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A NOTE ON SUMS OF FINITE PRODUCTS OF
LUCAS-BALANCING POLYNOMIALS

TAEKYUN KIM!, DAE SAN KIM?2, DMITRY V. DOLGY?3, AND JONGKYUM KWON*

ABSTRACT. Behera and Panda introduced balancing numbers about twenty
years ago. Since then, these numbers have been intensively studied by many
researchers and lots of interesting properties of them have been unveiled.
Lucas-balancing numbers have close connection with balancing numbers
and their natural extensions are Lucas-balancing polynomials. In this pa-
per, we will study sums of finite products of Lucas-balancing polynomials
and represent them in terms of nine orthogonal polynomials in two differ-
ent ways each. In particular, we obtain an expression of such sums of finite
products in terms of Lucas-balancing polynomials. Our proof is based on
a fundamental relation between Lucas-balancing polynomials and Chevby-
shev polynomials of the first kind observed by Frontczak.

1. Introduction

Behera and Panda [3] introduced the balancing numbers B,, about twenty
years ago. Since then, these numbers have been intensively studied by many
researchers and lots of interesting properties of them have been unveiled [5, 6,
7,8, 14, 15, 16, 20, 23]. On the other hand, as we will see, the Lucas-balancing
numbers C,, arise naturally from the balancing numbers. Natural extensions
of balancing numbers and those of Lucas-balancing numbers are respectively
the balancing polynomials B, (z), and the Lucas-balancing polynomials C,, (z).
Then B, = B, (1), C,, = Cy(1), (n > 0).

Recently, Frontczak [6] observed that there are simple relations between bal-
ancing polynomials and Chebyshev polynomials of the second kind, and also
between Lucas-balancing polynomials and Chebyshev polynomials of the first
kind. It is very strange that these fundamental relations had not been ob-
served much earlier. From these observations and some well-known properties
of Chebyshev polynomials of the first and second kinds, we will be able to derive
several immediate results for Lucas-balancing polynomials and hence also for
Lucas-balancing numbers. Then, from these observations and by utilizing these
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results, we will represent sums of finite products of Lucas-balancing polynomials
in terms of nine orthogonal polynomials in two different ways each. In particular,
this gives a representation of sums of products of Lucas-balancing polynomials
in terms of Lucas-balancing polynomials.

These may be viewed as a generalization of the classical linearization problem.
We will recall here that the classical linearization problem in general consists in
determining the coefficients in the expansion of the product of two polynomials
in terms of an arbitrary polynomial sequence. The problem of representing
sums of products of some special polynomials has drawn the attention of many
mathematicians in recent years (see [11, 12] and the references therein).

The rest of this section is devoted to recalling some preliminary facts and
results on the balancing and Lucas-balancing polynomials and numbers, and
Chebyshev polynomials of the first kind and second kinds. For more details on
the balancing and Lucas-balancing polynomials and numbers, we recommend
the Ph. D thesis of Ray [20] and the survey paper [14]. As to a general reference
for Chebyshev polynomials, we let the reader refer to [13].

The Lucas-balancing polynomials C,,(x) are given by the recurrence relation:

Cn+1($) = 6.’1707,(.’17) — 0"_1(;1;)’ (n > 1)’ o
Co(z) =1, Ci(z) = 3. (1.1)

They are also given by the generating function

1 —
St ZC ). (1.2)

1— 6xt +2

The first few terms of Lucas-balancing polynomials are given as follows:
Co(z) = 182% — 1, Cy(x) = 1082 — 9z,
Cy(x) = 648x* — 7222 + 1, Cs(x) = 3888x° — 5402° + 15z, ---

The C,, = Cp(1), (n > 0), are called the Lucas-balancing numbers, so that
they are given either by

Cpy1 =60, —Cy_1, (n>1),Cy=1,C1 =3, (1.3)

or by

1-—3t "
1—6t+1t2 Z Cnt" (1.4)
n=0

The first few terms of Lucas-Balancing numbers are :

Cy =17,C03 =99,Cy = 577,C5 = 3363, - - - .
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The balancing polynomials B,,(z) are given by
Byt1(z) = 62By(2) — Bo-1(2), (n>1),

Bo(x) =1, Bi(x) = 6x. (1.5)

Alternatively, they are given by the generating function

Z By (z)t". (1.6)

TGt 112
6:ct+t o

The B, = B,(1), (n > 0), are called the balancing numbers. Then they are
given either by

Bn+1 =6B, — Bn_1, (’I’L > 1)7B0 =1,DB; =6, (17>

or by

1— 6t+t2 ZB . (18)

We note here that, following the original convention in [3], we defined By and
By(x) as 1, not as 0.

Actually, the balancing numbers B,, are originally defined as follows: A pos-
itive integer n is called a balancing number if

I+24+-+Mm-L=n+)+n+2)+-+(n+r)

holds for some positive integer r, in which case r is the balancer corresponding
to the balancing number n.

Then it is easy to see that a positive integer n is a balancing number if and
only if 812 4 1 is a perfect square. In fact, Cp,y1 = \/8B2 + 1, (n > 0), are the
Lucas-balancing numbers.

If we denote the balancer corresponding to B,, by R, then it can be shown
that Cp,41 = 2B, + 2R,, + 1. For example, for By = 35, C3 = 99 and Ry = 14,
so that

14+24 - +34="595=236+--+49.

Further, we observe that C, 11 = 3B,, — B,,_1, and hence that R,, = %(Bn —
B,,_1 — 1). This follows from the trivial identity between the Chebyshev poly-
nomials of the first kind T),(z) (see (1.9)—(1.11)) and of the second kind U, (x)
(see (1.12)—(1.14)), given by Ty1+1(x) = 2U,(x) — Up—1(x), and the equations in
(1.15).

Next, we recall a few facts on the Chebyshev polynomials of the first and
second kinds. The Chebyshev polynomials of the first kind T,,(z) are given
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either by the generating function

Lt ZT (1.9)

T _ ot 1 42
—2xt+t =

or by the recurrence relation
Tn+1(x) = Q:L'T.,,,(LE) - T7L,1(.’L'), (n > 1)7

1.10
To(z) =1, Ti(z) = z. (1.10)
Also, they are explicitly given by
To(z) = 2Fi(—n,n; 33 35%)
3] (1.11)

(" e e,

where o F} (a, b; ¢; x) is the Gaussian hypergeometric function, (see (2.9)).

The Chebyshev polynomials of the second U, (z) are given either by the gen-
erating function

1—2xt—|—t2 "Z:OU (1.12)

or by the recurrence relation
Unt1(z) = 22Un(z) — Up-1(x), (n >1),

Up(z) =1, Ui(z) = 2. (1.13)
In explicit terms, they are also given by
Un(z) = (n+1)2F1(—n,n + 2; 3; 15%)
5] (1.14)

_ 0(71)1 (n . l)(Qx)"2l, (n > 0).

1=

The first one in (1.15) follows either from (1.1) and (1.10) or (1.2) and (1.9),
while the second one does either from (1.5) and (1.13) or (1.6) and (1.12). This
fundamental result is first observed in [6].

Lemma 1.1. For any integer n > 0, we have
Cn(x) = Tn(?’x)a Bn(x) = Un(?’w) (1'15)
Remark 1. From Lemma 1.1, Lucas-balancing polynomials fall in the class of

modified or shifted Chebyshev polynomials. This class of orthogonal polynomials
can be found, for instance, in the works [4, 9, 10, 25, 26, 27].
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As are known, the orthogonalities of T,,(x) and U, (x) are given by

1
/ (1 —2?) 2T, (2) Ty (z) da = glan,m, (1.16)
—1 n
1
/ (1 — 222U, (2)Upn(2) do = g(sn,m, (1.17)
-1
where
€, = 1,?fn =0,
2,if n > 1.

From (1.16), (1.17) and (1.15), we deduce the following orthogonality relations
for Cp(z) and B, (z) :

1
/31 (1 — 922)" 20, (2)Cn (z)da: = %%m, (1.18)
’ 1— 922 %Bn 2) B, (x)dx = E(Sn m- 1.19
6 )

In addition, from the Rodrigues’ formulas of T, (x) and U,(x), respectively
given by

T (z) = %(1 —2?)3 dcgn (1—az?)" 2, (1.20)
_Enm2te+ 1) 0 s d L s
we obtain Ul = (2n+1)! (-2 dz™ (=™, (1.21)
—1)7(2 'l 1 m 1
Cp(z) = %(1 —9z%)2 din (1—9z%)" 2, (1.22)
—1)n(2)n n i 1 n 1
Bo(z) = . 1)(§Z)+(1)!+ D 9;32)*5;;”(1 922, (1.23)

Now, the next Proposition follows from (1.18) — (1.23).

Proposition 1.2. Let q(z) € R[z] be a polynomial of degree n, and let q(x) =
> heo BeCr(z) = Y f_y arBr(z). Then we have

_2)\k : k .
(@) Br(z)= % .A; q(a:)j?(l — 92k 2 da, (1.24)
_2\k 3 k .
(b) an(z) = % /_lq(x)dd?(l — 922, (1.25)
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Before we move on to the next section, we would like to mention that bal-
ancing, Lucas-balancing, cobalancing, Lucas-cobalancing, Pell and Pell-Lucas
numbers and polynomials have close connections with many interesting prob-
lems in number theory. Indeed, some divisibility or congruence properties of
balancing and Lucas-balancing numbers were studied in [21]. A repdigit is a
nonnegative integer whose digits are all equal. In [24], it was proved the neces-
sary and sufficient conditions for two products of Pell or Pell-Lucas or balancing
or Lucas-balancing numbers to be repdigits. Some Diophantine equations in-
volving balancing and Lucas-balancing numbers were investigated in [22]. In
[17], the authors obtained some explicit lower and upper bounds for reciprocal
sums with terms from balancing and Lucas-balancing sequences. The periodic-
ity of balancing numbers modulo terms of certain sequences and modulo primes
were explored in [19]. Among other things, it was shown that the period of
balancing sequence coincides with the modulus of congruence if and only if the
modulus is any power of 2. It was observed [18] that the sequences of balancing
and cobalancing numbers have very close connections with the Pell sequence,
whereas the sequences of Lucas-balancing and Lucas-cobalancing numbers are
closely related to the associated Pell sequence.

2. Preliminaries and statements of results

Here we are going to recall some elementary facts on orthogonal polynomials
and to state our main results in this paper. For more details on orthogonal
polynomials, we let the reader refer to the books [1, 2, 13] and to the papers
[11, 12].

The falling factorial (x),, and the rising factorial (z),, are respectively defined
by

@)p=2(x—-1)---(z—n+1), (n>1), (x)o=1, (2.1)
@)p=z(@+1)---(z4+n-1), (n>1), ()g=1. (2.2)
The two factorial are clearly related by

(_1)n(m)vz = <_$>m (—1)n<$>n = (—2)n. (2.3)

(2n —25)! 2272 (—1)%(3)n

(n—s)t — (5-n) B

I(z+1)

Twtion @ T — @ (20 (2.5)
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I'(n+ %) = % (n>0). (2.6)

L'(2)C(y)

Tty Be@):Re) >0,  @7)

1
B(z,y) = / 11— )y ldt =
0

when ['(z) and B(z,y) are the gamma and beta functions respectively.

The hypergeometric function ,Fy(a1,--- ,ap;b1,--- ,bg; ) is given by
pFalar, -+ ap;br, - b3 2)
e [ n
:;)H% (p<q+1l]zl<l). (28)
Especially, the Gaussian hypergeometric function is given by
2F1(a, b; ¢ @)
(2.9)

"

Next, we will recall Chebyshev polynomials of the third kind V,,(z), those of
the fourth kind W,,(x), Hermite polynomials H, (z), generalized Laguerre poly-

nomials L% (x), Legendre polynomials P, (z), Gegenbauer polynomials c® (x),
and Jacobi polynomais P\*? (z).
In explicit terms, they are given by

Vo(z) = oF1(—n,n+1; 3; 5%)
n 2 o
-y ( "l l) 2"z — 1), (n>0), (2.10)
=0

Wn(iff) = (2n + 1)2F1(—n’n +1; %; kTr)

tL ond 2n — 1 .-
=@2n+1)) o e G (x—1)"Y (n>0), (2.11)
=0
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(5]
(1) -2
H =nl =) n S |
W(z)=n ; T 2l)!(zsc) , (n>0), (2.12)
In
Li(z) = %1}71(_”; a+1;x)
” (-1 I (n+a
=2 ()I#“’l (n>0), (2.13)
=0 :
P,(z) = o Fi(—n,n+ 1;1; 1—773)
1 El n\ (2n — 21
=52 (-1 <z) ( n >‘17"_217 (n>0), (2.14)
=0
2\ — 1
CWM(x) = <n+ n/\ )zFl(—n,n+2)\;,\+ 11w
e D(n—k+\)
— —1 E_-\N"— MT A n—2k > .
kz=;)( TR 2R 2 T (2 0) (2.15)
+ 1) i
PP (@) = %25(%; 14+ a+B+na+1;15%)
n n+ « TL‘I‘,B ZE—]_kx_F]_nik
pr— > '
,;(n—k>< k )( 5 ) (—==)" (n20),  (216)

(2.17)

where A > f% and A # 0.

In Theorem 1 of [11] and Theorem 1 of [12], the sums of finite products of
Chebyshev polynomials of the first kind

Z Til (J,‘)T’l (:C) e Ti7~+1 (x)

i1+igt - Fipp1=n

were expressed in terms of the orthogonal polynomials in (1.11), (1.14) and
(2.10)(2.16).

Now, the following theorem is obtained from those expressions by replacing
x by 3z and making use of (1.15).
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Theorem 2.1. Let n,r be nonnegative integers. Then, we have the following
representations.

Z Cil (.’E)CZZ (.’ﬁ) o Cir+1 (LE)

t1tizt o Firp1=n

I S Enas(— D) (47— 1) 1
= gzog M5 Di(s ) 2F1(2l —n,—r — L1 —n —1; 5)Ch_2s(x)
(2.18)
(5] s
1 (—Din —2s+ 1) (n+r—1)! N
== Fi@l—n,—r—10—n—rk
Ml s+ 1-Di(s - 12l =n,—r =Ll =n—r;3)
 Up_as(32) (2.19)

_)
== T '2F1(21fn,frfl;lfnfr;%)Vn_s(?)w)
! ! (2 !

(2.20)

= o Fy (2l —n,—r — L}l —n —1r; )W, _(32)

(2.21)
LB (1) n gy D)
= R (2 - —r —1:]—p — o L
rl = (n - 2s)! — -l 2 120 =n,—r—1L;1—n—r;3)
X Hn2,(32) (2.22)
n—=k
_ 2"~ (DR [i](i)l(nwl)!r(nzuaﬂ)
-l &= Tla+k+1) U(n—k—21)!
X 2B 2=, = = Ll 5) [ (3) (2.23)
3] s 1y
_ 4 1-2s (=)' (n+r—Dln—s—1+1)
= §2 (2n—48+1); Y
X o P12l —n,—r = Ll —n = ri 5) Py (30) (2.24)
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(3] s
(=Dl n+r—1)!
= —2
m 9=o(n S+)\)§l(s~l)!l“(n+)\fsfl+l)
X oF (2l —ny—r —1;1 —n — %)C’o‘)

n—2s

(3z) (2.25)
[n—k]

()" E o+ 1) G (=) (=)

N ;) L(2k+a+B+1) ; l!é(lnfkuZ)!

XoF (2l —m,—r — 131 —n—r;3)2 P12l +k —nk+ B+ 1,2k + o+ B+ 2;2)
XP,EO"E)(?)JU).

(2.26)

We will show the following theorem in the next section. Note here that the
polynomials on the right hand sides are in x, not in 3z.

Theorem 2.2. Let n,r be nonnegative integers. Then, we have the following
exPTessions.

> Ca@Ci(@) G (@)

i1+io+- - Fipp1=n

n s ( 71‘
o ZZ 2 ntr )2F1(217n,77"7l;lfnfr;%)Tn,gs(w)

s !(sfl)!
(2.27)
5] &
3 —28—1—1)( Hin+r—1)
= — 2.2
r!;; ! l—l—l)(sfl). (2.28)
X oF (2l —n,—r — 151 —n— 713 3)Up_24(2) (2.29)
n [%] 1
3" (=) n+r—1)
= — B . Fi2l—n,—r—1;l—n—r;HV,_(z)
T 2 2 M= (51— DWE - 0 :

(2.30)
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n (3] 1yl
3n (=1)°(=5) (n+r—=1)!
= — . - Fi2l —n,—r =1Ll —n—r; HYW,_(z
e ii(n - [5] - D51 - D 2) ()
(2.31)
(3] s
_ﬁi (=) n+r—1)
rl M(n —2s)l(s =)
X oF1 (20 —m, =1 — 131 —n — 1y 1) Hyy o4 (2) (2.32)
n—k
AR (—1)F [22:] (—2) (n+r—=DI(n—20+a+1)
rle—~ IMNa+k+1) — M(n—k =2
X oF1 (2l —n,—r — 131 —n —r; 1) L% () (2.33)
(5]
(12)" 1o (=55) (n+r—D(n—=s—1+1)
= 27*(2n -4 1
rt = ( 5t )g (s D'(2n —2s — 20+ 2)!
X oF1 (20 —m, =1 — 131 —n — 13 1) Py_os(w) (2.34)
[%] 11
3"T(\) =) (n+r=10)!
= -2 5)
rl s=O S+/\ZO 'Fn—s—l—i—)\—i-l)
X oF (2l —mn,—r —1;l—n—1; 5)07(1)\_)28(56) (2.35)
n—~k
n [ ]
(6~ (-2FPT(k+a+B+1) 22: (=) (n 47— 1)
! — F2k+a+p5+1) — (n —20—k)!
XoF (2l —n,—r =Ll —n—r;5)2Fi(k+2l —nk+ B+ 1;2k + a+ 3+ 2;2)
x PP (g). (2.36)

3. Proof of Theorem 2.2

In this section, we are going to show Theorem 2.2. The next two results are
respectively from Proposition 1 in [12] and Proposition 1 in [11].

11
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Proposition 3.1. Let q(z) € Rlz] be a polynomial of degree n. Then we have
the following.

(a) q(z)= Z Cr1Tk(z),
k=0
where

S LOLIAT dF 1
Cri = (()%ﬁ’“ 3 q(x)w(l — 22k 2dg.

(b) q(z) = Cra2Uk(x),
k=0

where

o (—1)F2F+1(k +1)! /1 d"
k2 —

2\k+3
ohrm ), (@ gt ma) e

(©) q(z) =) CrsVi(x),
k=0
where

(1Rt / & e
Crs = o/ q(x) (1-x) (1+x) dx.

(d) qlx) = CraWi(z),
k=0
where

—1)kg12k 1 dk 1 1
Ck,4: ((2#/1(](%)%(1—1’)1‘:4_2(14'(3)]6 2dx.

Proposition 3.2. Let g(x) € R[z] be a polynomial of degree n. Then the fol-
lowing hold true.

(a) q(x) =) CisHi(x),
k=0

where

2

_ (EDE e A
Crp = 2kk!ﬁ/_ooq(x)we dz.
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(b) ql@) =) CreLf(),
k=0

where
1 >~ dk —z, k+a
Ck,6 = m A q(:c)w(e X )da:
(¢) ql@) =) CrrPi(x),
k=0
where
C _Qk_'i'l/1 ( )d_k( 2 1)’“d
BT kg ) TR .
(@) qlz) = CrsCP(x),
k=0
where
(k+ M) /1 d" 2\ k+A— 2
Crsg = —(1— 2dx.
k,8 (_2)]@\/7—_[_1-\(]{_’_)\_’_%) . q($)d33k( € ) €L

() a(@) =) CroP " (),
k=0
where

O (-D*Ck+a+B+DI(k+a+B+1)
B9 a0+ k+ DI(B+ k+ 1)

1 dk
X / q(x)ﬁ(l —z)Fte (1 4 z)F 8.
-1

We also need the following two results from Proposition 2 in [11] and Propo-
sition 2 in [12], respectively.

Proposition 3.3. Let m, k be nonnegative integers. Then following hold true.

(a) / e do

0, if m=1 (mod 2),
=4 mh/7
(%)!2771’

if m =0 (mod 2),
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(b) /1 2™ (1 — 2?)*dx

0, ifm=1(mod 2),
222 iml(k + 2 + 1)!
(BN2k+m+2)! 7

(¢) /_1 x™(1 — w2)k+’\_%dw

if m =0 (mod 2),

0, ifm=1 (mod 2),
={ T +A+ 0B + )
PE+A+2+1)

if m =0 (mod 2),
(d) /_1 2™ (1 — )1 4 ) Pde

m
— 92k+a+p+1 Z <m> (71)m752s
S

s=0
Pk+a+1)T(k+8+s+1)
F'2k+a+p8+s+2)

Proposition 3.4. For any nonnegative integers m, k, we have the following.

(a) /1 (1- x2)k_%xmd:r
{0, if m =1 (mod 2),

m!(2k)lr )
) =0 d 2),
2m+2k(% + k)‘(%)‘k" ’Lfm (mo )

(b) /1 (1— 22" 3amdy

mi(2k + 2)lr o
G 1 Dk 0= 0 (med2),

{0, ifm=1(mod2),

(c) /j (1—2)" 31+ 2)"t22mds

1
(m + 1)(2k)!r
2m+2k+1<mT+1+k_)!(mT+1)!k_!,
ml(2k)!r
2mA2R (I () 1E]

ifm=1(mod2),

if m =0 (mod 2),
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(d) /_1 (1— 221+ 2)f20mda

1
(m + 1)!(2k)!x
_ ) omaRerl (L 4 gl 1E)
ml(2k)Ir
2m+2k (24 )2k

if m =1 (mod 2),

if m =0 (mod 2).

All of the computations in Theorem 2.2 rely on the next important lemma.

Lemma 3.5. Let n,r be nonnegative integers. Then, we have the following
identity.

Z Cil (117)012 (17) T C’ir+1 (ZL’)

i1+i2+“'+i7+1*n

(r)
6Tf" ( > JBn ]+r( )

Proof. Let

G(t,z) = 1_6wt+t2 ZB z)t". (3.1)

By taking the rth derivative with respect to x on both sides of (3.1), we get

6"r1(1 — 6at 4 ¢2) (") = Z B (x (3.2)

m=0

Then, from (3.2), we get

1—3zt \""" 1 ) ") (pypm
(Fors) gt =30 3 Bl o

m=0

r+1 (") (p)em
“ga () S pi
o0 n
r+1 r
- 6T7’! <Z < ) JB7(1 )J+T( )>tn
n=0

Jj=0

from which the result follows. O

15
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Remark 2. In Lemma 2 of [12], it was shown that

Z iT’il (m)TLQ(w) o 'ET+1 (x)

i1t+iz+tirp1=n

1 o 1
=5 Z(—l)( . >£EJU,,(L)j+r(£U).
et

J
J
We observe here that (3.1) also follows from (3.3) by replacing x by 3z.
For convenience, we let
O‘nﬁ“(m) = Z Ci (.I‘)Ciz ($) e Cir+1 (.’II) (34)
i1+io+ o Fipp1=n

From (1.11), (1.14) and (1.15), we obtain explicit expressions for B, (z) and
Cy(x):

Cu(z) = g (_1)1L<” - l)(ﬁx)"—ﬂ, (n>1). (3.6)

— n—1 l

From (3.5), we see that the rth derivative of B, (z) is given by

[257]

2

B (z) = 3 (~1) (n . l) (n — 21),6"2lgn=20-7, (3.7)

=0

Now, by (3.1), (3.4) and (3.7), we obtain an expressions for a, ,(z):

(274

() = 6rlr! ;(—3)j <7° -j# 1) ; (—1)! <n +r l—j - l) (3.8)
X (n+r—j—20)6" g2 (3.9)

Every expression in (2.27) - (2.36) in Theorem 2.2 can be shown by using
Propositions 3.1- 3.4, (3.8) and the facts in (2.1) - (2.7). Here we are going to
show (2.30) and (2.36), while leaving the others as exercises for the interested
reader. Let

anr(z) =Y CrsVi(x). (3.10)
k=0
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Then, from (c) of Proposition 1, (3.8), and integration by parts k times, we
have

_(=D)kRRE 1 dk he "
Ck73 = W ], Oén,,,»(.’L')ﬁ(]. — LU) (]. + l’) dx

B % j:o(—:a)j <r j 1) 2 (-1)! (n +r l—j - l)

1 k
; d
% (n+r —j— 2l)r6fn+'rfjf2l / Zn—2 (1 _ ) —%(1 +l’)k+2d$

J =1 dCCk
w2 ntr—j—1
=GR Z §<—3>J( (o

X (n4r—j—20),6"TI72(_1)*(n — 20),

1
X / AR ) (1 4 @) e d,
J-1

(3.11)

From (c) of Proposition 4, we observe that

1
/ mn—2l—k(1 _ 17) —%(1 + $)k+2d$
-1

(n—20 — k+1)!(2k)!x

2n+k72l+1(n+k+1 7l)!(n—12<;+1 71)%!,

- (n — 2l — k)!(2k)!x

n;tkgl)!(nfk‘

if n £k (mod 2),

(3.12)

if n =k (mod 2),

onth—21( D

Then, from (3.10)—(3.12), and after some simplifications, we have

gn Untr—D)(n—2—Fk+1)
an,r(x) = o Z Z 2“ n+717;+1 — l)!(nn;HrI — ! Vk(m)

0<k<n =
n#k (mod 2)

2 ()3 = 20),( + 1),
x Z 2.(n+7"fl)J

=0

17
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[77 k

n l n+r—1
+:,);_1 Z lei)g_( s )'Vk(x)

0<k<n ( l)
n=Fk (mod 2)
n—21
- (=1D)'(3)(n - 21)l i(r+1);
g j.(n+r —1);
3" Dn+r—0i(n—-20—k+1)
— F Z Z n+k+1 o l)|<n k+1 l)' Vk(l')
0<k<n = : 2 .
nZk (mod 2) (313)
n— 21
<2[—n>j< —7”—1>j
x Z jl<l—mn—r>;
3n [”L] -1)(3) n—l—r—l)
“r‘F Z Z l’(i— n % l)'Vk(-'I?)
0<k<n :

n=k (mod 2)

2 (1 ,
Z §J<2l—n>j<—r—1>j.
= jt<l—n—r>;

Putting in (3.13) n — k = 2s + 1, for the first sum and n — k = 2s, for the
second, and after some simplifications, we obtain

nl

2 S 1
(—1) n+r—u
Onr (7 r!E:E:U s Di(s _1)!
s=0 [=0
X oF1 (20 —n, —r — 1§l—n—"’§%)Vn—2s—1($)
Rt (n+r—1D)
.g;l'n—s—l M(s —1)! (3.14)

X oF1 (2l —n,—r — Ll —n —; %)Vn_gs(m)

n [i
gr B (L)
=L T (- DN

]
s=0 [=0 2
X oF1 (2l —ny,—r — L;1 —n —r; %)Vn—s(w)
This shows (2.20).
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Next, we put
Qln, 'r‘ ZCIC P(a }3)( ) (315)
k=0

Then, by (e) of Proposition 3.2, (3.8), integration by parts k times, and
proceeding just as in (3.11), we get

o C(-D*2k+a+ B+ D)I(k+a+B+1)
BT Rt BN (a + k + DI(B + k + 1)677!

x Z (" %l—l)("”ﬁ R [CRREF RETRNCED

J =0

1
% 6n+r—j—21(_1)k(n _ 2l)k / x77’7217k(1 _ x)k—l—oz(l + x)k+ﬁd$,
J—1

where we note from (d) of Proposition 3.3 that

1
/ $n—2l—k(1 _ x)k+o¢(1 + :L.)k-‘rﬁdx
J—-1

n—2l—k n 921 k
— 22k+a+ﬂ+1 - - -1 n—2l—k—323 3.17
> ("7 e (3.17)
T(k+a+1)T(k+8+s+1)

Tk+a+pB+s+2)

From (3.15) and (3.16), we obtain

n[ -2

Y2k + o+ B+ DTk +a+ B+ 1)P* ()
ZZZ ;
k=0 1=0 j=0

Op, r

QHMﬂHma+k+n(ﬁ+k+umﬂ

— 51 .
( ) (n+rl J )(n—f—r—j _21)T67l+7'—]—2[

n—2l—k n—9 —k
X (—1)F(n - 21) 22k oA ) ( )

S
s=0
E+a+DI(k+8+s+1)
P2k +a+B+s+2)

% (71)7L72l*k‘7525 F(

19



20

T, Kim, D. S. Kim, D. V. Dolgy and J. Kwon

0" NS (DTt 0t 1) [g] V(n+r—1)!
-l & T@k+at B+l B - l'n—21 k)!
n—20 /1

() (=1)/(n —20);(r + 1),
) Z jin+r=1);

" Z 25(=1)*(n -2l —k)s <k+B+1 >

(3.18)
sl<2k+a+B8+2>;

n—k
_(-@”i( 2)FT(k + o+ 8+ 1) [i] -
= = F2k+a+5+1) s l'n—2l 0!
X oF (2l —m,—r—1;l—n—r;3)

><2F1(k+21—n,k+5+1;2k+a+ﬁ+2;2)Péa,5)(m).

This completes the proof for (2.36).

4. Conclusions

The balancing numbers B,, were introduced about twenty years ago by Be-
hera and Panda. Since their introduction, these numbers have been intensively
studied and many interesting properties of them have been discovered. The
Lucas-balancing numbers C,, have close connection with balancing numbers,
namely C, 11 = /8B2+1, (n > 0). Natural extensions of Lucas-balancing
numbers are Lucas-balancing polynomials C,,(x).

The linearization problem in general consists in determining the coefficients
Cnm(k) in the expansion of the product of two polynomials g, (x) and r,,(z) in
terms of an arbitrary polynomial sequence {py(x)},~:

n+m

qn (@) (T) = Z Cnm (K)pr ()
k=0

A special problem of this is the case when p, () = g, (z) = r,(z), which is called
either the standard linearization or Clebsch-Gordan-type problem.

In this paper, we studied sums of finite products of Lucas-balancing polyno-
mials given by

Z Oil (CU)CH (56) T Cir+1 (CC),
i1+ttt Hipp1=n
and represented them in terms of nine orthogonal polynomials in two differ-
ent ways each. In particular, we obtained an expression of such sums of finite
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products in terms of Lucas-balancing polynomials. These can be viewed as a
generalization of the aforementioned classical linearization problem. Our proof
was based on a fundamental relation between Lucas-balancing polynomials and
Chevbyshev polynomials of the first kind observed by Frontczak.

As our immediate future projects, we would like to continue to study the
problem of representing sums of finite products of some special polynomials in
terms of various special polynomials.
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