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Signed 2-independence of Cartesian product of
directed cycles
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Abstract

A function f : V(D) — {—1,1} defined on the vertices of a digraph D =
(V(D), A(D)) is called a signed 2-independence function if f(N~[v]) < 1 for
every v in D. The weight of a signed 2-independence function is f(V(D)) =
ZvEV( D) f(v). The signed 2-independence number of a digraph D, denoted

by a2(D), equals the maximum weight of a signed 2-independence function on
D. Let C,, x C,, be the Cartesian product of directed cycles C,, and C,,. In
this paper, the exact values of a2(C,, x C,) for 2 < m < 5 and n > 2 are
determined.
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1 Introduction

All digraphs considered in this paper are finite, without loops and multiple arcs. For
notation and terminology not defined here, we generally follow [1]. Specially, let D
be a digraph with vertex set V(D) and arc set A(D). We say that u is an in-neighbor
of v and v is an out-neighbor of u if uv is an arc of D. For a vertex v € V(D), the sets
of in-neighbors and out-neighbors of v are called the open in-neighborhood N, (v)
and open out-neighborhood Ng(v) of v, respectively. The closed in-neighborhood of
vis Np[v] = Np,(v) U{v}. The numbers d,(v) = [N, (v)| and dj;(v) = [N} (v)| are
the indegree and outdegree of v, respectively. We use §— (D), A~ (D), §(D), and
AT (D) to denote the minimum indgree, mazimum indgree, minimum outdegree and
mazximum outdegree of a vertex in D, respectively. In all cases above, we omit the
subscript D when no ambiguity on D is possible. For S C V(D), D[S] denotes the
subdigraph induced by S.

Given two digraphs Dy = (V4, 41) and Dy = (Va, Ag), the Cartesian product
D1 x Dy is the digraph with vertex set V4 x Vo and (z1, 22)(y1,y2) € A(D1 x Do) if and
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only if z1 = y; and x2ys € As or x9 = 1y and z1y; € Ay, where x;,y; € V; fori =1,2.
We use D1 = D5 to denote that D; and Dy are isomorphic. Throughout this paper,

we denote the sets of vertices of directed cycles Cy, and C,, by {u1,us,...,u,} and
{v1,v2,...,v,}, respectively, and A(Cy,) = {uiug,usus, ..., Un_1Um, unur} and
A(Cy) = {v1v9,v203,. .., Uy_10p, vyv1 ;. Moreover, in Cartesian product Cy, x Cp

(see Figure 1), let X; = UL {(uj,vi)} for 1 < j < m and let Y; = U7, {(uj,vi)}
for 1 < ¢ < n. Throughout this paper, for Y;, the subscript 7 is taken modulo n.
Thus, if ¢ <0, then ¥; = Y,4;, and if i > n, then ¥; =Y;_,,. For S C V(C,, x Cy),
we write Projc,, (S) to indicate the natural projection of S to V(Cy,).

For a function f : V(D) — {-1,1}, the weight of f is w(f) = > ey (p) f(v),
and for S C V(D) we define f(S5) =3 .5 f(v), so w(f) = f(V(D)). For a vertex
v € V(D), we denote f(N~[v]) by f[v] for notational convenience.

The study of signed 2-independence number of undirected graphs was studied
by [2,5] and elsewhere. Recently, Volkmann [6] began to investigate this parameter in
digraphs. Formally, a function f : V(D) — {—1, 1} is called a signed 2-independence
function (abbreviated, S2IF) if f[v] < 1 for every vertex v € V(D). The singed 2-
independence number, denoted by «2(D), of D is the maximum weight of a S2IF on
D. We call a S2IF of weight o(D) a a2(D)-function on D. Volkmann [6] presented
some upper bounds on a?(D) for general digraph D, Wang and Kim [7] determined
the exact values of a2(P,, x P,) for Cartesian product P, x P,, where 1 <m <5
and n > 1. Throughout this paper, if f is a S2IF of D, then we let P and M
denote the sets of those vertices in D which are assigned under f the value 1 and
—1, respectively. Therefore |V (D)| = |P|+ |M| and o?(D) = |P| — |M]|.

In this paper, our aim is to determine exact values of o2(C, x C,) for 2 <
m<5andn > 2.

2 Main results

In this section exact values of a2(C,, x C,) are determined for Cartesian product
Cm x Cp with 2 < m < 5 and n > 2. From the definition of S2IF, the following
lemmas are straightforward.

Lemma 1 Let D = (V(D), A(D)) be a digraph. Then o?(D) has the same parity
with |V (D)].

Lemma 2 Let f be a S2IF of Cp x Cp. For 1 < i < n, if |Y; N P| = m, then
|Yi_1ﬂP| =0.

Volkmann [6] established the following result.

Theorem 3 (Volkmann [6]) If D is a digraph of order n such that d*(v) = r for

all v € V(D), then a?(D) < 2.
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Figure 1: The Cartesian product C,, x C,,

Notice that d*(z,y) = 2 for every (z,y) € V(Cy, x Cy). As an immediate conse-
quence of Theorem 3, we have the following corollary.

Corollary 4 For integers m > 2 and n > 2, (v?(Cm x Cp) < 5.
Theorem 5 For any integer n > 2, a2(Cy x Cp,) = 0.

Proof. The proof is by induction on n. If n = 2, then a?(Cy x C3) < 0 by Lemma
1 and Corollary 4. The function f : V(Cy x C3) — {—1,1} is defined as follows:
f(ur,v1)) = f((u1,v2)) = —1 and f((uz,v1)) = f((u2,v2)) = 1. Obviously, f is
a S2IF of Cy x Cy with weight w(f) = 0, and so a?(Cy x C3) = 0. Assume that
a2(Cy x C;) = 0 for all integers 2 < [ < n. Next we show that a2(Cy x C,,) = 0.
Define g : V(Cy x Cp,) — {—1,1} by assigning to each vertex of X; the value —1
while to each vertex of Xo the value 1. It is easy to check that g is a S2IF on Cy x C),
of weight w(g) = 0. So a2(Cy x Cy,) > 0. Suppose that a2(Cy x C,,) = 0 is false.
Then o2(Cy x Cy,) > 2 from Lemma 1. Let h be a o2(Cy x Cy,)-function. We obtain
|P| > n+ 1 because |P| — |M| > 2 and |P| + |M| = 2n. Hence there must exist
a subset Y; in Cy x C), such that |Y; N P| = 2. Without loss of generality, suppose
that |Y, N P| = 2. Then [Y,—1 N P| = 0 by Lemma 2. If n = 3, then |P| > 4.
Thus |Y7 N P| = 2, contradicting Lemma 2. So n > 4. Define D; = D[V(Cs X
Cn) \ {Yn—hYn}] @] {(ul,vn_g)(ul,vl), (UQ,Un_Q)(UQ7’l)1)}. Then D = Cy x C),_s.
Applying the induction hypothesis, a?(D;) = 0. Clearly, hy = h|p, is a S2IF of
D, with weight w(hi) > (|P| —2) — (|M| —2) = |P| — |M| > 2. This implies that
a?(D1) > 2, a contradiction. Therefore a2(Cy x C,,) = 0. ]

Now we consider the Cartesian product C3 x C,,. To our purpose, the following
result is useful.
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Lemma 6 Let f be a S2IF of C5 x Cp. For 1 < i < n, if |Y; N P| = 3, then
|Y¢+1ﬂPI <1.

Proof. The statement is trivial by the definition of S2IF. O

Theorem 7 For any integer n > 2,

n if n=0 (mod 3),
CM?(Cg X Cn) =

n — 2 otherwise.

Proof. To complete the proof, we distinguish three cases.

Case 1. n = 0 (mod 3). Then n = 3k for some integer k > 1. Let A; =
{(’LLg,Ugi_Q),(ul,vgi_l),(’ll,g,vgi)} for 1 < i <k, and let A = Ui-c:lAi. Assigning
to all vertices of A the value —1 and to all other vertices the value 1, we produce a
S2IF f of C3 x Py with weight w(f) = 3k. Hence a?(C3 x C3x) > 3k = n. On the
other hand, a2(C3 x C3;) < 3k = n by Corollary 4. So a?(C3 x Csi) = 3k = n.

Case 2. n =2 (mod 3). Then n = 3k + 2 for some integer k > 0. We proceed our
proof by induction on k. If £ = 0, then n = 2. Note that C3x Cy = Cs x C3. By The-
orem 5, a2(C3x Cq) = a2(CyxC3) = 0 = n—2. Assume, then, that o?(C3x Csj19) =
31 for all integers 0 < [ < k. Now we show that a2(C3xCspi0) = 3k = n—2. Let Abe
defined as in the proof of Case 1 of Theorem 7. Define g : V(C3 x Csi42) — {—1,1}
by assigning to each vertex of AU {(us,vsk+1), (u2, v3x+2), (us, v3kro)} the value —1
and to each vertex of V(C5 x Cspa) \ (AU {(us, v3k41), (u2, v3k+2), (us, vsk42)}) the
value 1. It can be readily verified that g is a S2IF on C3 x C3;2 of weight w(g) = 3k,
and so o2(C3 x C3p42) > 3k = n — 2. Suppose that a?(Cs x Csp12) # 3k. Then
a2(C3 x C3p42) = 3k +2 by Lemma 1 and Corollary 4. Let g; be a a2(Cs x Cspy2)-
function.

Since |P| — |M| = 3k + 2 and |P| + |M| = 9k + 6, we have |P| = 6k + 4.
Suppose that there is a subset Y; for some 1 < i < 3k + 2 such that |Y; N P| = 3.
Then |Y;—1 N P| = 0 by Lemma 2. Let D; = D[V(C3 x Csp42) \ {Yi—1,Yi}] U
(U?zl{(uj,vi_g)(uj,Ui+1)}). Then D; =2 C3 x Cs. According to the result of Case
1 of Theorem 7, o2(D;) = 3k. Obviously, g2 = g1|p, is a S2IF of D; with weight
w(ga) > (|P|—3)—(|M|-3) = |P|—|M| = 3k+2. This yields that a2(D;) > 3k+2, a
contradiction. Hence |Y;NP| = 2 for each 1 < i < 3k+2 as | P| = 6k+4. Without loss
of generality, assume that Y350 N P = {(u1,v3k42), (u2,v3k4+2)}. Then Y3 1 NP =
{(u1,1}3k+1), (U3,U3k+1)} and Y3, NP = {(u2,vgk), (U,3,’U3k)}. Thus Y31 NP =
{(u1,v35-1), (u2,v3k-1)}. Define Dy = D[V(C5 x Cs142) \ {Yak, Y3kt1, Yario}| U
(U?Zl{(uj',ng_1)(Uj,U1)}). Then Dy = C5 x C3_1)42. So Oéz(DQ) =3k —3 by
the induction hypothesis. It is not hard to see that g3 = ¢1|p, is a S2IF on Dy of
weight w(gs) > (|P| —6) — (|[M] —3) = |P| — |M| — 3 = 3k — 1. This means that
a?(Ds) > 3k — 1, a contradiction. Consequently, a?(C3 x Csj12) = 3k =n — 2.

Case 3. n =1 (mod 3). Then n = 3k + 1 for some integer £k > 1. We now
show by induction on k that o?(C3 x C3p41) = 3k —1 = n — 2. Let A; and A
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be defined as in the proof of Case 1 of Theorem 7. If kK = 1, then n = 4. Let
h:V(Cs x Cq) — {—1,1} be a function that assigns the value —1 to each vertex of
A1U{(u2,v4), (ug,vs4)} and 1 to each vertex of V/(Cs x Cy)\ (A1 U{(u2,v4), (us,v4)}).
It is straightforward to check that h is a S2IF of Cs x C4 with weight w(h) = 2.
Hence a?(C3 x Cy) > 2 = n — 2. Suppose that a?(Cs x Cy) = 2 is not true. Then
a2(C3 x Cy) = 4 according to Lemma 1 and Corollary 4. Let hy be a a2(Cs x Cy)-
function. We obtain |P| = 8 because |P| — |[M| = 4 and |P| + |M| = 12. If there is
a subset Y; for some 1 < ¢ < 4 such that |Y; N P| = 3, then it follows from Lemma
2 that |Y;_1 N P| = 0. By Lemma 6, |Y;+; N P| < 1. Thus |P| < 7, a contradiction.
Hence, for each 1 <7 < 4, |[Y;NP| = 2 as |P| = 8. Without loss of generality, assume
that YaNP = {(u1,v4), (u2,v4)}. Thus we can get Y1NP = {(u1,v1), (u2,v1)}. Then
hi[(ug,v1)] = 3, which is a contradiction. Therefore a2(C3 x Cy) =2 =n — 2.

Assume that a2(C3 x C341) = 31 — 1 for all integers 1 <1 < k. We will prove
that a2(Cs x Cypy1) =3k —1 =n—2. Let A = AU {(ua, v3p41), (u3,v3641)}).
Clearly, the function hy : V(C5 x Csgq1) — {—1,1} defined by hao((z,y)) = —1 for
each (z,y) € A" and hy((z,y)) = 1 for each (z,y) € V(C3 x Caj41) \ A" is a S2IF of
C3 x Csgy1 with weight w(he) = 3k — 1. Hence (Y?(Cg x Csy1) >3k —1=n—2.
Suppose that a?(C3 x C3py1) = 3k — 1 is false. Applying Lemma 1 and Corollary 4,
a?(C3 x Cspy1) = 3k + 1. Let hz be a a?(C3 x Csp41)-function. Since |P| — |M| =
3k + 1 and |P| + |M| = 9k + 3, we have |P| = 6k + 2. Suppose that there exists
a subset Y; for some 1 < i < 3k + 1 such that |[Y; N P| = 3. Then |Y;_1NP| =0
by Lemma 2. Let D3 = D[V(Cg X C3k+1) \ {Y;',l, Yl}] U (Ug?:l{(uj, vi,z)(uj, Ui+1)}).
Then D3 = C3 x C3(;_1)42. By the result of Case 2 of Theorem 7, oa%(D3) = 3k — 3.
It is not difficult to see that hy = hg|p, is a S2IF on D3 of weight w(hy4) > (|P|—3) —
(|M|—3) = |P| — |M| = 3k+1. This implies that a?(D3) > 3k + 1, a contradiction.
Hence |Y; N P| =2 for each 1 <1i < 3k + 1 as |P| = 6k + 2. By a similar argument
that used in the proof of Case 2 of Theorem 7, we can get the same contradiction.
Hence a2(C3 x C3x11) = 3k — 1 = n— 2. This completes the proof of Theorem 7. O

We now turn our attention to the Cartesian product Cy x C,. To determine
the exact value of a2(Cy x C,,), the following lemma is required.

Lemma 8 Let f be a S2IF of Cy x C,. The following statements are true:

(1) For 1 < i <, if |Y;NP| =3, then |Y;-1 N P| < 2 and |Yiy1 N P| < 2.
Furthermore, if |Yi_1 N P| = 2, then Y;_1 N P = {(uj,vi—1), (4j41,vi—1)} for some
1 < j <4, where us = u;.

(2) For1 <i<mn, if |[YiNP| =4, then |Yiz1NP| < 2. Furthermore, if |Yix1NP| = 2,
then |P N {(uj, vit1), (Wj41,vi41) } < 1 for any 1 < j < 4, where us = uy.

(3) For 1 <i<mn, (Y;UYi41) N P| < 6. Furthermore, |(Y; UY;41) N P| =6 if and
only if [YiNP| =4 and |Yiz1 N P| =2.

(4) For1<i<n, |(Y;UY;11 UYi10)NP| < 8.

(5) For 1 < i <mn, [(Y;UYi41 UYia UYi3) N P| < 11. Furthermore, if |(Y; U
Yis1 UYigo UYigs) N P| = 11, then [Y; N P| = 4, [Yiy1 N P| = |Yia N P| = 2 and
|Y;+3 n P| = 3.

613
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(6) In Cy x Cy, (n >9), suppose that 2 < |Y; N P| <3 and |Y; N P| # |Yiz1 N P| for
each 1 <i<n. If|Y; N P| =3, then Projc,(Y; N P) = Projc,(Yi_s N P).

Proof. (1) Suppose that |Y; N P| = 3 for some 1 < i < n. By the symmetry of Cy x
C\,, we may assume, without loss of generality, that ;NP = {(u1,v;), (ug,v;), (us, v;)}.
Then {(ug,vi—1), (u3,v;—1)} € M, which means that [¥;_1 N P| < 2. Furthermore,
if ‘Y;',l n P| - 2, then Y;;,l NP = {(ul,vi,l), (U4,UZ‘,1)}. If |Y;+1 N P‘ == 4, then
|Y; N P| = 0 by Lemma 2, a contradiction. So |Y;11 N P| < 3. If |Yi41 N P| = 3,
then |Y; N P| < 2 by the first part of Lemma 8 (1), a contradiction again. Hence
|Yit1 N P| < 2. The statement (1) holds.

(2) Suppose that |Y;NP| =4 for some 1 <4 < n. If |Y;41NP| =4, then [Y;NP| =0
by Lemma 2, a contradiction. Hence |Y;11NP| < 3. If |Y;41 N P| = 3, then it follows
from Lemma 8 (1) that |Y¥; N P| < 2, which is a contradiction. So |Y;j11 N P| < 2.
If |Yiy1 N P| = 2, then |P N {(uj,vit1), (wj+1,vi41)}| < 1 for any 1 < j < 4 by the
definition of S2IF, where us = u1. The statement (2) is true.

(3) If |Yiz1 N P| = 4 for some 1 < i < n, then |¥Y; N P| = 0 by Lemma 2, and so
|(YiUYit1) N P| < 4. If |Yi41 N P| = 3 for some 1 < i < n, then it follows from
Lemma 8 (1) that [Y; N P| < 2. Thus [(Y; UY;41)NP| < 5. If Y1 NP < 2 for
some 1 < ¢ < n, then it is obvious that |(Y; UYiy1) N P| < 6. According to Lemma
8 (1), it is easily seen from the arguments above that |(Y; U Y;+1) N P| = 6 if and
only if |Y; N P| =4 and |Yj41 N P| = 2. The statement (3) follows.

(4) If |Yiyo N P| = 4 for some 1 < 4 < n, then |Y;4; N P| = 0 from Lemma 2. This
implies that |(Y; UYj41 UYi42) NP < 8. If |Yi42 N P| = 3 for some 1 < ¢ < n, then
we can claim that |(Y; UY;11) N P| < 5. Otherwise, |(Y;UYit1) N P| =6 by Lemma
8 (3). Then |Y; N P| =4 and |Y;11 N P| =2 by Lemma 8 (3) again, however, which
is impossible according to Lemma 8 (1) and (2). So [(Y; UYi41 UY;12) N P| < 8. If
|Yize N P| < 2 for some 1 < i < n, by Lemma 8 (3), then |(Y;UY;11UYj12)NP| < 8.
The statement (4) holds.

(5) If |Y; N P| =4 for some 1 < i < n, then |Y;41 N P| < 2 by Lemma 8 (2). Suppose
|(Yiga UYiys) N P| < 5. Then the desired result follows. So |Yiyo UY;13) N P| =6,
and hence |(Yj12 N P| = 4 from Lemma 8 (3). Thus |Y;11 N P| = 0 by Lemma
2. This derives that [(Y; U Y41 U Yo UYiy3) NP < 10. If [V, N P| < 3 for
some 1 < ¢ < n, then |(Y; UYiy1) N P| < 5 and |(Yi42 U Yiy3) N P| < 6 by
Lemma 8 (3). Therefore |(Y; UY;11 UYiio UYir3) N P| < 11. Now assume that
(Vi UY1 UYiio UYiq3) N P| = 11 for some 1 < i < n. If |Y;NP| < 3, then
|(Y; UYi11) N P| =5 and |(Yisra UYip3) N P| = 6 from the arguments above. Thus
|(Yi2NP| = 4 by Lemma 8 (3). Then |Y;11NP| =0 from Lemma 2. We deduce that
|(Y;UY;41) N P| < 4, a contradiction. Hence |Y; N P| =4. If |Y;11 N P| < 1, then one
can reach the same contradiction by the similar argument above. So |Yj41 N P| =2
by Lemma 8 (2). Thus |(Yi12 UY;y3) N P| = 5. Clearly, by Lemma 2, neither
[Yiz2 N P| = 4 nor |Yi43 N P| = 4 holds. According to Lemma 8 (1) and (2),
|Yit2 N P| =2 and |Yi+3 N P| = 3. This establishes the statement (5).

(6) Suppose that 2 < |Y; N P| < 3 and |Y; N P| # |Yi41 N P| for each 1 <
it < n. Furthermore, assume that |[Y; N P| = 3 for some 1 < i < n. With-
out loss of generality, suppose that ¥; N P = {(u1,v;), (u2,v;), (us,v;)}. Then
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Yio1 NP = {(u1,vi-1), (us,vi—1)}, Yioa N P = {(u2,vi2), (u3,vi—2), (us,vi—2)} and
YisNP = {(u1,vi-3), (u2,vi—3)}. Thus Y;4NP = {(u1,vi-a), (u3,vi-a), (ua,vi-a)},
Yi 5 NP = {(ug,vi5), (u3,vi5)}, Yi_¢ N P = {(u1,vi_¢), (u2,vi_6), (us,vi_¢)} and
Yi7 NP = {(u3,vi—7), (ug,vi_7)}. So Yi_g N P = {(u1,v;_g), (u2,v;i—8), (u3,vi_g)}.
Therefore the statement (6) is true. The proof of Lemma 8 is completed. i

Theorem 9 For any integer n > 2,

n if n=0 (mod 8),
Q2(CyxCy) =4 n—1 ifn=1,3 (mod 4),
n—2 otherwise.

Proof. We consider the following cases to complete the proof of Theorem 9.

Case 1. n =0 (mod 8). Then n = 8k for some integer £ > 1. We proceed our proof
by induction on k. If k = 1, then n = 8. Let A = {(u1,v1), (uq,v1), (u2, v2), (us,vs), (uq,
v3), (u1,v4), (uz,vs), (us, vs), (ug, ve), (u1,v7), (ug,v7), (us,vs)}. Assigning to each
vertex of A the value —1 and to each vertex of V(C4 x Cs) \ A the value 1, we
produce a S2IF f of Oy x Cg with weight w(f) = 8. Hence o2(Cy x Cg) > 8 = n.
Suppose that a2(Cy x Cg) = 8 is false. Then (Cy x Cg) = 10 by Lemma 1 and
Corollary 4. Thus |P| = 21 since |P| — |[M| = 10 and |P| + |M| = 32. Suppose
that there exists a subset Y; for some 1 < ¢ < 8 such that |¥; N P| = 4. Without
loss of generality, assume that [Ys N P| = 4. Then |[Y7NP|=0and [Y1NP| <2
by Lemma 2 and Lemma 8 (2), respectively. Furthermore, |(Y; UY32) N P| <5 from
Lemma 8 (3). So [(Y1UY>2UY7UYg)NP| <9. On the other hand, by Lemma 8 (5),
[(Y3UY,UY; UYs) N P| < 11. We deduce that |P| < 20, a contradiction. Hence
|Y; N P| < 3 for each 1 <i < 8. Applying Lemma 8 (1), there exist at most 4 ¥;'s in
C4 x Cg such that |Y; N P| = 3. This implies that |P| < 20, which is a contradiction.
Therefore a2(Cy x Cg) = 8 = n.

We now assume that a?(Cy x Cg;) = 8l for all integers 1 < [ < k. We
need to prove a?(Cy x Cg) = 8k = n. Let V; = UT_Yg;, for 1 < i < k. Let
f1:V(Cy x Cg) — {—1,1} be a function on Cy x Cg such that V; has the same
assignment of function values under f; as that of V(Cy x Cg) under f, for 1 <i < k.
It is easy to check that f; is a S2IF of Cy x Cg with weight w(f;) = 8k. Hence
a2(Cy x Cgi) > 8k = n. Suppose that a?(Cy x Cg;) = 8k is not true. Then
a2(Cy x Cgg) > 8k + 2 by Lemma 1. Let f be a a2(Cy x Cg)-function. Since
|P|—|M| > 8k + 2 and |P| + |M| = 32k, we obtain |P| > 20k + 1. Thus there must
exist a subset V; for some 1 < i < k such that [V; N P| > 21. Set Vi1 = U?ZOY&‘_]‘
and V2 = UJ7-=4Y8¢_J» for 1 < i < k. According to Lemma 8 (5), there is a V;" for
some 1 < 7 < 2 such that |[V;"N P| = 11. We distinguish two subcases depending on
VinP|=1lor [V2NP|=11.

Case 1.1. |V;'!NP| = 11. Then it follows from Lemma 8 (5) that |Yz;_3NP| = 4, and
so0 |Ys;—4NP| =0 by Lemma 2. Since [V;NP| > 21, |(Ygi—7UY3,_6UYsi—5)NP| > 10,
which contradicts to Lemma 8 (4).
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Case 1.2. [V;2N P| = 11. Then it follows from Lemma 8 (5) that |Ys;—7 N P| = 4
and |Ygi—4 N P| = 3. Thus |Yzi_s N P| = 0 and |Y3;—3 N P| < 2 by Lemma 2
and Lemma 8 (1), respectively. Further, by Lemma 8 (4), |Vé_1) NP| < 8. Let
Dy = D[V(Cy x Csi) \ {V{i_y): VPH U (U {(uj, v8i—12) (uj, vsi—3)}). Then Dy =
Cy x Cy(—1), and hence aZ(D1) = 8k — 8 by the induction hypothesis. Suppose
[Ysis N P| < 1. Clearly, f3 = fa|p, is a S2IF on Dy. So a?(D1) > w(fs) >
(|IP|—19)—(|M|—-13) = |P|—|M|—6 > 8k—4, a contradiction. Hence |Yg;_3NP| = 2.
Let Ygi_3 N P = {(uj,,vs8i—3), (uj,,v8i—3)}, where 1 < ji,jo < 4. The function
fa : V(D1) — {—1,1} is defined as follows: fa((uj,,vsi—3)) = —1 and fa((x,y)) =
fa((z,y)) for each (x,y) € V(D1) \ {(uj,,vsi—3)}. It is not hard to see that f4 is a
S2IF of Dy with weight w(f1) > (|P|—19)—1—(|M|-13+1) = |P|—|M|-8 > 8k—6.
Thus o?(D;) > 8k — 6, a contradiction. Consequently, a?(Cy x Cgi,) = 8k = n.

Case 2. n =0 (mod 4) and n # 0 (mod 8). Then n = 8k+4 for some integer k > 0.
We now show by induction on k that a2(Cy x Cgpy4) = 8k+2 =n—2. If k = 0, then
n=4. Let A = {(u1,v1), (uq,v1), (uz, va), (ug,ve), (u1, 1)3),/(1&2, v3), (us,v4) }. Define
g:V(Cy x Cy) = {—1,1} by assigning to all vertices of A" the value —1 and to all
other vertices the value 1. It is easy to verify that ¢ is a S2IF on Cy x Cy of weight
w(g) = 2, which means that o2(Cy x Cy) > 2 = n—2. Assume that a?(Cy x Cy) = 2
is false. Then a?(Cyx Cy) = 4 by Lemma 1 and Corollary 4. Let g1 be a a2(Cy x Cy)-
function. Thus |P| =10 as |P| — |M| = 4 and |P| + |M| = 16. Suppose that there
exists a subset Y; for some 1 < ¢ < 4 such that |[Y;NP| = 4. Without loss of generality,
assume that |[Y4NP| = 4. Then |Y3NP| = 0 and |Y1NP| < 2 by Lemma 2 and Lemma
8 (2), respectively. Since |P| = 10, it follows that [Ya N P| = 4 and |Y; N P| = 2,
which contradicts to Lemma 2. So |Y; N P| < 3 for each 1 < i < 4. According to
Lemma 8 (1),2<|Y;NP| <3 and |[Y;NP|#|Y;x1NP|foreach 1 <i<4as|P|l=
10. Without loss of generality, assume that Yy N P = {(u1,v4), (u2,v4), (uz,vs)}.
Then Y3 N P = {(u1,v3), (us,v3)} and Yo N P = {(ug,v2), (us,va), (u4,v2)}. Thus
Y1 NP = {(u1,v1), (u2,v1)}, which implies that g;[(u2,v1)] = 3, contradicting the
definition of S2IF. Therefore a2(Cy x C4) =2 =n — 2.

Assume that a2(Cy x Cgjy4) = 81 + 2 for all integers 0 < I < k. We will show
that ag(C'4 X Cgg+4) = 8k +2 =n — 2. Let V; be defined as in the proof of Case 1
of Theorem 9, where 1 < i < k. Define g3 : V(Cy x Cggra) — {—1,1} as follows:
V; (1 <i<k)and V(Cy x Cgprq) \ (UF_,V;) have the same assignments of function
values under go as those of V(C4 x Cs) under f and V(Cy x Cy) under g, respectively.
It is not hard to check that go is a S2IF of Cy x Cgg4q with weight w(gs) = 8k + 2.
Thus a5(04 X Cgk+4) > 8k +2 = n — 2. Suppose that (\42(04 X Cgk+4) #+ 8k + 2.
Then a2(Cy x Cggy4) > 8k +4 by Lemma 1. Let g3 be a a?(Cy x Cgpy4)-function.
Since |P| — |M| > 8k + 4 and |P| + |M| = 32k + 16, we obtain |P| > 20k + 10. We
have the following claim.

Claim 1. For each 1 < <8k +4, |YiNnP| < 3.

Otherwise, there is a subset Y; for some 1 < ¢ < 8k + 4 such that |Y; N P| = 4.
Then |Y;_1 N P| = 0 by Lemma 2. Note that [(Y;_4 UY;_3UY; 2) N P| < 8 and
[(Y; UYiy1 UYiio UYip3) N P| < 11 from Lemma 8 (4) and (5), respectively. Let
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Dy = DV (Cy x Cpra) \ (U—_1Yirr)] U (Ui 1 {(j, vi-5)(uj, vita)}). Then Dy =
Cy x Cy(j—1y+4. Applying the induction hypothesis, o2(Dy) = 8k — 6. We proceed
our proof by considering the value of |Y;14 N P|.

Suppose |Y; 14 N P| < 2. With a proof similar to that of Case 1.2 of Theorem 9, we
can obtain the same contradictions.

Suppose |Yiys N P| = 3. Then |Yj33 N P| < 2 by Lemma 8 (1). Thus it follows
from Lemma 8 (5) that [(Y; U Y41 U Yo UYip3) N P| < 10. Let Yiyy NP =
{(ujy, viga), (wjy, viga), (w5, viga)}, where 1 < jy,jo,j3 < 4. Define g4 : V(Dg) —
{=1,1} by g4((w),, vi4a)) = ga((uj, vita)) = —1 and ga((z,y)) = g3((z,y)) for each
(x,y) € V(D2) \ {(wj,, vita), (ujy, viya)}. It can be readily verified that g4 is a S2IF
of Dy with weight w(gs) > (|P|—18) — 2 — (|M| - 14 +2) = |[P| — M| — 8 > 8k — 4.
This yields that a2(Ds) > 8k — 4, which is a contradiction.

Suppose |Y;+4NP| =4. Then |Y;;3NP| =0 by Lemma 2. Hence [(Y; UYj11UY;12U
Yi+3) N P| < 8 from Lemma 8 (4). The function g5 : V(Dg) — {—1,1} is defined
as follows: g5((u1,vit4)) = g5((u2,vit4)) = g5((ug, viya)) = —1 and g5((z,y)) =
g3((z,y)) for each (z,y) € V(D2) \ {(u1,vita), (u2,vita), (us,vita)}. It is easily
seen that gs is a S2IF on Dy of weight w(gs) > (|P| — 16) — 3 — (|M| — 16 + 3) =
|P|—|M|—6 > 8k —2. This implies that a?(Dy) > 8k —2, a contradiction. In either
case, we always arrive at a contradiction. Therefore Claim 1 holds.

By Claim 1 and | P| > 20k+10, there exist at least 4k+2 Y}’s in Cy X Cg44 such
that |Y; N P| = 3. According to Lemma 8 (1), there exist exactly 4k +2 Y;'s in Cy x
Csk+4 such that |Y;NP| = 3. Thus, by Claim 1, 2 < |Y;NP| < 3foreach 1 < i < 8k+
4 as | P| > 20k+10. Moreover, |Y;NP| # |Y;+1NP| for each 1 < i < 8k+4 by Lemma 8
(1) again. Note that n = 8k+4 > 12. Without loss of generality, we may assume that
|Ysr+4 N P| = 3. Applying Lemma 8 (6), Projc, (Ysk+4 N P) = Projc,(Ysk—a N P).
Let D3 = D[V(Cy x Cgpya) \ (U—gY8kta )] U (Uj_; {(w), vsk—4)(uj, v1)}). Then
D3 = Cy x Cg(g—1)44- SO a?(D3) = 8k — 6 by the induction hypothesis. It is easy to
see that gg = g3|p, is a S2IF of D3 with weight w(gs) > (|P| — 20) — (| M| — 12) =
|P| — |[M| — 8 > 8k — 4. This derives that a2(D3) > 8k — 4, a contradiction. Hence
03(04 X Cgya) =8k +2=mn—2.

Case 3. n =1 (mod 4). Then n = 4k + 1 for some integer £k > 1. To prove
ag(C’4 X Cygt+1) = 4k = n — 1, we employ induction on k. If k = 1, then n = 5. Let
B = {(ul, Ul), (U3,1)1), (UQ, ’1)2), (U3,112), (U,4, 1)3), (ul, 1)4), (U,g, ’1)4), (U3, 1)5)}. Define h :
V(Cy x C5) — {—1,1} by assigning to each vertex of B the value —1 and to each
vertex of V(Cy x C5) \ B the value 1. It is not difficult to check that h is a S2IF
of Cy x C5 with weight w(h) = 4. So a2(Cy x C5) > 4 = n — 1. Suppose that
a2(Cy x C5) = 4 is not true. Then o2(Cy x C5) = 6 by Lemma 1 and Corollary
4. Thus |P| = 13 because |P| — |[M| = 6 and |P| + |M| = 20. If there is a
subset Y; for some 1 < i < 5 such that |Y; N P| = 4, then |Y;_1 N P| = 0 and
|Yiy1NP| <2 by Lemma 2 and Lemma 8 (2), respectively. Furthermore, by Lemma
8 (3), |(Yiz2 UYi43) N P| < 6. This leads to |P| < 12, a contradiction. Hence
|Y; N P| < 3 for each 1 < i < 5. According to Lemma 8 (1), there are at most
2 Y;s in Cy x C5 such that |[Y; N P| = 3. This implies that |P| < 12, which is a
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contradiction. Therefore a?(Cy x C5) =4 =n — 1.

Assume that o2(Cy x Cyy1) = 41 for all integers 1 < I < k. We shall show
that a§(04 X C4k+1) =4k =n—1.
If k£ is odd, then &k = 2l + 1 for some integer [ > 1, and n = 8] + 5. We write

V) = Ul_ Y, for 1 < i < 1. Let hy : V(Cy x Cypy1) — {—1,1} be a function
on Cy x Cypyq such that V; (1 < i < 1) and V(Cy x Cypp1) \ (U, V;) have the
same assignments of function values under hq as those of V(Cy x Cg) under f and
V(C4 x C5) under h, respectively. It is easy to verify that hq is a S2IF of Cy X Cygq1

with weight w(hy) = 4k. Thus a?(Cy x Cypy1) > 4k =n — 1.

If k£ is even, then & = 2l for some integer [ > 1, and n = 8 + 1. The func-
tion hy : V(Cy x Cypy1) — {—1,1} is defined as follow: V; (1 < i < [) has
the same assignment of function values under hs as that of V(Cy x Cs) under f,
ha((u1,vsi41)) = ha((us, vsi+1)) = —1 and ho((u2,vs141)) = ho((us,v8141)) = 1. It
can be readily checked that hg is a S2IF of Cy x Cyp4q with weight w(hg) = 4k. So
(Yg(04 X C4k+1) > 4k =n — 1.

Suppose that a(Cy x Cypr1) # 4k. Then a?(Cy x Cypyp1) > 4k +2 by Lemma
1. Let hg be a Cy X Cyg41-function. Since |P|—|M| > 4k+2 and |P|+|M| = 16k+4,
we obtain |P| > 10k + 3. We have the following claim.

Claim 2. Foreach 1 <i<4k+1, |[Y;NP| < 3.

Suppose on the contrary that there exists a subset Y; for some 1 < ¢ < 4k + 1
such that |Y; N P| = 4. Then |Y;_; N P| = 0 by Lemma 2. Recall that |(Y;_3 U
Y 9) N P| < 6 from Lemma 8 (3). Thus [(Y;_3 UY; 2o UY;_1 UY;)N P| < 10.
Let Dy = D[V(Cy x Capy1) \ {Yi3, Yio2, Yi1, Yi}] U (Uj_1 {(1, vi—a)(uj, vi1)}).
Then Dy = Cy X Cy—1)41- Applying the induction hypothesis, o%(Dyg) = 4k — 4.
Obviously, ha = h3|p, is a S2IF on Dy of weight w(hs) > (|P| — 10) — (|M| —6) =
|P| — |M| — 4 > 4k — 2, implying that a?(D,) > 4k — 2, a contradiction. So Claim
2 is true.

By Claim 2, we deduce that there exist as least 2k 41 Y}’s in Cy x Cyp41 such
that |Y; N P| =3 as n =4k + 1 and |P| > 10k + 3. Thus there must exist a subset
Y; for some 1 < ¢ < 4k + 1 such that |Y; N P| = |Y;41 N P| = 3 since n = 4k + 1,
which contradicts to Lemma 8 (1). Consequently, a?(Cy x Cypy1) = 4k =n — 1.

Case 4. n = 2 (mod 4). Then n = 4k + 2 for some integer k > 0. The proof
is by induction on k. If & = 0, then n = 2. Note that C4y x Cy = Cy x (4. By
Theorem 5, a2(Cy x Cy) = a2(Cyx Cy) =0=n—2. If k=1, then n = 6. Let B’ =
{(ula Ul)’ (U4, 1}1), (U’Q’ UQ)’ (u3,7 U3)7 (’LL4, 03)7 (ula U4)7 (u27 U5)7 (U3, U5)a (ulv 7}6)7 (’U’3’/’U6)}'
Assigning to each vertex of B’ the value —1 and to each vertex of V(C4 x Cg) \ B’ the
value 1, we produce a S2IF p of Cy x Cg with weight w(p) = 4. Thus a?(Cy x Cg) >
4 =n—2. Suppose that a2(Cy x Cg) = 4 is false. Then a2(Cy x Cg) > 6 by Lemma
1. Let p1 be a o2(Cy x Cg)-function. It follows that |P| > 15 as |P| — |M| > 6
and |P| + |[M| = 24. If there exists a subset Y; for some 1 < ¢ < 6 such that
|Y; N P| = 4, then |[Y;_1 N P| = 0 and |Y;41 N P| < 2 by Lemma 2 and Lemma
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8 (2), respectively. Without loss of generality, assume that [Ys N P| = 4. Then
(Y5 UYsUY))NP| < 6. By Lemma 8 (4), |(YaUY3UY,) N P| <8 Hence
|P| < 14, a contradiction. So |¥; N P| < 3 for each 1 < i < 6. Recall that
|P| > 15 and n = 6. Applying Lemma 8 (1), we can claim that 2 < [Y; N P| < 3
and |Y; N P| # |Yig1 N P| for each 1 < ¢ < 6. Without loss of generality, sup-
pose that Y5 N P = {(u1,v6), (u2,ve), (ug,ve)}. Then Y5 N P = {(u,vs), (ug,vs)},
YiNP = {(ug,vs), (us,vq), (ug,v4)} and YsN P = {(u1,v3), (ug,v3)}. Thus YoNP =
{(u1,v2), (us,v2), (ug,v2)} and Y1 N P = {(ug,v1), (us,v1)}. This would imply that
p1[(u3,v1)] = 3, contradicting the definition of S2IF. Therefore a2(Cy x Cg) = 4 =
n— 2.

Now we assume that o2(Cy x Cyyy2) = 41 for all integers 1 < I < k. Next we
need to prove a2(Cy x Cypyo) =4k =n — 2.

If £ is odd, then k£ = 2] 4+ 1 for some integer [ > 1, and n = 8] + 6. Let Vi'
be defined as in the proof of Case 3 of Theorem 9, where 1 < i < [. Define
pa s V(Cyx Cupya) = {—1,1} as follows: V, (1 <i <1)and V(CyxCypya)\ (Ui, V})
have the same assignments of function values under py as those of V(Cy x Cg) under
f and V(Cy x Cg) under p, respectively. It is not hard to verify that py is a S2IF of
Cy x Cypyo with weight w(ps) = 4k, and hence a?(Cy x Cypyo) > 4k =n — 2.

If k£ is even, then k = 2l for some integer [ > 1, and n = 8l + 2. Let C =
{(Ulav8l+1)a(U4av8l+1)a(u2av8l+2)a(u37U8l+,2)}- Let p3 : V(C4 x Capq2) — {—1,1}
be a function on Cy x Cyppo such that V; (1 < i <) has the same assignment of
function values under ps as that of V(Cy x Cg) under f, each vertex of C' is assigned
to the value —1 under ps and each vertex of {Yg41,Ys42} \ C is assigned to the
value 1 under ps. It is easy to check that ps is a S2IF on C4 x Cygyo of weight
w(ps) = 4k. So a?(Cy x Cypyo) > 4k =n — 2.

Suppose that a?(Cy x Cypio) = 4k is false. Then o2?(Cy x Cypio) > 4k +2
by Lemma 1. Let py be a o2(Cy x Cypyo)-function. Thus |P| > 10k + 5 since
|P|—|M| > 4k +2 and |P|+ |M| = 16k + 8. Like the argument of Claim 2, we have
that |[Y;NP| < 3 for each 1 < i < 4k+2. Then one can reach the same contradiction
by a similar argument that used in the proof of Case 2 of Theorem 9. Therefore
CY?(C4 X C4k+2) =4k =n—2.

Case 5. n = 3 (mod 4). Then n = 4k + 3 for some integer k > 0. We show by
induction on k that a?(Cy x Cypi3) = 4k +2=n— 1. If k = 0, then n = 3. Notice
that Cy x C3 2 C3 x Cy. By Theorem 7, a?(C4 X Cg) = Cvz(Cg X 04) =2=n-—1.
Assume that o2(Cy x Cyy3) = 41 + 2 for all integers 0 < I < k. Now we show that
ag(C4 X Cypq3) =4k +2=n—1.

If k is odd, then k = 2[+1 for some integer [ > 0, and n = 8[+7. If { = 0, thenn = 7.
Lot €' = {(ur,v1), (ua, v1), (uz, v2), (u, v3). (s, v3), (ur, va), (2, v5), (w3, v5). (s, v).
(u1,v7), (us,v7)}. Assigning to all vertices of C" the value —1 and to all vertices of
V(Cy x C7)\ € the value 1, a S2IF ¢ of Cy x C7 is produced. So o?(Cy x C7) >
w(q) = 6 = n—1. Next we may assume that [ > 1. Let Vi/ be defined as in the proof
of Case 3 of Theorem 9, where 1 < ¢ <. The function ¢; : V(Cy x Cyg43) — {—1,1}
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is defined as follows: V; (1 <4 < 1) and V(Cy x Cyry3) \ (UL, V;) have the same as-
signments of function values under ¢; as those of V/(Cy x Cs) under f and V (Cy x C7)
under ¢, respectively. It can be readily verified that ¢; is a S2IF of Cy x Cyjr3 with
weight w(q1) = 4k + 2, and s0 o2(Cy x Cypy3) > 4k +2=n — 1.

If k£ is even, then k = 2 for some integer [ > 1, and n = 8] + 3. Let o' =
{(u1, vs111), (ua, vsi41), (U2, Vi), (us, vsies), (us, vsig3)}. Let go 0 V(Cax Cagyg) —
{—1,1} be a function on Cy x Cyx43 such that V; (1 < i <) has the same assignment
of function value under g, as that of V(Cy x Cg) under f, each vertex of C” is assigned
to the value —1 under ¢ and each vertex of {Yz;41, Yai42, Yaiis} \ C" is assigned to
the value 1 under ¢o. It is not difficult to check that g2 is a S2IF on C4 x Cyiy3 of
weight w(ga) = 4k + 2. Hence o2(Cy x Cypy3) >4k +2=n—1.

Suppose that a?(Cy x Cypi3) # 4k +2. Then o?(Cy x Cypy3) > 4k + 4 by
Lemma 1. Let g3 be a a(Cy x Cyi43)-function. It follows that | P| > 10k +8 because
|P| —|M| > 4k +4 and |P|+ | M| = 16k + 12. With a proof similar to that of Claim
2, we obtain that |¥; N P| < 3 for each 1 < ¢ < 4k + 3. Using a similar method as
that in the proof of Case 3 of Theorem 9, we can get the same contradiction. So
a2(Cy x Cypy3) = 4k +2 = n — 1. This complete the proof of Theorem 9. O

We are now ready to establish our last result. First we present a lemma that
will prove to be useful in our proof.

Lemma 10 Let f be a S2IF of C5 x C,,. The following statements are true:

(1) For 1 < i < mn, if |Y;NP| =4, then |Y;-1 N P| < 2 and |Yiy1 N P| < 3.
Furthermore, if |Y;_1 N P| = 2, then Y;_1 N P = {(uj,vi—1), (4j41,vi—1)} for some
1< j <5, where ug = uy.

(2) For1<i<n,if|[YiNP| =5, then |Y;x1NP| < 2. Furthermore, if |Yiz1NP| = 2,
then |P N {(uj, vit1), (Wjt1,vi41)} < 1 for any 1 < j <5, where ug = u.

(3) For1<i<n, |(Y;UYi41)NP|<T.

(4) For1<i<mn, [(Y;UYj+1 UYi;2) N P| < 10.

Proof. By a similar argument that used in the proof of Lemma 8, we can show that
Lemma 10. O

Theorem 11 For any integer n > 2,

0 ifn=2,
a2(Cs x Cy) =
n ifn>3.

Proof. Note that C,, x C, = C, x Cy,. If n = 2, the assertion is true by The-
orem 5. Next we proceed our proof by induction on n (n > 3). Applying Theo-
rem 7 and 9, the assertions are trivial for 3 < n < 4. Suppose n = 5. Let F' =
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{(u2,v1), (us,v1), (u1,v2), (uz, v2), (u2,v3), (ua,v3), (u3, va), (us, va), (u1,v5), (ua,v5)}.
Clearly, the function f : V(C5 x C5) — {—1,1} defined by f((z,y)) = —1 for ev-
ery (z,y) € F and f((x,y)) = 1 for every (z,y) € V(C5 x C5) \ F is a S2IF on
Cs x Cs of weight w(f) = 5. This yields that a?(C5 x C5) > 5 = n. Assume that
a?(Cs x Cs) = 5 is false. By Lemma 1 and Corollary 4, we have a2(C5 x C5) = 7.
Thus |P| = 16 as |P|—|M| = 7 and |P|+|M| = 25. If there exists a subset Y; for some
1 <i < 5such that |Y;NP| =5, then |Y;_1NP| =0 and |Y;4+1 N P| < 2 according to
Lemma 2 and Lemma 10 (2). Furthermore, by Lemma 10 (3), |(Yi42UYit3)NP| < 7.
This implies that |P| < 14, a contradiction. So |Y;NP| < 4 for each 1 <1 < 5. Since
|P| = 16, there exists at least a subset Y; for some 1 < ¢ < 5 such that |Y; N P| = 4.
Without loss of generality, let |Y5 N P| = 4. Then it follows from Lemma 10 (1) that
[YanP] <2and |Y1NP| <3. Thus |[(Y2UY3) N P| =7 as |P| =16. By Lemma 10
(1), [Yan P| =4, and so |Y1 N P| < 2. We deduce that |P| < 15, a contradiction.
Hence a2(Cs x C5) = 5 = n. Assume that o(C5 x C;) = for all integers 5 < I < n.
We next show that a2(Cs x C,,) = n.

If n = 0 (mod 3), then n = 3k for some integer k > 2. Let W = {(ua,v3i—2), (us, v3i—2
), (u1,v3i-1), (u3,v3i-1), (u2,v3i), (ug,v3;)} for 1 < i < k. Further, we write W1 =
UF_ W1 Define f1 : V(C5 x C3x) — {—1,1} by assigning to all vertices of W1 the
value —1 and to all other vertices the value 1. It can be readily verified that f; is a
S2IF of 05 X Cgk with Weight w(fl) = 3k. Thus ag(CE) X Cgk) > 3k = n.

Ifn =1 (mod 3), then n = 3k+1 for some integer k > 2. Let Wf = {(u1,v3i—2), (us,
1]3i_2), (’LLQ, vgi_l), (U4, vgi_l), (UQ, ’U3i), (’LL5,1]3¢)} for 1 S 7 S k, and let W2 = UfZIWiQ.
Assigning to every vertex of W2U{(u3, v3r11), (us, v3x11)} the value —1 and to every
vertex of V(Cs x Czpy1) \ (W2 U{(u3, v3x11), (u5,v3541)}) the value 1, we produce a
S2IF f on Cs x C3p41 of weight w(fa) = 3k+1. Hence a?(C5 x C3j41) > 3k+1 = n.

If n = 2 (mod 3), then n = 3k +2 for some integer k > 2. Let F' = {(u3, vsps1), (us,
U3k+1), (U1, U3k+2), (ud, v3k+2)}. The function f3 : V(Cs x Cspq2) — {—1,1} is de-
fined as follows: the value —1 is assigned to each vertex of WU F" and the value
1 is assigned to each vertex of V(C5 x Cspyo) \ (W' U F'). It is easy to check
that f3 is a S2IF of C5 x Csryo with weight w(fs) = 3k + 2. This means that
ag(C5 X C3gt2) > 3k +2=n.

Suppose that a2(C5xC,,) = n is not true. Then a?(C5xC,,) > n+2 by Lemma
1. Let g be a a?(C5 x C,,)-function. Thus |P| > 3n + 1 because |P| — |[M| > n + 2
and |P| 4 |M| = 5n. We have the following claims.

Claim 3. For each 1 <i<n, |[Y;NP| <4

Otherwise, there exists a subset ¥; for some 1 < ¢ < n such that |¥Y; N P| = 5.
Then |Y;—1 N P| = 0 from Lemma 2. Let D; = D[V(Cs x Cy) \ {Yi-1,Yi}] U
(U?:l{(uj,vi,g)(uj,vz—+1)}). Then D; = C5 x Cp_3. According to the induction
hypothesis, a2(D;) = n — 2. Obviously, g1 = g|p, is a S2IF of D; with weight
w(g1) > (|P|—5)— (|]M|—5) = |P|—|M| > n+2. This implies that a(D;) > n+2,
a contradiction. Therefore Claim 3 holds.

Claim 4. There exists a subset Y; (1 < ¢ < n) such that [(Y;UY;11UY;12)NP| = 10.
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Suppose n = 0 (mod 3). Then n = 3k for some integer k > 2, and |P| > 9k + 1.
Let W; = U2_Y3;_, for 1 < i < k. Thus, by Lemma 10 (4), there must be a W; for
some 1 < ¢ < n such that |W; N P| =10 as |P| > 9k + 1. Hence Claim 4 is true in
this case.

Suppose n =1 (mod 3). Then n = 3k + 1 for some integer k£ > 2, and |P| > 9k + 4.
According to Claim 3 and Lemma 10 (1), there exists a subset Y; for some 1 < ¢ <n
such that |Y; N P| < 3. By the structure of C5 x Cj,, without loss of generality,
assume that |Y,, N P| < 3. Thus, by Lemma 10 (4), there must exist a W; for some
1 <@ < k such that |[W; N P| = 10 since |P| > 9k + 4. So Claim 4 holds in this case.

Suppose n = 2 (mod 3). Then n = 3k + 2 for some integer k > 2, and |P| > 9k + 7.
By Claim 3, there exists a subset Y; for some 1 < i < n such that |[Y; N P| =4 as
|P| > 9k + 7. By the structure of C5 x C,, without loss of generality, suppose that
Y, N P| =4. Then |Y,,—1 N P| <2 from Lemma 10 (1). Thus, by Lemma 10 (4),
there must be a W; for some 1 < i < k such that |[W; N P| = 10 as |P| > 9k + 7.
Therefore Claim 4 holds.

By Claim 4, there exists a subset Y; for some 1 < i < n such that [(Y; UYj+1 U
Yit2) N P| = 10. Applying Claim 3 and Lemma 10 (1), it follows that |Y; N P| =
[Yita NPl =4 and [Yi1 NP| =2o0r [Y;NP| =4 and [Y;11 N P| = |[Yi12 N P| = 3.
We consider two cases.

Case 1. |Y;NP| = |YizaNP| =4 and |Yi4+1 N P| = 2. By the structure of C5 x Cp,
without loss of generality, we may assume that Y; 1o NP = {(u1, vit2), (u2, vit2), (us,
Ui+2), (U4,vi+2)}. Then Y;1NP = {(u1, ”UZ‘+1), (U5, ’Ui+1)} and Y;NP = {(ILQ, ’l)i), (U3,
Ui), (U4, Ui), (U5, Uz)} Thus {(’LL3, Ui—l)a (U4,7}2’_1), (’U,5, 1)1'_1)} g M. Let DQ = D[V(C5
Cn) \ {Ylv Y;Jrl’ Yi+2}]

U (U?Zl{(uj,vi_ﬂ(uj,vi+3)}). Then Dy = C5 x C,,_3. By the induction hypoth-
esis, a2(Dy) = n — 3. Define go : V(D) — {-1,1} by g2((us,v;—1)) = 1 and
g2((z,v)) = g((z,y)) for each (z,y) € V(D2) \ {(u4,vi—1)}. It is easy to see that go
is a S2IF of Dy with weight w(ge) > (|P|—10)+1—(|M|-5-1) = |P|—|M|-3 > n—1.
Hence o?(Ds) > n — 1, which is a contradiction.

Case 2. |Y;NP| =4 and |Y;41 N P| = |Yi2 N P| = 3. By the symmetrical
structure of C5 x C,, without loss of generality, we may assume that Y; N P =
{(ul,vi), (UQ,UZ‘), (U3,’Ui), (U4,7]i)}. Then {(Ug,vi_l), (Ug,vi_1), (’U,4,Ui_1)} g M. If
(u1,vi41) € P, then {(ug2,vit1), (us,viy1)} € M by the definition of S2IF. Thus
{(us,vit1), (ug,vi41)} C P as |Yj41 N P| = 3. This leads to g[(u4,vi+1)] = 3, a
contradiction. So (u1,v;+1) € M. Since g[(us,vi+1)] < 1 and g[(ug,vi+1)] < 1,
(U3,Ui+1) € M. So Y;+1 NP = {(u2,vi+1), (U4,?}i+1), (U,5,1)i+1)}. If (U4,Ui+2) € P,
then {(us,vit2), (us,vi42)} € M by the definition of S2IF. As |Yj;2 N P| = 3,
it follows that {(u1,vi4+2), (u2,vi12)} C P, which means that g[(ug,v;12)] = 3, a
contradiction. Hence (u4,v;y2) € M. Further, we have that |[{(u1,vit2), (u2, vita2)}N
P| <1 because g[(uQ,ng)] < 1. Then {(U3,Ui+2), (us,viy2)} C P as |Yita NP =3
again. Suppose |Y;_1 N P| < 1. The function g3 : V(D1) — {—1,1} is defined as
follows: g3((us,vi+1)) = —1 and gs((z,y)) = g((z,y)) for each (z,y) € V(D1) \
{(us,v;4+1)}. It is not hard to check that g3 is a S2IF of D; with weight w(gs) >
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(|P| =5) —1— (M| -5+1) = |P| — |[M| — 2 > n, and hence a2(D;1) > n, a
contradiction. So |Y;—1 N P| > 2. Recall that {(u2,vi—1), (u3,vi—1), (u4,v;—1)} C M.
Therefore Y;_1 N P = {(u1,v;—1), (us,v;—1)}. Then (u1,v;—2) € M. We proceed the
proof by distinguishing the following subcases.

Case 2.1. (Ula'Ui+2) € P. Then Y;;oNP = {(U1,’UZ‘+2),(U3,’Ui+2),(’u,5,’ui+2)}. Let

94((u3, vi-1)) = 1 and ga((x,y)) = g((z,y)) for each (z,y) € V(D2) \ {(us,vi-1)}-
Clearly, g4 is a S2IF of Dy with weight w(gs) > (|P] —10)+1— (|M|-5—-1) =

|P| — |[M| — 3 > n — 1, which implies that a2(Ds) > n — 1, a contradiction.

Case 2.2. (u2,vi12) € P. Then Yo NP = {(u2,vit2), (us,vit2), (us,vit2)}-
Let D3 = D[V(C5 x Cp) \ {Yi-1,Y;, Yipa}] U (Ul {(u),vi-2)(uj, vit2)}). Then
D3 = C5 x Cy_3, and a?(D3) = n — 3 by the induction hypothesis. Suppose
(u3,vi—2) € M. Obviously, g5 = g|p, is a S2IF on D3 of weight w(gs) > (|P| —
9) — (|[M| —6) = |P| — |M| —3 > n—1. We deduce that o2(D3) > n — 1,
which is a contradiction. Hence (ugz,v;—2) € P. Suppose |Y;_2 N P| = 4. Then
Yi—o NP = {(u2,vi—2), (u3,vi—2), (u4,vi—2), (us,vi—2)}. By a similar argument that
used in the proof of Case 1 of Theorem 11, one reaches the same contradiction. So
[Yi_o N P| < 3. Suppose |Yi_o NP| <2 Let Dy = D[V(C5 X Cp)\ {Y;_Q,Yi_l,Y;}] U
(U?zl{(uj,vi_g)(uj,vi+1)}). Then Dy = C5 x Cp_3. Applying the induction hy-
pothesis, a%(Dy) = n — 3. Define g : V(D4) — {—1,1} by ge((us,vi11)) = —1
and gs((z,y)) = g((z,y)) for each (z,y) € V(D4) \ {(us,vi+1)}. It can be readily
verified that ge is a S2IF of Dy with weight w(gs) > (|[P|—=8)—1— (|]M|-7+1) =
|P| — |M|—3 >n—1. This means that a2(D4) > n — 1, a contradiction. Therefore
|YZ‘72 N P| =3.

IfY; 2N P = {(u2,vi 2), (u3,v; 2), (ug,v; 2)}, then {(u1,v; 2), (us,v; 2)} € M.
Clearly, g7 = g|p, is a S2IF on D; of weight w(g7y) > (|P| —6) — (|M| —4) =
|P| — |[M| —2>n. So a(D1) > n, a contradiction.

If Vi o NP = {(uz,vi—2), (u3,vi—2), (us,vi—2)}, then {(u1,v;i_2), (usg,vi—2)} S M.
Let D5 = D[V(C5 x Cy) \ {Yi1,Y;, Yit1, Yipa ] U (U {(uj, vi—2)(u;,viy3)}). Then
D5 = C5 x C,,_4. Applying the induction hypothesis, a?(Ds) = n — 4 for n > 7
(a%(D5) =n — 6 when n = 6). It is easy to see that gs = g|p, is a S2IF of D5 with
weight w(gs) > (|P|—12) = (M| —8) = |P|~ |M|—4 > n—2. Thus a(Ds) > n—2,
which is a contradiction.

If )/1;2 NP = {(Ug,vl;g), (’U,4,’UZ',2), (’U,5,7}i,2)}, then {(’U,l,vz',g), (UQ,?]i,Q)} g M.
The function gg : V(D3) — {—1,1} is defined as follows: go((u2,vi—2)) = 1,
99((u3, vi—2)) = —1and go((z,y)) = g((z,y)) for each (z,y) € V(D3)\{(u2, vi-2), (us,
vi—2)}. It is not difficult to check that gg is a S2IF of D3 with weight w(gyg) >
(|P| —9) — (|]M| —6) = |P| — [M| — 3 >n — 1. This derives that a?(D3) >n—1, a
contradiction.

In either case, we always arrive at a contradiction. Consequently, o?(Cs5 x
Cp) = n for n > 3. This completes the proof of Theorem 11. |
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3 Further Remark

A set of vertices B C V is called k-limited packing in G if |[N[v](B| < k, for
all v € V. The k-limited packing number, denoted Li(G), is the largest number
of vertices in a k-limited packing set. Gallant et al. exhibited some real-world
applications of the k-limited packing number to network security, market saturation
and codes [3]. In 2017, Moghaddam et al. proved the signed 2-independence number
of a regular graph of order n is two times the limited packing number and subtracts
n and exhibited real-world applications of it to signed 2-independence number in
graphs [4]. In this paper we determine the exact values of a2(C,, x Cy,) for m <
5,n > 3. However, the proofs of the results obtained in this paper depend heavily
on the fact that m is small. Thus it seems to be more difficult to determine the
exact values of ag(Cm x Cp) for m > 6. We will study to establish some algorithm
using our proofs in this paper and limited packing numbers for m > 6.
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