is added
by one for every Ko complete graphs. Thus, we consider the cyclic part of the realization for
minimality of matching number. To do this, in the cyclic part we deal with the degree sequence
D¢ = {1(a+RUD)) glaz) 3(as) ... ‘Alea)} because of the added K, complete graphs. By The-
orem 3.2, the minimum matching number (G ) amongst all mixed fundamental realizations of D
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is

p(a1 + Q(D)) + La2+a3+ Han— (22p(a1+Q(D I)J - ) p(al + Q(D)) < as,
v(G1) =X play + QD)) + La5+ tan— p2(a1+Q(D))+1J 9(217 pla +Q(D)) = as,
plar + QD)) + | Lttaa 2p(a1+Q(D))J Q(2D) p(a1r + Q(D)) > as.

Note that, by the definition of omega invariant (D) = — (a3 + Q(D)) + 3.2 4(i — 2)a; = 0 50
it means that p(a; + Q(D)) = ag+ a4 +--- +aa andsince az +aqg + -+ +aa =n— a1 — ag
the proof is completed by placing p(a; + (D)) in v(G1). O

Theorem 3.10. Let D = {1(’“), 2(a2) ‘3(as) ... ,A(aﬁ)} be a realizable degree sequence. Let
Q(G) < —4 and let the realization of D having the maximum matching number amongst all mixed
Sfundamental realizations of D be Go. Then

Q(D
v(Ge) =n—ay —az + ng 7(—)
2 2
Proof. Let D = {1(a1) 2(a2) 3las) ... ,A(“A)} be a realizable degree sequence. If Q(D) < —4,
(D)

then we get a cycle with length as 4+ az + - - - aa and — times Ko complete graphs. In this

situation, omega value of the degree sequence D¢ = { 1(a1+(D)) 9(az) 3(a3) ... A(‘IA)} that we

attend the draw cyclic part according to it equals to 0 since 2(D¢) = — (a1 + (D)) + a3 + 2a4 +
-+ (A — 2)aa. By Theorem 3.4, we obtain the result

v(Ga) =n—a; —a +LCL22J (2D)

Example 3.4. The degree sequence of graph G is D = {1(15), 2(3) 3(1) 41, 5(2)}

11l 11l

Figure 6: A graph G with Q(G) = —6
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In Fig. 6, first graph is formed for v(G1) and second graph is formed for v(G3). n = a1 +
as + as + a4 + as = 22 and since n — a1 > 2as, by Theorem 3.9
V(G1) :n—al—ag—@
=4 =6_7
5 .
Let us calculate v(G2) by using Theorem 3.10 as follows:

I/(Gg) =n-—-—a —a + %—QJ—T
=4+ 3 -F =8
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