Proceedings of the Jangieon Mathematical Society 22 (2019), No. 4. pp. 609 - 624

Signed 2-independence of Cartesian product of directed cycles

Haichao Wang and Hye Kyung Kim^{*}

Abstract

A function $f: V(D) \to \{-1, 1\}$ defined on the vertices of a digraph D = (V(D), A(D)) is called a signed 2-independence function if $f(N^{-}[v]) \leq 1$ for every v in D. The weight of a signed 2-independence function is $f(V(D)) = \sum_{v \in V(D)} f(v)$. The signed 2-independence number of a digraph D, denoted by $\alpha_s^2(D)$, equals the maximum weight of a signed 2-independence function on D. Let $C_m \times C_n$ be the Cartesian product of directed cycles C_m and C_n . In this paper, the exact values of $\alpha_s^2(C_m \times C_n)$ for $2 \leq m \leq 5$ and $n \geq 2$ are determined.

MSC: 05C69

Keywords: Signed 2-independence function, Signed 2-independence number, Cartesian product, Directed cycle.

1 Introduction

All digraphs considered in this paper are finite, without loops and multiple arcs. For notation and terminology not defined here, we generally follow [1]. Specially, let Dbe a digraph with vertex set V(D) and arc set A(D). We say that u is an *in-neighbor* of v and v is an *out-neighbor* of u if uv is an arc of D. For a vertex $v \in V(D)$, the sets of in-neighbors and out-neighbors of v are called the *open in-neighborhood* $N_D^-(v)$ and *open out-neighborhood* $N_D^+(v)$ of v, respectively. The *closed in-neighborhood* of v is $N_D^-[v] = N_D^-(v) \cup \{v\}$. The numbers $d_D^-(v) = |N_D^-(v)|$ and $d_D^+(v) = |N_D^+(v)|$ are the *indegree* and *outdegree* of v, respectively. We use $\delta^-(D)$, $\Delta^-(D)$, $\delta^+(D)$, and $\Delta^+(D)$ to denote the *minimum indgree, maximum indgree, minimum outdegree* and *maximum outdegree* of a vertex in D, respectively. In all cases above, we omit the subscript D when no ambiguity on D is possible. For $S \subseteq V(D)$, D[S] denotes the subdigraph induced by S.

Given two digraphs $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$, the Cartesian product $D_1 \times D_2$ is the digraph with vertex set $V_1 \times V_2$ and $(x_1, x_2)(y_1, y_2) \in A(D_1 \times D_2)$ if and

^{*}This work was supported by research fund of Daegu Catholic University in 2018.

only if $x_1 = y_1$ and $x_2y_2 \in A_2$ or $x_2 = y_2$ and $x_1y_1 \in A_1$, where $x_i, y_i \in V_i$ for i = 1, 2. We use $D_1 \cong D_2$ to denote that D_1 and D_2 are isomorphic. Throughout this paper, we denote the sets of vertices of directed cycles C_m and C_n by $\{u_1, u_2, \ldots, u_m\}$ and $\{v_1, v_2, \ldots, v_n\}$, respectively, and $A(C_m) = \{u_1u_2, u_2u_3, \ldots, u_{m-1}u_m, u_mu_1\}$ and $A(C_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$. Moreover, in Cartesian product $C_m \times C_n$ (see Figure 1), let $X_j = \bigcup_{i=1}^n \{(u_j, v_i)\}$ for $1 \leq j \leq m$ and let $Y_i = \bigcup_{j=1}^m \{(u_j, v_i)\}$ for $1 \leq i \leq n$. Throughout this paper, for Y_i , the subscript i is taken modulo n. Thus, if $i \leq 0$, then $Y_i = Y_{n+i}$, and if i > n, then $Y_i = Y_{i-n}$. For $S \subseteq V(C_m \times C_n)$, we write $Proj_{C_m}(S)$ to indicate the natural projection of S to $V(C_m)$.

For a function $f: V(D) \to \{-1, 1\}$, the weight of f is $w(f) = \sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$ we define $f(S) = \sum_{v \in S} f(v)$, so w(f) = f(V(D)). For a vertex $v \in V(D)$, we denote $f(N^{-}[v])$ by f[v] for notational convenience.

The study of signed 2-independence number of undirected graphs was studied by [2,5] and elsewhere. Recently, Volkmann [6] began to investigate this parameter in digraphs. Formally, a function $f: V(D) \to \{-1, 1\}$ is called a signed 2-independence function (abbreviated, S2IF) if $f[v] \leq 1$ for every vertex $v \in V(D)$. The singed 2independence number, denoted by $\alpha_s^2(D)$, of D is the maximum weight of a S2IF on D. We call a S2IF of weight $\alpha_s^2(D)$ a $\alpha_s^2(D)$ -function on D. Volkmann [6] presented some upper bounds on $\alpha_s^2(D)$ for general digraph D, Wang and Kim [7] determined the exact values of $\alpha_s^2(P_m \times P_n)$ for Cartesian product $P_m \times P_n$, where $1 \leq m \leq 5$ and $n \geq 1$. Throughout this paper, if f is a S2IF of D, then we let P and Mdenote the sets of those vertices in D which are assigned under f the value 1 and -1, respectively. Therefore |V(D)| = |P| + |M| and $\alpha_s^2(D) = |P| - |M|$.

In this paper, our aim is to determine exact values of $\alpha_s^2(C_m \times C_n)$ for $2 \le m \le 5$ and $n \ge 2$.

2 Main results

In this section exact values of $\alpha_s^2(C_m \times C_n)$ are determined for Cartesian product $C_m \times C_n$ with $2 \leq m \leq 5$ and $n \geq 2$. From the definition of S2IF, the following lemmas are straightforward.

Lemma 1 Let D = (V(D), A(D)) be a digraph. Then $\alpha_s^2(D)$ has the same parity with |V(D)|.

Lemma 2 Let f be a S2IF of $C_m \times C_n$. For $1 \leq i \leq n$, if $|Y_i \cap P| = m$, then $|Y_{i-1} \cap P| = 0$.

Volkmann [6] established the following result.

Theorem 3 (Volkmann [6]) If D is a digraph of order n such that $d^+(v) = r$ for all $v \in V(D)$, then $\alpha_s^2(D) \leq \frac{n}{r+1}$.

Figure 1: The Cartesian product $C_m \times C_n$

Notice that $d^+(x,y) = 2$ for every $(x,y) \in V(C_m \times C_n)$. As an immediate consequence of Theorem 3, we have the following corollary.

Corollary 4 For integers $m \ge 2$ and $n \ge 2$, $\alpha_s^2(C_m \times C_n) \le \frac{mn}{3}$.

Theorem 5 For any integer $n \ge 2$, $\alpha_s^2(C_2 \times C_n) = 0$.

Proof. The proof is by induction on n. If n = 2, then $\alpha_s^2(C_2 \times C_2) \leq 0$ by Lemma 1 and Corollary 4. The function $f: V(C_2 \times C_2) \to \{-1, 1\}$ is defined as follows: $f((u_1, v_1)) = f((u_1, v_2)) = -1$ and $f((u_2, v_1)) = f((u_2, v_2)) = 1$. Obviously, f is a S2IF of $C_2 \times C_2$ with weight w(f) = 0, and so $\alpha_s^2(C_2 \times C_2) = 0$. Assume that $\alpha_s^2(C_2 \times C_l) = 0$ for all integers $2 \le l < n$. Next we show that $\alpha_s^2(C_2 \times C_n) = 0$. Define $g: V(C_2 \times C_n) \to \{-1, 1\}$ by assigning to each vertex of X_1 the value -1while to each vertex of X_2 the value 1. It is easy to check that g is a S2IF on $C_2 \times C_n$ of weight w(g) = 0. So $\alpha_s^2(C_2 \times C_n) \ge 0$. Suppose that $\alpha_s^2(C_2 \times C_n) = 0$ is false. Then $\alpha_s^2(C_2 \times C_n) \ge 2$ from Lemma 1. Let h be a $\alpha_s^2(C_2 \times C_n)$ -function. We obtain $|P| \ge n+1$ because $|P| - |M| \ge 2$ and |P| + |M| = 2n. Hence there must exist a subset Y_i in $C_2 \times C_n$ such that $|Y_i \cap P| = 2$. Without loss of generality, suppose that $|Y_n \cap P| = 2$. Then $|Y_{n-1} \cap P| = 0$ by Lemma 2. If n = 3, then $|P| \ge 4$. Thus $|Y_1 \cap P| = 2$, contradicting Lemma 2. So $n \ge 4$. Define $D_1 = D[V(C_2 \times$ $(C_n) \setminus \{Y_{n-1}, Y_n\} \cup \{(u_1, v_{n-2})(u_1, v_1), (u_2, v_{n-2})(u_2, v_1)\}.$ Then $D_1 \cong C_2 \times C_{n-2}$. Applying the induction hypothesis, $\alpha_s^2(D_1) = 0$. Clearly, $h_1 = h|_{D_1}$ is a S2IF of D_1 with weight $w(h_1) \ge (|P| - 2) - (|M| - 2) = |P| - |M| \ge 2$. This implies that $\alpha_s^2(D_1) \geq 2$, a contradiction. Therefore $\alpha_s^2(C_2 \times C_n) = 0$.

Now we consider the Cartesian product $C_3 \times C_n$. To our purpose, the following result is useful.

Lemma 6 Let f be a S2IF of $C_3 \times C_n$. For $1 \leq i \leq n$, if $|Y_i \cap P| = 3$, then $|Y_{i+1} \cap P| \leq 1$.

Proof. The statement is trivial by the definition of S2IF.

Theorem 7 For any integer $n \geq 2$,

$$\alpha_s^2(C_3 \times C_n) = \begin{cases} n & \text{if } n \equiv 0 \pmod{3}, \\ n-2 & \text{otherwise.} \end{cases}$$

Proof. To complete the proof, we distinguish three cases.

Case 1. $n \equiv 0 \pmod{3}$. Then n = 3k for some integer $k \geq 1$. Let $A_i = \{(u_3, v_{3i-2}), (u_1, v_{3i-1}), (u_2, v_{3i})\}$ for $1 \leq i \leq k$, and let $A = \bigcup_{i=1}^k A_i$. Assigning to all vertices of A the value -1 and to all other vertices the value 1, we produce a S2IF f of $C_3 \times P_{3k}$ with weight w(f) = 3k. Hence $\alpha_s^2(C_3 \times C_{3k}) \geq 3k = n$. On the other hand, $\alpha_s^2(C_3 \times C_{3k}) \leq 3k = n$ by Corollary 4. So $\alpha_s^2(C_3 \times C_{3k}) = 3k = n$.

Case 2. $n \equiv 2 \pmod{3}$. Then n = 3k + 2 for some integer $k \ge 0$. We proceed our proof by induction on k. If k = 0, then n = 2. Note that $C_3 \times C_2 \cong C_2 \times C_3$. By Theorem 5, $\alpha_s^2(C_3 \times C_2) = \alpha_s^2(C_2 \times C_3) = 0 = n-2$. Assume, then, that $\alpha_s^2(C_3 \times C_{3l+2}) = 3l$ for all integers $0 \le l < k$. Now we show that $\alpha_s^2(C_3 \times C_{3k+2}) = 3k = n-2$. Let A be defined as in the proof of Case 1 of Theorem 7. Define $g: V(C_3 \times C_{3k+2}) \to \{-1, 1\}$ by assigning to each vertex of $A \cup \{(u_3, v_{3k+1}), (u_2, v_{3k+2}), (u_3, v_{3k+2})\}$ the value -1 and to each vertex of $V(C_3 \times C_{3k+2}) \setminus (A \cup \{(u_3, v_{3k+1}), (u_2, v_{3k+2}), (u_3, v_{3k+2})\})$ the value 1. It can be readily verified that g is a S2IF on $C_3 \times C_{3k+2}$ of weight w(g) = 3k, and so $\alpha_s^2(C_3 \times C_{3k+2}) \ge 3k = n-2$. Suppose that $\alpha_s^2(C_3 \times C_{3k+2}) \neq 3k$. Then $\alpha_s^2(C_3 \times C_{3k+2}) = 3k + 2$ by Lemma 1 and Corollary 4. Let g_1 be a $\alpha_s^2(C_3 \times C_{3k+2})$ -function.

Since |P| - |M| = 3k + 2 and |P| + |M| = 9k + 6, we have |P| = 6k + 4. Suppose that there is a subset Y_i for some $1 \le i \le 3k + 2$ such that $|Y_i \cap P| = 3$. Then $|Y_{i-1} \cap P| = 0$ by Lemma 2. Let $D_1 = D[V(C_3 \times C_{3k+2}) \setminus \{Y_{i-1}, Y_i\}] \cup (\cup_{j=1}^3 \{(u_j, v_{i-2})(u_j, v_{i+1})\})$. Then $D_1 \cong C_3 \times C_{3k}$. According to the result of Case 1 of Theorem 7, $\alpha_s^2(D_1) = 3k$. Obviously, $g_2 = g_1|_{D_1}$ is a S2IF of D_1 with weight $w(g_2) \ge (|P| - 3) - (|M| - 3) = |P| - |M| = 3k + 2$. This yields that $\alpha_s^2(D_1) \ge 3k + 2$, a contradiction. Hence $|Y_i \cap P| = 2$ for each $1 \le i \le 3k + 2$ as |P| = 6k + 4. Without loss of generality, assume that $Y_{3k+2} \cap P = \{(u_1, v_{3k+2}), (u_2, v_{3k+2})\}$. Then $Y_{3k+1} \cap P = \{(u_1, v_{3k+1}), (u_3, v_{3k+1})\}$ and $Y_{3k} \cap P = \{(u_2, v_{3k}), (u_3, v_{3k})\}$. Thus $Y_{3k-1} \cap P = \{(u_1, v_{3k-1}), (u_2, v_{3k-1})\}$. Define $D_2 = D[V(C_3 \times C_{3k+2}) \setminus \{Y_{3k}, Y_{3k+1}, Y_{3k+2}\}] \cup (\cup_{j=1}^3 \{(u_j, v_{3k-1})(u_j, v_1)\})$. Then $D_2 \cong C_3 \times C_{3(k-1)+2}$. So $\alpha_s^2(D_2) = 3k - 3$ by the induction hypothesis. It is not hard to see that $g_3 = g_1|_{D_2}$ is a S2IF on D_2 of weight $w(g_3) \ge (|P| - 6) - (|M| - 3) = |P| - |M| - 3 = 3k - 1$. This means that $\alpha_s^2(D_2) \ge 3k - 1$, a contradiction. Consequently, $\alpha_s^2(C_3 \times C_{3k+2}) = 3k = n - 2$.

Case 3. $n \equiv 1 \pmod{3}$. Then n = 3k + 1 for some integer $k \geq 1$. We now show by induction on k that $\alpha_s^2(C_3 \times C_{3k+1}) = 3k - 1 = n - 2$. Let A_1 and A

612

be defined as in the proof of Case 1 of Theorem 7. If k = 1, then n = 4. Let $h: V(C_3 \times C_4) \to \{-1, 1\}$ be a function that assigns the value -1 to each vertex of $A_1 \cup \{(u_2, v_4), (u_3, v_4)\}$ and 1 to each vertex of $V(C_3 \times C_4) \setminus (A_1 \cup \{(u_2, v_4), (u_3, v_4)\})$. It is straightforward to check that h is a S2IF of $C_3 \times C_4$ with weight w(h) = 2. Hence $\alpha_s^2(C_3 \times C_4) \ge 2 = n - 2$. Suppose that $\alpha_s^2(C_3 \times C_4) = 2$ is not true. Then $\alpha_s^2(C_3 \times C_4) = 4$ according to Lemma 1 and Corollary 4. Let h_1 be a $\alpha_s^2(C_3 \times C_4)$ -function. We obtain |P| = 8 because |P| - |M| = 4 and |P| + |M| = 12. If there is a subset Y_i for some $1 \le i \le 4$ such that $|Y_i \cap P| = 3$, then it follows from Lemma 2 that $|Y_{i-1} \cap P| = 0$. By Lemma 6, $|Y_{i+1} \cap P| \le 1$. Thus $|P| \le 7$, a contradiction. Hence, for each $1 \le i \le 4$, $|Y_i \cap P| = 2$ as |P| = 8. Without loss of generality, assume that $Y_4 \cap P = \{(u_1, v_4), (u_2, v_4)\}$. Thus we can get $Y_1 \cap P = \{(u_1, v_1), (u_2, v_1)\}$. Then $h_1[(u_2, v_1)] = 3$, which is a contradiction. Therefore $\alpha_s^2(C_3 \times C_4) = 2 = n - 2$.

Assume that $\alpha_s^2(C_3 \times C_{3l+1}) = 3l - 1$ for all integers $1 \le l < k$. We will prove that $\alpha_s^2(C_3 \times C_{3k+1}) = 3k - 1 = n - 2$. Let $A' = A \cup \{(u_2, v_{3k+1}), (u_3, v_{3k+1})\}$. Clearly, the function $h_2: V(C_3 \times C_{3k+1}) \to \{-1, 1\}$ defined by $h_2((x, y)) = -1$ for each $(x, y) \in A'$ and $h_2((x, y)) = 1$ for each $(x, y) \in V(C_3 \times C_{3k+1}) \setminus A'$ is a S2IF of $C_3 \times C_{3k+1}$ with weight $w(h_2) = 3k - 1$. Hence $\alpha_s^2(C_3 \times C_{3k+1}) \ge 3k - 1 = n - 2$. Suppose that $\alpha_s^2(C_3 \times C_{3k+1}) = 3k - 1$ is false. Applying Lemma 1 and Corollary 4, $\alpha_s^2(C_3 \times C_{3k+1}) = 3k+1$. Let h_3 be a $\alpha_s^2(C_3 \times C_{3k+1})$ -function. Since |P| - |M| = 13k + 1 and |P| + |M| = 9k + 3, we have |P| = 6k + 2. Suppose that there exists a subset Y_i for some $1 \leq i \leq 3k+1$ such that $|Y_i \cap P| = 3$. Then $|Y_{i-1} \cap P| = 0$ by Lemma 2. Let $D_3 = D[V(C_3 \times C_{3k+1}) \setminus \{Y_{i-1}, Y_i\}] \cup (\bigcup_{j=1}^3 \{(u_j, v_{i-2})(u_j, v_{i+1})\}).$ Then $D_3 \cong C_3 \times C_{3(k-1)+2}$. By the result of Case 2 of Theorem 7, $\alpha_s^2(D_3) = 3k - 3$. It is not difficult to see that $h_4 = h_3|_{D_3}$ is a S2IF on D_3 of weight $w(h_4) \ge (|P|-3) - (|P|-3)$ (|M|-3) = |P| - |M| = 3k + 1. This implies that $\alpha_s^2(D_3) \ge 3k + 1$, a contradiction. Hence $|Y_i \cap P| = 2$ for each $1 \le i \le 3k+1$ as |P| = 6k+2. By a similar argument that used in the proof of Case 2 of Theorem 7, we can get the same contradiction. Hence $\alpha_s^2(C_3 \times C_{3k+1}) = 3k - 1 = n - 2$. This completes the proof of Theorem 7. \Box

We now turn our attention to the Cartesian product $C_4 \times C_n$. To determine the exact value of $\alpha_s^2(C_4 \times C_n)$, the following lemma is required.

Lemma 8 Let f be a S2IF of $C_4 \times C_n$. The following statements are true:

(1) For $1 \leq i \leq n$, if $|Y_i \cap P| = 3$, then $|Y_{i-1} \cap P| \leq 2$ and $|Y_{i+1} \cap P| \leq 2$. Furthermore, if $|Y_{i-1} \cap P| = 2$, then $Y_{i-1} \cap P = \{(u_j, v_{i-1}), (u_{j+1}, v_{i-1})\}$ for some $1 \leq j \leq 4$, where $u_5 = u_1$.

(2) For $1 \le i \le n$, if $|Y_i \cap P| = 4$, then $|Y_{i+1} \cap P| \le 2$. Furthermore, if $|Y_{i+1} \cap P| = 2$, then $|P \cap \{(u_j, v_{i+1}), (u_{j+1}, v_{i+1})\}| \le 1$ for any $1 \le j \le 4$, where $u_5 = u_1$.

(3) For $1 \le i \le n$, $|(Y_i \cup Y_{i+1}) \cap P| \le 6$. Furthermore, $|(Y_i \cup Y_{i+1}) \cap P| = 6$ if and only if $|Y_i \cap P| = 4$ and $|Y_{i+1} \cap P| = 2$.

(4) For $1 \le i \le n$, $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| \le 8$.

(5) For $1 \le i \le n$, $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| \le 11$. Furthermore, if $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| = 11$, then $|Y_i \cap P| = 4$, $|Y_{i+1} \cap P| = |Y_{i+2} \cap P| = 2$ and $|Y_{i+3} \cap P| = 3$.

(6) In $C_4 \times C_n$ (n > 9), suppose that $2 \le |Y_i \cap P| \le 3$ and $|Y_i \cap P| \ne |Y_{i+1} \cap P|$ for each $1 \le i \le n$. If $|Y_i \cap P| = 3$, then $Proj_{C_4}(Y_i \cap P) = Proj_{C_4}(Y_{i-8} \cap P)$.

Proof. (1) Suppose that $|Y_i \cap P| = 3$ for some $1 \le i \le n$. By the symmetry of $C_4 \times C_n$, we may assume, without loss of generality, that $Y_i \cap P = \{(u_1, v_i), (u_2, v_i), (u_3, v_i)\}$. Then $\{(u_2, v_{i-1}), (u_3, v_{i-1})\} \subseteq M$, which means that $|Y_{i-1} \cap P| \le 2$. Furthermore, if $|Y_{i-1} \cap P| = 2$, then $Y_{i-1} \cap P = \{(u_1, v_{i-1}), (u_4, v_{i-1})\}$. If $|Y_{i+1} \cap P| = 4$, then $|Y_i \cap P| = 0$ by Lemma 2, a contradiction. So $|Y_{i+1} \cap P| \le 3$. If $|Y_{i+1} \cap P| = 3$, then $|Y_i \cap P| \le 2$ by the first part of Lemma 8 (1), a contradiction again. Hence $|Y_{i+1} \cap P| \le 2$. The statement (1) holds.

(2) Suppose that $|Y_i \cap P| = 4$ for some $1 \leq i \leq n$. If $|Y_{i+1} \cap P| = 4$, then $|Y_i \cap P| = 0$ by Lemma 2, a contradiction. Hence $|Y_{i+1} \cap P| \leq 3$. If $|Y_{i+1} \cap P| = 3$, then it follows from Lemma 8 (1) that $|Y_i \cap P| \leq 2$, which is a contradiction. So $|Y_{i+1} \cap P| \leq 2$. If $|Y_{i+1} \cap P| = 2$, then $|P \cap \{(u_j, v_{i+1}), (u_{j+1}, v_{i+1})\}| \leq 1$ for any $1 \leq j \leq 4$ by the definition of S2IF, where $u_5 = u_1$. The statement (2) is true.

(3) If $|Y_{i+1} \cap P| = 4$ for some $1 \leq i \leq n$, then $|Y_i \cap P| = 0$ by Lemma 2, and so $|(Y_i \cup Y_{i+1}) \cap P| \leq 4$. If $|Y_{i+1} \cap P| = 3$ for some $1 \leq i \leq n$, then it follows from Lemma 8 (1) that $|Y_i \cap P| \leq 2$. Thus $|(Y_i \cup Y_{i+1}) \cap P| \leq 5$. If $|Y_{i+1} \cap P| \leq 2$ for some $1 \leq i \leq n$, then it is obvious that $|(Y_i \cup Y_{i+1}) \cap P| \leq 6$. According to Lemma 8 (1), it is easily seen from the arguments above that $|(Y_i \cup Y_{i+1}) \cap P| = 6$ if and only if $|Y_i \cap P| = 4$ and $|Y_{i+1} \cap P| = 2$. The statement (3) follows.

(4) If $|Y_{i+2} \cap P| = 4$ for some $1 \le i \le n$, then $|Y_{i+1} \cap P| = 0$ from Lemma 2. This implies that $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| \le 8$. If $|Y_{i+2} \cap P| = 3$ for some $1 \le i \le n$, then we can claim that $|(Y_i \cup Y_{i+1}) \cap P| \le 5$. Otherwise, $|(Y_i \cup Y_{i+1}) \cap P| = 6$ by Lemma 8 (3). Then $|Y_i \cap P| = 4$ and $|Y_{i+1} \cap P| = 2$ by Lemma 8 (3) again, however, which is impossible according to Lemma 8 (1) and (2). So $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| \le 8$. If $|Y_{i+2} \cap P| \le 2$ for some $1 \le i \le n$, by Lemma 8 (3), then $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| \le 8$. The statement (4) holds.

(5) If $|Y_i \cap P| = 4$ for some $1 \le i \le n$, then $|Y_{i+1} \cap P| \le 2$ by Lemma 8 (2). Suppose $|(Y_{i+2} \cup Y_{i+3}) \cap P| \le 5$. Then the desired result follows. So $|Y_{i+2} \cup Y_{i+3}) \cap P| = 6$, and hence $|(Y_{i+2} \cap P)| = 4$ from Lemma 8 (3). Thus $|Y_{i+1} \cap P| = 0$ by Lemma 2. This derives that $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| \le 10$. If $|Y_i \cap P| \le 3$ for some $1 \le i \le n$, then $|(Y_i \cup Y_{i+1}) \cap P| \le 5$ and $|(Y_{i+2} \cup Y_{i+3}) \cap P| \le 6$ by Lemma 8 (3). Therefore $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| \le 11$. Now assume that $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| = 11$ for some $1 \le i \le n$. If $|Y_i \cap P| \le 3$, then $|(Y_i \cup Y_{i+1}) \cap P| = 5$ and $|(Y_{i+2} \cup Y_{i+3}) \cap P| = 6$ from the arguments above. Thus $|(Y_i \cup Y_{i+1}) \cap P| = 5$ and $|(Y_{i+2} \cup Y_{i+3}) \cap P| = 6$ from the arguments above. Thus $|(Y_i \cup Y_{i+1}) \cap P| \le 4$, a contradiction. Hence $|Y_i \cap P| = 4$. If $|Y_{i+1} \cap P| \le 1$, then one can reach the same contradiction by the similar argument above. So $|Y_{i+1} \cap P| = 2$ by Lemma 8 (2). Thus $|(Y_{i+2} \cup Y_{i+3}) \cap P| = 5$. Clearly, by Lemma 2, neither $|Y_{i+2} \cap P| = 4$ nor $|Y_{i+3} \cap P| = 4$ holds. According to Lemma 8 (1) and (2), $|Y_{i+2} \cap P| = 2$ and $|Y_{i+3} \cap P| = 3$. This establishes the statement (5).

(6) Suppose that $2 \leq |Y_i \cap P| \leq 3$ and $|Y_i \cap P| \neq |Y_{i+1} \cap P|$ for each $1 \leq i \leq n$. Furthermore, assume that $|Y_i \cap P| = 3$ for some $1 \leq i \leq n$. Without loss of generality, suppose that $Y_i \cap P = \{(u_1, v_i), (u_2, v_i), (u_3, v_i)\}$. Then

 $\begin{array}{l} Y_{i-1} \cap P = \{(u_1, v_{i-1}), (u_4, v_{i-1})\}, Y_{i-2} \cap P = \{(u_2, v_{i-2}), (u_3, v_{i-2}), (u_4, v_{i-2})\} \text{ and } \\ Y_{i-3} \cap P = \{(u_1, v_{i-3}), (u_2, v_{i-3})\}. \text{ Thus } Y_{i-4} \cap P = \{(u_1, v_{i-4}), (u_3, v_{i-4}), (u_4, v_{i-4})\}, \\ Y_{i-5} \cap P = \{(u_2, v_{i-5}), (u_3, v_{i-5})\}, Y_{i-6} \cap P = \{(u_1, v_{i-6}), (u_2, v_{i-6}), (u_4, v_{i-6})\} \text{ and } \\ Y_{i-7} \cap P = \{(u_3, v_{i-7}), (u_4, v_{i-7})\}. \text{ So } Y_{i-8} \cap P = \{(u_1, v_{i-8}), (u_2, v_{i-8}), (u_3, v_{i-8})\}. \\ \text{Therefore the statement (6) is true. The proof of Lemma 8 is completed.} \end{array}$

Theorem 9 For any integer $n \geq 2$,

$$\alpha_s^2(C_4 \times C_n) = \begin{cases} n & \text{if } n \equiv 0 \pmod{8}, \\ n-1 & \text{if } n \equiv 1,3 \pmod{4}, \\ n-2 & \text{otherwise.} \end{cases}$$

Proof. We consider the following cases to complete the proof of Theorem 9.

Case 1. $n \equiv 0 \pmod{8}$. Then n = 8k for some integer $k \geq 1$. We proceed our proof by induction on k. If k = 1, then n = 8. Let $A = \{(u_1, v_1), (u_4, v_1), (u_2, v_2), (u_3, v_3), (u_4, v_3), (u_1, v_4), (u_2, v_5), (u_3, v_5), (u_4, v_6), (u_1, v_7), (u_2, v_7), (u_3, v_8)\}$. Assigning to each vertex of A the value -1 and to each vertex of $V(C_4 \times C_8) \setminus A$ the value 1, we produce a S2IF f of $C_4 \times C_8$ with weight w(f) = 8. Hence $\alpha_s^2(C_4 \times C_8) \geq 8 = n$. Suppose that $\alpha_s^2(C_4 \times C_8) = 8$ is false. Then $\alpha_s^2(C_4 \times C_8) = 10$ by Lemma 1 and Corollary 4. Thus |P| = 21 since |P| - |M| = 10 and |P| + |M| = 32. Suppose that there exists a subset Y_i for some $1 \leq i \leq 8$ such that $|Y_i \cap P| = 4$. Without loss of generality, assume that $|Y_8 \cap P| = 4$. Then $|Y_7 \cap P| = 0$ and $|Y_1 \cap P| \leq 2$ by Lemma 2 and Lemma 8 (2), respectively. Furthermore, $|(Y_1 \cup Y_2) \cap P| \leq 5$ from Lemma 8 (3). So $|(Y_1 \cup Y_2 \cup Y_7 \cup Y_8) \cap P| \leq 9$. On the other hand, by Lemma 8 (5), $|(Y_3 \cup Y_4 \cup Y_5 \cup Y_6) \cap P| \leq 11$. We deduce that $|P| \leq 20$, a contradiction. Hence $|Y_i \cap P| \leq 3$ for each $1 \leq i \leq 8$. Applying Lemma 8 (1), there exist at most 4 Y_i 's in $C_4 \times C_8$ such that $|Y_i \cap P| = 3$. This implies that $|P| \leq 20$, which is a contradiction. Therefore $\alpha_s^2(C_4 \times C_8) = 8 = n$.

We now assume that $\alpha_s^2(C_4 \times C_{8l}) = 8l$ for all integers $1 \leq l < k$. We need to prove $\alpha_s^2(C_4 \times C_{8k}) = 8k = n$. Let $V_i = \bigcup_{r=0}^7 Y_{8i-r}$ for $1 \leq i \leq k$. Let $f_1: V(C_4 \times C_{8k}) \to \{-1, 1\}$ be a function on $C_4 \times C_{8k}$ such that V_i has the same assignment of function values under f_1 as that of $V(C_4 \times C_8)$ under f, for $1 \leq i \leq k$. It is easy to check that f_1 is a S2IF of $C_4 \times C_{8k}$ with weight $w(f_1) = 8k$. Hence $\alpha_s^2(C_4 \times C_{8k}) \geq 8k = n$. Suppose that $\alpha_s^2(C_4 \times C_{8k}) = 8k$ is not true. Then $\alpha_s^2(C_4 \times C_{8k}) \geq 8k + 2$ by Lemma 1. Let f_2 be a $\alpha_s^2(C_4 \times C_{8k})$ -function. Since $|P| - |M| \geq 8k + 2$ and |P| + |M| = 32k, we obtain $|P| \geq 20k + 1$. Thus there must exist a subset V_i for some $1 \leq i \leq k$. According to Lemma 8 (5), there is a V_i^r for some $1 \leq r \leq 2$ such that $|V_i \cap P| = 11$. We distinguish two subcases depending on $|V_i^1 \cap P| = 11$ or $|V_i^2 \cap P| = 11$.

Case 1.1. $|V_i^1 \cap P| = 11$. Then it follows from Lemma 8 (5) that $|Y_{8i-3} \cap P| = 4$, and so $|Y_{8i-4} \cap P| = 0$ by Lemma 2. Since $|V_i \cap P| \ge 21$, $|(Y_{8i-7} \cup Y_{8i-6} \cup Y_{8i-5}) \cap P| \ge 10$, which contradicts to Lemma 8 (4).

Case 1.2. $|V_i^2 \cap P| = 11$. Then it follows from Lemma 8 (5) that $|Y_{8i-7} \cap P| = 4$ and $|Y_{8i-4} \cap P| = 3$. Thus $|Y_{8i-8} \cap P| = 0$ and $|Y_{8i-3} \cap P| \leq 2$ by Lemma 2 and Lemma 8 (1), respectively. Further, by Lemma 8 (4), $|V_{(i-1)}^1 \cap P| \leq 8$. Let $D_1 = D[V(C_4 \times C_{8k}) \setminus \{V_{(i-1)}^1, V_i^2\}] \cup (\cup_{j=1}^4 \{(u_j, v_{8i-12})(u_j, v_{8i-3})\})$. Then $D_1 \cong C_4 \times C_{8(k-1)}$, and hence $\alpha_s^2(D_1) = 8k - 8$ by the induction hypothesis. Suppose $|Y_{8i-3} \cap P| \leq 1$. Clearly, $f_3 = f_2|_{D_1}$ is a S2IF on D_1 . So $\alpha_s^2(D_1) \geq w(f_3) \geq (|P|-19) - (|M|-13) = |P|-|M|-6 \geq 8k-4$, a contradiction. Hence $|Y_{8i-3} \cap P| = 2$. Let $Y_{8i-3} \cap P = \{(u_{j_1}, v_{8i-3}), (u_{j_2}, v_{8i-3})\}$, where $1 \leq j_1, j_2 \leq 4$. The function $f_4: V(D_1) \rightarrow \{-1, 1\}$ is defined as follows: $f_4((u_{j_1}, v_{8i-3})) = -1$ and $f_4((x, y)) = f_2((x, y))$ for each $(x, y) \in V(D_1) \setminus \{(u_{j_1}, v_{8i-3})\}$. It is not hard to see that f_4 is a S2IF of D_1 with weight $w(f_4) \geq (|P|-19)-1-(|M|-13+1) = |P|-|M|-8 \geq 8k-6$. Thus $\alpha_s^2(D_1) \geq 8k-6$, a contradiction. Consequently, $\alpha_s^2(C_4 \times C_{8k}) = 8k = n$.

Case 2. $n \equiv 0 \pmod{4}$ and $n \not\equiv 0 \pmod{8}$. Then n = 8k + 4 for some integer $k \ge 0$. We now show by induction on k that $\alpha_s^2(C_4 \times C_{8k+4}) = 8k+2 = n-2$. If k = 0, then n = 4. Let $A' = \{(u_1, v_1), (u_4, v_1), (u_2, v_2), (u_4, v_2), (u_1, v_3), (u_2, v_3), (u_3, v_4)\}$. Define $g: V(C_4 \times C_4) \to \{-1, 1\}$ by assigning to all vertices of A' the value -1 and to all other vertices the value 1. It is easy to verify that g is a S2IF on $C_4 \times C_4$ of weight w(g) = 2, which means that $\alpha_s^2(C_4 \times C_4) \ge 2 = n-2$. Assume that $\alpha_s^2(C_4 \times C_4) = 2$ is false. Then $\alpha_s^2(C_4 \times C_4) = 4$ by Lemma 1 and Corollary 4. Let g_1 be a $\alpha_s^2(C_4 \times C_4)$ function. Thus |P| = 10 as |P| - |M| = 4 and |P| + |M| = 16. Suppose that there exists a subset Y_i for some $1 \le i \le 4$ such that $|Y_i \cap P| = 4$. Without loss of generality, assume that $|Y_4 \cap P| = 4$. Then $|Y_3 \cap P| = 0$ and $|Y_1 \cap P| \le 2$ by Lemma 2 and Lemma 8 (2), respectively. Since |P| = 10, it follows that $|Y_2 \cap P| = 4$ and $|Y_1 \cap P| = 2$, which contradicts to Lemma 2. So $|Y_i \cap P| \leq 3$ for each $1 \leq i \leq 4$. According to Lemma 8 (1), $2 \leq |Y_i \cap P| \leq 3$ and $|Y_i \cap P| \neq |Y_{i+1} \cap P|$ for each $1 \leq i \leq 4$ as |P| =10. Without loss of generality, assume that $Y_4 \cap P = \{(u_1, v_4), (u_2, v_4), (u_3, v_4)\}$. Then $Y_3 \cap P = \{(u_1, v_3), (u_4, v_3)\}$ and $Y_2 \cap P = \{(u_2, v_2), (u_3, v_2), (u_4, v_2)\}$. Thus $Y_1 \cap P = \{(u_1, v_1), (u_2, v_1)\},$ which implies that $g_1[(u_2, v_1)] = 3$, contradicting the definition of S2IF. Therefore $\alpha_s^2(C_4 \times C_4) = 2 = n - 2$.

Assume that $\alpha_s^2(C_4 \times C_{8l+4}) = 8l + 2$ for all integers $0 \le l < k$. We will show that $\alpha_s^2(C_4 \times C_{8k+4}) = 8k + 2 = n - 2$. Let V_i be defined as in the proof of Case 1 of Theorem 9, where $1 \le i \le k$. Define $g_2 : V(C_4 \times C_{8k+4}) \to \{-1, 1\}$ as follows: $V_i (1 \le i \le k)$ and $V(C_4 \times C_{8k+4}) \setminus (\bigcup_{i=1}^k V_i)$ have the same assignments of function values under g_2 as those of $V(C_4 \times C_8)$ under f and $V(C_4 \times C_4)$ under g, respectively. It is not hard to check that g_2 is a S2IF of $C_4 \times C_{8k+4}$ with weight $w(g_2) = 8k + 2$. Thus $\alpha_s^2(C_4 \times C_{8k+4}) \ge 8k + 2 = n - 2$. Suppose that $\alpha_s^2(C_4 \times C_{8k+4}) \ne 8k + 2$. Then $\alpha_s^2(C_4 \times C_{8k+4}) \ge 8k + 4$ by Lemma 1. Let g_3 be a $\alpha_s^2(C_4 \times C_{8k+4})$ -function. Since $|P| - |M| \ge 8k + 4$ and |P| + |M| = 32k + 16, we obtain $|P| \ge 20k + 10$. We have the following claim.

Claim 1. For each $1 \le i \le 8k + 4$, $|Y_i \cap P| \le 3$.

Otherwise, there is a subset Y_i for some $1 \le i \le 8k + 4$ such that $|Y_i \cap P| = 4$. Then $|Y_{i-1} \cap P| = 0$ by Lemma 2. Note that $|(Y_{i-4} \cup Y_{i-3} \cup Y_{i-2}) \cap P| \le 8$ and $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| \le 11$ from Lemma 8 (4) and (5), respectively. Let $D_2 = D[V(C_4 \times C_{8k+4}) \setminus (\bigcup_{r=-4}^3 Y_{i+r})] \cup (\bigcup_{j=1}^4 \{(u_j, v_{i-5})(u_j, v_{i+4})\}).$ Then $D_2 \cong C_4 \times C_{8(k-1)+4}.$ Applying the induction hypothesis, $\alpha_s^2(D_2) = 8k - 6.$ We proceed our proof by considering the value of $|Y_{i+4} \cap P|.$

Suppose $|Y_{i+4} \cap P| \leq 2$. With a proof similar to that of Case 1.2 of Theorem 9, we can obtain the same contradictions.

Suppose $|Y_{i+4} \cap P| = 3$. Then $|Y_{i+3} \cap P| \le 2$ by Lemma 8 (1). Thus it follows from Lemma 8 (5) that $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| \le 10$. Let $Y_{i+4} \cap P =$ $\{(u_{j_1}, v_{i+4}), (u_{j_2}, v_{i+4}), (u_{j_3}, v_{i+4})\}$, where $1 \le j_1, j_2, j_3 \le 4$. Define $g_4 : V(D_2) \rightarrow$ $\{-1, 1\}$ by $g_4((u_{j_1}, v_{i+4})) = g_4((u_{j_2}, v_{i+4})) = -1$ and $g_4((x, y)) = g_3((x, y))$ for each $(x, y) \in V(D_2) \setminus \{(u_{j_1}, v_{i+4}), (u_{j_2}, v_{i+4})\}$. It can be readily verified that g_4 is a S2IF of D_2 with weight $w(g_4) \ge (|P| - 18) - 2 - (|M| - 14 + 2) = |P| - |M| - 8 \ge 8k - 4$. This yields that $\alpha_s^2(D_2) \ge 8k - 4$, which is a contradiction.

Suppose $|Y_{i+4} \cap P| = 4$. Then $|Y_{i+3} \cap P| = 0$ by Lemma 2. Hence $|(Y_i \cup Y_{i+1} \cup Y_{i+2} \cup Y_{i+3}) \cap P| \le 8$ from Lemma 8 (4). The function $g_5 : V(D_2) \to \{-1, 1\}$ is defined as follows: $g_5((u_1, v_{i+4})) = g_5((u_2, v_{i+4})) = g_5((u_3, v_{i+4})) = -1$ and $g_5((x, y)) = g_3((x, y))$ for each $(x, y) \in V(D_2) \setminus \{(u_1, v_{i+4}), (u_2, v_{i+4}), (u_3, v_{i+4})\}$. It is easily seen that g_5 is a S2IF on D_2 of weight $w(g_5) \ge (|P| - 16) - 3 - (|M| - 16 + 3) = |P| - |M| - 6 \ge 8k - 2$. This implies that $\alpha_8^2(D_2) \ge 8k - 2$, a contradiction. In either case, we always arrive at a contradiction. Therefore Claim 1 holds.

By Claim 1 and $|P| \ge 20k+10$, there exist at least $4k+2Y_i$'s in $C_4 \times C_{8k+4}$ such that $|Y_i \cap P| = 3$. According to Lemma 8 (1), there exist exactly $4k+2Y_i$'s in $C_4 \times C_{8k+4}$ such that $|Y_i \cap P| = 3$. Thus, by Claim 1, $2 \le |Y_i \cap P| \le 3$ for each $1 \le i \le 8k+4$ as $|P| \ge 20k+10$. Moreover, $|Y_i \cap P| \ne |Y_{i+1} \cap P|$ for each $1 \le i \le 8k+4$ by Lemma 8 (1) again. Note that $n = 8k+4 \ge 12$. Without loss of generality, we may assume that $|Y_{8k+4} \cap P| = 3$. Applying Lemma 8 (6), $Proj_{C_4}(Y_{8k+4} \cap P) = Proj_{C_4}(Y_{8k-4} \cap P)$. Let $D_3 = D[V(C_4 \times C_{8k+4}) \setminus (\cup_{r=0}^7 Y_{8k+4-r})] \cup (\cup_{j=1}^4 \{(u_j, v_{8k-4})(u_j, v_1)\})$. Then $D_3 \cong C_4 \times C_{8(k-1)+4}$. So $\alpha_s^2(D_3) = 8k-6$ by the induction hypothesis. It is easy to see that $g_6 = g_3|_{D_3}$ is a S2IF of D_3 with weight $w(g_6) \ge (|P| - 20) - (|M| - 12) = |P| - |M| - 8 \ge 8k - 4$. This derives that $\alpha_s^2(D_3) \ge 8k - 4$, a contradiction. Hence $\alpha_s^2(C_4 \times C_{8k+4}) = 8k+2 = n-2$.

Case 3. $n \equiv 1 \pmod{4}$. Then n = 4k + 1 for some integer $k \geq 1$. To prove $\alpha_s^2(C_4 \times C_{4k+1}) = 4k = n - 1$, we employ induction on k. If k = 1, then n = 5. Let $B = \{(u_1, v_1), (u_3, v_1), (u_2, v_2), (u_3, v_2), (u_4, v_3), (u_1, v_4), (u_2, v_4), (u_3, v_5)\}$. Define $h: V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each vertex of $V(C_4 \times C_5) \to \{-1, 1\}$ by assigning to each vertex of B the value -1 and to each $v_{3}(C_4 \times C_5) = 4$ is not true. Then $\alpha_s^2(C_4 \times C_5) \geq 4 = n - 1$. Suppose that $\alpha_s^2(C_4 \times C_5) = 4$ is not true. Then $\alpha_s^2(C_4 \times C_5) = 6$ by Lemma 1 and Corollary 4. Thus |P| = 13 because |P| - |M| = 6 and |P| + |M| = 20. If there is a subset Y_i for some $1 \leq i \leq 5$ such that $|Y_i \cap P| = 4$, then $|Y_{i-1} \cap P| = 0$ and $|Y_{i+1} \cap P| \leq 2$ by Lemma 2 and Lemma 8 (2), respectively. Furthermore, by Lemma 8 (3), $|(Y_{i+2} \cup Y_{i+3}) \cap P| \leq 6$. This leads to $|P| \leq 12$, a contradic

contradiction. Therefore $\alpha_s^2(C_4 \times C_5) = 4 = n - 1$.

Assume that $\alpha_s^2(C_4 \times C_{4l+1}) = 4l$ for all integers $1 \le l < k$. We shall show that $\alpha_s^2(C_4 \times C_{4k+1}) = 4k = n - 1$.

If k is odd, then k = 2l + 1 for some integer $l \ge 1$, and n = 8l + 5. We write $V'_i = \bigcup_{r=0}^7 Y_{8i-r}$ for $1 \le i \le l$. Let $h_1 : V(C_4 \times C_{4k+1}) \to \{-1,1\}$ be a function on $C_4 \times C_{4k+1}$ such that V'_i $(1 \le i \le l)$ and $V(C_4 \times C_{4k+1}) \setminus (\bigcup_{i=1}^l V'_i)$ have the same assignments of function values under h_1 as those of $V(C_4 \times C_8)$ under f and $V(C_4 \times C_5)$ under h, respectively. It is easy to verify that h_1 is a S2IF of $C_4 \times C_{4k+1}$ with weight $w(h_1) = 4k$. Thus $\alpha_s^2(C_4 \times C_{4k+1}) \ge 4k = n - 1$.

If k is even, then k = 2l for some integer $l \ge 1$, and n = 8l + 1. The function $h_2 : V(C_4 \times C_{4k+1}) \to \{-1,1\}$ is defined as follow: $V'_i (1 \le i \le l)$ has the same assignment of function values under h_2 as that of $V(C_4 \times C_8)$ under f, $h_2((u_1, v_{8l+1})) = h_2((u_3, v_{8l+1})) = -1$ and $h_2((u_2, v_{8l+1})) = h_2((u_4, v_{8l+1})) = 1$. It can be readily checked that h_2 is a S2IF of $C_4 \times C_{4k+1}$ with weight $w(h_2) = 4k$. So $\alpha_s^2(C_4 \times C_{4k+1}) \ge 4k = n - 1$.

Suppose that $\alpha_s^2(C_4 \times C_{4k+1}) \neq 4k$. Then $\alpha_s^2(C_4 \times C_{4k+1}) \geq 4k+2$ by Lemma 1. Let h_3 be a $C_4 \times C_{4k+1}$ -function. Since $|P| - |M| \geq 4k+2$ and |P| + |M| = 16k+4, we obtain $|P| \geq 10k+3$. We have the following claim.

Claim 2. For each $1 \le i \le 4k+1$, $|Y_i \cap P| \le 3$.

Suppose on the contrary that there exists a subset Y_i for some $1 \leq i \leq 4k + 1$ such that $|Y_i \cap P| = 4$. Then $|Y_{i-1} \cap P| = 0$ by Lemma 2. Recall that $|(Y_{i-3} \cup Y_{i-2}) \cap P| \leq 6$ from Lemma 8 (3). Thus $|(Y_{i-3} \cup Y_{i-2} \cup Y_{i-1} \cup Y_i) \cap P| \leq 10$. Let $D_4 = D[V(C_4 \times C_{4k+1}) \setminus \{Y_{i-3}, Y_{i-2}, Y_{i-1}, Y_i\}] \cup (\cup_{j=1}^4 \{(u_j, v_{i-4})(u_j, v_{i+1})\})$. Then $D_4 \cong C_4 \times C_{4(k-1)+1}$. Applying the induction hypothesis, $\alpha_s^2(D_4) = 4k - 4$. Obviously, $h_4 = h_3|_{D_4}$ is a S2IF on D_4 of weight $w(h_4) \geq (|P| - 10) - (|M| - 6) = |P| - |M| - 4 \geq 4k - 2$, implying that $\alpha_s^2(D_4) \geq 4k - 2$, a contradiction. So Claim 2 is true.

By Claim 2, we deduce that there exist as least 2k + 1 Y_i 's in $C_4 \times C_{4k+1}$ such that $|Y_i \cap P| = 3$ as n = 4k + 1 and $|P| \ge 10k + 3$. Thus there must exist a subset Y_i for some $1 \le i \le 4k + 1$ such that $|Y_i \cap P| = |Y_{i+1} \cap P| = 3$ since n = 4k + 1, which contradicts to Lemma 8 (1). Consequently, $\alpha_s^2(C_4 \times C_{4k+1}) = 4k = n - 1$.

Case 4. $n \equiv 2 \pmod{4}$. Then n = 4k + 2 for some integer $k \geq 0$. The proof is by induction on k. If k = 0, then n = 2. Note that $C_4 \times C_2 \cong C_2 \times C_4$. By Theorem 5, $\alpha_s^2(C_4 \times C_2) = \alpha_s^2(C_2 \times C_4) = 0 = n - 2$. If k = 1, then n = 6. Let $B' = \{(u_1, v_1), (u_4, v_1), (u_2, v_2), (u_3, v_3), (u_4, v_3), (u_1, v_4), (u_2, v_5), (u_3, v_5), (u_1, v_6), (u_3, v_6)\}$. Assigning to each vertex of B' the value -1 and to each vertex of $V(C_4 \times C_6) \setminus B'$ the value 1, we produce a S2IF p of $C_4 \times C_6$ with weight w(p) = 4. Thus $\alpha_s^2(C_4 \times C_6) \geq 4 = n - 2$. Suppose that $\alpha_s^2(C_4 \times C_6) = 4$ is false. Then $\alpha_s^2(C_4 \times C_6) \geq 6$ by Lemma 1. Let p_1 be a $\alpha_s^2(C_4 \times C_6)$ -function. It follows that $|P| \geq 15$ as $|P| - |M| \geq 6$ and |P| + |M| = 24. If there exists a subset Y_i for some $1 \leq i \leq 6$ such that $|Y_i \cap P| = 4$, then $|Y_{i-1} \cap P| = 0$ and $|Y_{i+1} \cap P| \leq 2$ by Lemma 2 and Lemma

618

8 (2), respectively. Without loss of generality, assume that $|Y_6 \cap P| = 4$. Then $|(Y_5 \cup Y_6 \cup Y_1) \cap P| \leq 6$. By Lemma 8 (4), $|(Y_2 \cup Y_3 \cup Y_4) \cap P| \leq 8$. Hence $|P| \leq 14$, a contradiction. So $|Y_i \cap P| \leq 3$ for each $1 \leq i \leq 6$. Recall that $|P| \geq 15$ and n = 6. Applying Lemma 8 (1), we can claim that $2 \leq |Y_i \cap P| \leq 3$ and $|Y_i \cap P| \neq |Y_{i+1} \cap P|$ for each $1 \leq i \leq 6$. Without loss of generality, suppose that $Y_6 \cap P = \{(u_1, v_6), (u_2, v_6), (u_3, v_6)\}$. Then $Y_5 \cap P = \{(u_1, v_5), (u_4, v_5)\}$, $Y_4 \cap P = \{(u_2, v_4), (u_3, v_4), (u_4, v_4)\}$ and $Y_3 \cap P = \{(u_1, v_3), (u_2, v_3)\}$. Thus $Y_2 \cap P = \{(u_1, v_2), (u_3, v_2), (u_4, v_2)\}$ and $Y_1 \cap P = \{(u_2, v_1), (u_3, v_1)\}$. This would imply that $p_1[(u_3, v_1)] = 3$, contradicting the definition of S2IF. Therefore $\alpha_s^2(C_4 \times C_6) = 4 = n - 2$.

Now we assume that $\alpha_s^2(C_4 \times C_{4l+2}) = 4l$ for all integers $1 \le l < k$. Next we need to prove $\alpha_s^2(C_4 \times C_{4k+2}) = 4k = n-2$.

If k is odd, then k = 2l + 1 for some integer $l \ge 1$, and n = 8l + 6. Let V'_i be defined as in the proof of Case 3 of Theorem 9, where $1 \le i \le l$. Define $p_2: V(C_4 \times C_{4k+2}) \to \{-1, 1\}$ as follows: $V'_i(1 \le i \le l)$ and $V(C_4 \times C_{4k+2}) \setminus (\cup_{i=1}^l V'_i)$ have the same assignments of function values under p_2 as those of $V(C_4 \times C_8)$ under f and $V(C_4 \times C_6)$ under p, respectively. It is not hard to verify that p_2 is a S2IF of $C_4 \times C_{4k+2}$ with weight $w(p_2) = 4k$, and hence $\alpha_s^2(C_4 \times C_{4k+2}) \ge 4k = n - 2$.

If k is even, then k = 2l for some integer $l \ge 1$, and n = 8l + 2. Let $C = \{(u_1, v_{8l+1}), (u_4, v_{8l+1}), (u_2, v_{8l+2}), (u_3, v_{8l+2})\}$. Let $p_3 : V(C_4 \times C_{4k+2}) \to \{-1, 1\}$ be a function on $C_4 \times C_{4k+2}$ such that V'_i $(1 \le i \le l)$ has the same assignment of function values under p_3 as that of $V(C_4 \times C_8)$ under f, each vertex of C is assigned to the value -1 under p_3 and each vertex of $\{Y_{8l+1}, Y_{8l+2}\} \setminus C$ is assigned to the value 1 under p_3 . It is easy to check that p_3 is a S2IF on $C_4 \times C_{4k+2}$ of weight $w(p_3) = 4k$. So $\alpha_8^2(C_4 \times C_{4k+2}) \ge 4k = n - 2$.

Suppose that $\alpha_s^2(C_4 \times C_{4k+2}) = 4k$ is false. Then $\alpha_s^2(C_4 \times C_{4k+2}) \ge 4k+2$ by Lemma 1. Let p_4 be a $\alpha_s^2(C_4 \times C_{4k+2})$ -function. Thus $|P| \ge 10k+5$ since $|P| - |M| \ge 4k+2$ and |P| + |M| = 16k+8. Like the argument of Claim 2, we have that $|Y_i \cap P| \le 3$ for each $1 \le i \le 4k+2$. Then one can reach the same contradiction by a similar argument that used in the proof of Case 2 of Theorem 9. Therefore $\alpha_s^2(C_4 \times C_{4k+2}) = 4k = n-2$.

Case 5. $n \equiv 3 \pmod{4}$. Then n = 4k + 3 for some integer $k \ge 0$. We show by induction on k that $\alpha_s^2(C_4 \times C_{4k+3}) = 4k + 2 = n - 1$. If k = 0, then n = 3. Notice that $C_4 \times C_3 \cong C_3 \times C_4$. By Theorem 7, $\alpha_s^2(C_4 \times C_3) = \alpha_s^2(C_3 \times C_4) = 2 = n - 1$. Assume that $\alpha_s^2(C_4 \times C_{4l+3}) = 4l + 2$ for all integers $0 \le l < k$. Now we show that $\alpha_s^2(C_4 \times C_{4k+3}) = 4k + 2 = n - 1$.

If k is odd, then k = 2l+1 for some integer $l \ge 0$, and n = 8l+7. If l = 0, then n = 7. Let $C' = \{(u_1, v_1), (u_4, v_1), (u_2, v_2), (u_3, v_3), (u_4, v_3), (u_1, v_4), (u_2, v_5), (u_3, v_5), (u_4, v_6), (u_1, v_7), (u_3, v_7)\}$. Assigning to all vertices of C' the value -1 and to all vertices of $V(C_4 \times C_7) \setminus C'$ the value 1, a S2IF q of $C_4 \times C_7$ is produced. So $\alpha_s^2(C_4 \times C_7) \ge w(q) = 6 = n - 1$. Next we may assume that $l \ge 1$. Let V'_i be defined as in the proof of Case 3 of Theorem 9, where $1 \le i \le l$. The function $q_1 : V(C_4 \times C_{4k+3}) \to \{-1, 1\}$ is defined as follows: V'_i $(1 \le i \le l)$ and $V(C_4 \times C_{4k+3}) \setminus (\bigcup_{i=1}^l V'_i)$ have the same assignments of function values under q_1 as those of $V(C_4 \times C_8)$ under f and $V(C_4 \times C_7)$ under q, respectively. It can be readily verified that q_1 is a S2IF of $C_4 \times C_{4k+3}$ with weight $w(q_1) = 4k + 2$, and so $\alpha_s^2(C_4 \times C_{4k+3}) \ge 4k + 2 = n - 1$.

If k is even, then k = 2l for some integer $l \ge 1$, and n = 8l + 3. Let $C'' = \{(u_1, v_{8l+1}), (u_4, v_{8l+1}), (u_2, v_{8l+2}), (u_3, v_{8l+3}), (u_4, v_{8l+3})\}$. Let $q_2 : V(C_4 \times C_{4k+3}) \rightarrow \{-1, 1\}$ be a function on $C_4 \times C_{4k+3}$ such that V'_i $(1 \le i \le l)$ has the same assignment of function value under q_2 as that of $V(C_4 \times C_8)$ under f, each vertex of C'' is assigned to the value -1 under q_2 and each vertex of $\{Y_{8l+1}, Y_{8l+2}, Y_{8l+3}\} \setminus C''$ is assigned to the value 1 under q_2 . It is not difficult to check that q_2 is a S2IF on $C_4 \times C_{4k+3}$ of weight $w(q_2) = 4k + 2$. Hence $\alpha_s^2(C_4 \times C_{4k+3}) \ge 4k + 2 = n - 1$.

Suppose that $\alpha_s^2(C_4 \times C_{4k+3}) \neq 4k+2$. Then $\alpha_s^2(C_4 \times C_{4k+3}) \geq 4k+4$ by Lemma 1. Let q_3 be a $\alpha_s^2(C_4 \times C_{4k+3})$ -function. It follows that $|P| \geq 10k+8$ because $|P| - |M| \geq 4k+4$ and |P| + |M| = 16k+12. With a proof similar to that of Claim 2, we obtain that $|Y_i \cap P| \leq 3$ for each $1 \leq i \leq 4k+3$. Using a similar method as that in the proof of Case 3 of Theorem 9, we can get the same contradiction. So $\alpha_s^2(C_4 \times C_{4k+3}) = 4k+2 = n-1$. This complete the proof of Theorem 9.

We are now ready to establish our last result. First we present a lemma that will prove to be useful in our proof.

Lemma 10 Let f be a S2IF of $C_5 \times C_n$. The following statements are true:

(1) For $1 \leq i \leq n$, if $|Y_i \cap P| = 4$, then $|Y_{i-1} \cap P| \leq 2$ and $|Y_{i+1} \cap P| \leq 3$. Furthermore, if $|Y_{i-1} \cap P| = 2$, then $Y_{i-1} \cap P = \{(u_j, v_{i-1}), (u_{j+1}, v_{i-1})\}$ for some $1 \leq j \leq 5$, where $u_6 = u_1$. (2) For $1 \leq i \leq n$, if $|Y_i \cap P| = 5$, then $|Y_{i+1} \cap P| \leq 2$. Furthermore, if $|Y_{i+1} \cap P| = 2$, then $|P \cap \{(u_j, v_{i+1}), (u_{j+1}, v_{i+1})\}| \leq 1$ for any $1 \leq j \leq 5$, where $u_6 = u_1$. (3) For $1 \leq i \leq n$, $|(Y_i \cup Y_{i+1}) \cap P| \leq 7$. (4) For $1 \leq i \leq n$, $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| \leq 10$.

Proof. By a similar argument that used in the proof of Lemma 8, we can show that Lemma 10. \Box

Theorem 11 For any integer $n \geq 2$,

$$\alpha_s^2(C_5 \times C_n) = \begin{cases} 0 & \text{if } n = 2, \\ n & \text{if } n \ge 3. \end{cases}$$

Proof. Note that $C_m \times C_n \cong C_n \times C_m$. If n = 2, the assertion is true by Theorem 5. Next we proceed our proof by induction on $n \ (n \ge 3)$. Applying Theorem 7 and 9, the assertions are trivial for $3 \le n \le 4$. Suppose n = 5. Let F =

 $\{(u_2, v_1), (u_5, v_1), (u_1, v_2), (u_3, v_2), (u_2, v_3), (u_4, v_3), (u_3, v_4), (u_5, v_4), (u_1, v_5), (u_4, v_5)\}. Clearly, the function <math>f: V(C_5 \times C_5) \to \{-1, 1\}$ defined by f((x, y)) = -1 for every $(x, y) \in F$ and f((x, y)) = 1 for every $(x, y) \in V(C_5 \times C_5) \setminus F$ is a S2IF on $C_5 \times C_5$ of weight w(f) = 5. This yields that $\alpha_s^2(C_5 \times C_5) \ge 5 = n$. Assume that $\alpha_s^2(C_5 \times C_5) = 5$ is false. By Lemma 1 and Corollary 4, we have $\alpha_s^2(C_5 \times C_5) = 7$. Thus |P| = 16 as |P| - |M| = 7 and |P| + |M| = 25. If there exists a subset Y_i for some $1 \le i \le 5$ such that $|Y_i \cap P| = 5$, then $|Y_{i-1} \cap P| = 0$ and $|Y_{i+1} \cap P| \le 2$ according to Lemma 2 and Lemma 10 (2). Furthermore, by Lemma 10 (3), $|(Y_{i+2} \cup Y_{i+3}) \cap P| \le 7$. This implies that $|P| \le 14$, a contradiction. So $|Y_i \cap P| \le 4$ for each $1 \le i \le 5$. Since |P| = 16, there exists at least a subset Y_i for some $1 \le i \le 5$ such that $|Y_i \cap P| \le 3$. Thus $|(Y_2 \cup Y_3) \cap P| = 7$ as |P| = 16. By Lemma 10 (1) that $|Y_4 \cap P| \le 2$ and $|Y_1 \cap P| \le 3$. Thus $|(Y_2 \cup Y_3) \cap P| = 7$ as |P| = 16. By Lemma 10 (1), $|Y_2 \cap P| = 4$, and so $|Y_1 \cap P| \le 2$. We deduce that $|P| \le 15$, a contradiction. Hence $\alpha_s^2(C_5 \times C_5) = 5 = n$. Assume that $\alpha_s^2(C_5 \times C_l) = l$ for all integers $5 \le l < n$. We next show that $\alpha_s^2(C_5 \times C_n) = n$.

If $n \equiv 0 \pmod{3}$, then n = 3k for some integer $k \geq 2$. Let $W_i^1 = \{(u_2, v_{3i-2}), (u_5, v_{3i-2}), (u_1, v_{3i-1}), (u_3, v_{3i-1}), (u_2, v_{3i}), (u_4, v_{3i})\}$ for $1 \leq i \leq k$. Further, we write $W^1 = \bigcup_{i=1}^k W_i^1$. Define $f_1 : V(C_5 \times C_{3k}) \to \{-1, 1\}$ by assigning to all vertices of W^1 the value -1 and to all other vertices the value 1. It can be readily verified that f_1 is a S2IF of $C_5 \times C_{3k}$ with weight $w(f_1) = 3k$. Thus $\alpha_s^2(C_5 \times C_{3k}) \geq 3k = n$.

If $n \equiv 1 \pmod{3}$, then n = 3k+1 for some integer $k \ge 2$. Let $W_i^2 = \{(u_1, v_{3i-2}), (u_3, v_{3i-2}), (u_2, v_{3i-1}), (u_4, v_{3i-1}), (u_2, v_{3i}), (u_5, v_{3i})\}$ for $1 \le i \le k$, and let $W^2 = \bigcup_{i=1}^k W_i^2$. Assigning to every vertex of $W^2 \cup \{(u_3, v_{3k+1}), (u_5, v_{3k+1})\}$ the value -1 and to every vertex of $V(C_5 \times C_{3k+1}) \setminus (W^2 \cup \{(u_3, v_{3k+1}), (u_5, v_{3k+1})\})$ the value 1, we produce a S2IF f_2 on $C_5 \times C_{3k+1}$ of weight $w(f_2) = 3k+1$. Hence $\alpha_s^2(C_5 \times C_{3k+1}) \ge 3k+1 = n$.

If $n \equiv 2 \pmod{3}$, then n = 3k+2 for some integer $k \geq 2$. Let $F' = \{(u_3, v_{3k+1}), (u_5, v_{3k+1}), (u_1, v_{3k+2}), (u_4, v_{3k+2})\}$. The function $f_3 : V(C_5 \times C_{3k+2}) \rightarrow \{-1, 1\}$ is defined as follows: the value -1 is assigned to each vertex of $W^1 \cup F'$ and the value 1 is assigned to each vertex of $V(C_5 \times C_{3k+2}) \setminus (W^1 \cup F')$. It is easy to check that f_3 is a S2IF of $C_5 \times C_{3k+2}$ with weight $w(f_3) = 3k+2$. This means that $\alpha_s^2(C_5 \times C_{3k+2}) \geq 3k+2 = n$.

Suppose that $\alpha_s^2(C_5 \times C_n) = n$ is not true. Then $\alpha_s^2(C_5 \times C_n) \ge n+2$ by Lemma 1. Let g be a $\alpha_s^2(C_5 \times C_n)$ -function. Thus $|P| \ge 3n+1$ because $|P| - |M| \ge n+2$ and |P| + |M| = 5n. We have the following claims.

Claim 3. For each $1 \leq i \leq n$, $|Y_i \cap P| \leq 4$.

Otherwise, there exists a subset Y_i for some $1 \leq i \leq n$ such that $|Y_i \cap P| = 5$. Then $|Y_{i-1} \cap P| = 0$ from Lemma 2. Let $D_1 = D[V(C_5 \times C_n) \setminus \{Y_{i-1}, Y_i\}] \cup (\cup_{j=1}^5 \{(u_j, v_{i-2})(u_j, v_{i+1})\})$. Then $D_1 \cong C_5 \times C_{n-2}$. According to the induction hypothesis, $\alpha_s^2(D_1) = n - 2$. Obviously, $g_1 = g|_{D_1}$ is a S2IF of D_1 with weight $w(g_1) \geq (|P| - 5) - (|M| - 5) = |P| - |M| \geq n + 2$. This implies that $\alpha_s^2(D_1) \geq n + 2$, a contradiction. Therefore Claim 3 holds.

Claim 4. There exists a subset Y_i $(1 \le i \le n)$ such that $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| = 10$.

Suppose $n \equiv 0 \pmod{3}$. Then n = 3k for some integer $k \geq 2$, and $|P| \geq 9k + 1$. Let $W_i = \bigcup_{r=0}^2 Y_{3i-r}$ for $1 \leq i \leq k$. Thus, by Lemma 10 (4), there must be a W_i for some $1 \leq i \leq n$ such that $|W_i \cap P| = 10$ as $|P| \geq 9k + 1$. Hence Claim 4 is true in this case.

Suppose $n \equiv 1 \pmod{3}$. Then n = 3k + 1 for some integer $k \geq 2$, and $|P| \geq 9k + 4$. According to Claim 3 and Lemma 10 (1), there exists a subset Y_i for some $1 \leq i \leq n$ such that $|Y_i \cap P| \leq 3$. By the structure of $C_5 \times C_n$, without loss of generality, assume that $|Y_n \cap P| \leq 3$. Thus, by Lemma 10 (4), there must exist a W_i for some $1 \leq i \leq k$ such that $|W_i \cap P| = 10$ since $|P| \geq 9k + 4$. So Claim 4 holds in this case.

Suppose $n \equiv 2 \pmod{3}$. Then n = 3k + 2 for some integer $k \geq 2$, and $|P| \geq 9k + 7$. By Claim 3, there exists a subset Y_i for some $1 \leq i \leq n$ such that $|Y_i \cap P| = 4$ as $|P| \geq 9k + 7$. By the structure of $C_5 \times C_n$, without loss of generality, suppose that $|Y_n \cap P| = 4$. Then $|Y_{n-1} \cap P| \leq 2$ from Lemma 10 (1). Thus, by Lemma 10 (4), there must be a W_i for some $1 \leq i \leq k$ such that $|W_i \cap P| = 10$ as $|P| \geq 9k + 7$. Therefore Claim 4 holds.

By Claim 4, there exists a subset Y_i for some $1 \le i \le n$ such that $|(Y_i \cup Y_{i+1} \cup Y_{i+2}) \cap P| = 10$. Applying Claim 3 and Lemma 10 (1), it follows that $|Y_i \cap P| = |Y_{i+2} \cap P| = 4$ and $|Y_{i+1} \cap P| = 2$ or $|Y_i \cap P| = 4$ and $|Y_{i+1} \cap P| = |Y_{i+2} \cap P| = 3$. We consider two cases.

Case 1. $|Y_i \cap P| = |Y_{i+2} \cap P| = 4$ and $|Y_{i+1} \cap P| = 2$. By the structure of $C_5 \times C_n$, without loss of generality, we may assume that $Y_{i+2} \cap P = \{(u_1, v_{i+2}), (u_2, v_{i+2}), (u_3, v_{i+2}), (u_4, v_{i+2})\}$. Then $Y_{i+1} \cap P = \{(u_1, v_{i+1}), (u_5, v_{i+1})\}$ and $Y_i \cap P = \{(u_2, v_i), (u_3, v_i), (u_4, v_i), (u_5, v_i)\}$. Thus $\{(u_3, v_{i-1}), (u_4, v_{i-1}), (u_5, v_{i-1})\} \subseteq M$. Let $D_2 = D[V(C_5 \times C_n) \setminus \{Y_i, Y_{i+1}, Y_{i+2}\}]$

 $\begin{array}{l} \cup (\cup_{j=1}^{5}\{(u_{j},v_{i-1})(u_{j},v_{i+3})\}). \ \, \text{Then} \ \, D_{2}\cong C_{5}\times C_{n-3}. \ \, \text{By the induction hypothesis,} \ \, \alpha_{s}^{2}(D_{2})=n-3. \ \, \text{Define} \ \, g_{2}: V(D_{2})\to\{-1,1\} \ \, \text{by} \ \, g_{2}((u_{4},v_{i-1}))=1 \ \, \text{and} \ \, g_{2}((x,y))=g((x,y)) \ \, \text{for each} \ \, (x,y)\in V(D_{2})\setminus\{(u_{4},v_{i-1})\}. \ \, \text{It is easy to see that} \ \, g_{2} \ \, \text{is a S2IF of} \ \, D_{2} \ \, \text{with weight} \ \, w(g_{2})\geq (|P|-10)+1-(|M|-5-1)=|P|-|M|-3\geq n-1. \ \, \text{Hence} \ \, \alpha_{s}^{2}(D_{2})\geq n-1, \ \, \text{which is a contradiction.} \end{array}$

Case 2. $|Y_i \cap P| = 4$ and $|Y_{i+1} \cap P| = |Y_{i+2} \cap P| = 3$. By the symmetrical structure of $C_5 \times C_n$, without loss of generality, we may assume that $Y_i \cap P = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i)\}$. Then $\{(u_2, v_{i-1}), (u_3, v_{i-1}), (u_4, v_{i-1})\} \subseteq M$. If $(u_1, v_{i+1}) \in P$, then $\{(u_2, v_{i+1}), (u_5, v_{i+1})\} \subseteq M$ by the definition of S2IF. Thus $\{(u_3, v_{i+1}), (u_4, v_{i+1})\} \subseteq P$ as $|Y_{i+1} \cap P| = 3$. This leads to $g[(u_4, v_{i+1})] = 3$, a contradiction. So $(u_1, v_{i+1}) \in M$. Since $g[(u_3, v_{i+1})] \leq 1$ and $g[(u_4, v_{i+1})] \leq 1$, $(u_3, v_{i+1}) \in M$. So $Y_{i+1} \cap P = \{(u_2, v_{i+1}), (u_4, v_{i+1}), (u_5, v_{i+1})\}$. If $(u_4, v_{i+2}) \in P$, then $\{(u_3, v_{i+2}), (u_5, v_{i+2})\} \subseteq M$ by the definition of S2IF. As $|Y_{i+2} \cap P| = 3$, it follows that $\{(u_1, v_{i+2}), (u_2, v_{i+2})\} \subseteq P$, which means that $g[(u_2, v_{i+2})] = 3$, a contradiction. Hence $(u_4, v_{i+2}) \in M$. Further, we have that $|\{(u_1, v_{i+2}), (u_2, v_{i+2})\} \cap P| \leq 1$ because $g[(u_2, v_{i+2})] \leq 1$. The function $g_3 : V(D_1) \rightarrow \{-1,1\}$ is defined as follows: $g_3((u_5, v_{i+1})) = -1$ and $g_3((x, y)) = g((x, y))$ for each $(x, y) \in V(D_1) \setminus \{(u_5, v_{i+1})\}$. It is not hard to check that g_3 is a S2IF of D_1 with weight $w(g_3) \geq 1$.

 $(|P|-5)-1-(|M|-5+1) = |P|-|M|-2 \ge n$, and hence $\alpha_s^2(D_1) \ge n$, a contradiction. So $|Y_{i-1} \cap P| \ge 2$. Recall that $\{(u_2, v_{i-1}), (u_3, v_{i-1}), (u_4, v_{i-1})\} \subseteq M$. Therefore $Y_{i-1} \cap P = \{(u_1, v_{i-1}), (u_5, v_{i-1})\}$. Then $(u_1, v_{i-2}) \in M$. We proceed the proof by distinguishing the following subcases.

Case 2.1. $(u_1, v_{i+2}) \in P$. Then $Y_{i+2} \cap P = \{(u_1, v_{i+2}), (u_3, v_{i+2}), (u_5, v_{i+2})\}$. Let $g_4((u_3, v_{i-1})) = 1$ and $g_4((x, y)) = g((x, y))$ for each $(x, y) \in V(D_2) \setminus \{(u_3, v_{i-1})\}$. Clearly, g_4 is a S2IF of D_2 with weight $w(g_4) \ge (|P| - 10) + 1 - (|M| - 5 - 1) = |P| - |M| - 3 \ge n - 1$, which implies that $\alpha_s^2(D_2) \ge n - 1$, a contradiction.

Case 2.2. $(u_2, v_{i+2}) \in P$. Then $Y_{i+2} \cap P = \{(u_2, v_{i+2}), (u_3, v_{i+2}), (u_5, v_{i+2})\}$. Let $D_3 = D[V(C_5 \times C_n) \setminus \{Y_{i-1}, Y_i, Y_{i+1}\}] \cup (\cup_{j=1}^5 \{(u_j, v_{i-2})(u_j, v_{i+2})\})$. Then $D_3 \cong C_5 \times C_{n-3}$, and $\alpha_s^2(D_3) = n-3$ by the induction hypothesis. Suppose $(u_3, v_{i-2}) \in M$. Obviously, $g_5 = g|_{D_3}$ is a S2IF on D_3 of weight $w(g_5) \ge (|P| - 9) - (|M| - 6) = |P| - |M| - 3 \ge n-1$. We deduce that $\alpha_s^2(D_3) \ge n-1$, which is a contradiction. Hence $(u_3, v_{i-2}) \in P$. Suppose $|Y_{i-2} \cap P| = 4$. Then $Y_{i-2} \cap P = \{(u_2, v_{i-2}), (u_3, v_{i-2}), (u_4, v_{i-2}), (u_5, v_{i-2})\}$. By a similar argument that used in the proof of Case 1 of Theorem 11, one reaches the same contradiction. So $|Y_{i-2} \cap P| \le 3$. Suppose $|Y_{i-2} \cap P| \le 2$. Let $D_4 = D[V(C_5 \times C_n) \setminus \{Y_{i-2}, Y_{i-1}, Y_i\}] \cup (\cup_{j=1}^5 \{(u_j, v_{i-3})(u_j, v_{i+1})\})$. Then $D_4 \cong C_5 \times C_{n-3}$. Applying the induction hypothesis, $\alpha_s^2(D_4) = n-3$. Define $g_6 : V(D_4) \to \{-1,1\}$ by $g_6((u_5, v_{i+1})) = -1$ and $g_6((x, y)) = g((x, y))$ for each $(x, y) \in V(D_4) \setminus \{(u_5, v_{i+1})\}$. It can be readily verified that g_6 is a S2IF of D_4 with weight $w(g_6) \ge (|P| - 8) - 1 - (|M| - 7 + 1) = |P| - |M| - 3 \ge n - 1$. This means that $\alpha_s^2(D_4) \ge n - 1$, a contradiction. Therefore $|Y_{i-2} \cap P| = 3$.

If $Y_{i-2} \cap P = \{(u_2, v_{i-2}), (u_3, v_{i-2}), (u_4, v_{i-2})\}$, then $\{(u_1, v_{i-2}), (u_5, v_{i-2})\} \subseteq M$. Clearly, $g_7 = g|_{D_1}$ is a S2IF on D_1 of weight $w(g_7) \ge (|P| - 6) - (|M| - 4) = |P| - |M| - 2 \ge n$. So $\alpha_s^2(D_1) \ge n$, a contradiction.

If $Y_{i-2} \cap P = \{(u_2, v_{i-2}), (u_3, v_{i-2}), (u_5, v_{i-2})\}$, then $\{(u_1, v_{i-2}), (u_4, v_{i-2})\} \subseteq M$. Let $D_5 = D[V(C_5 \times C_n) \setminus \{Y_{i-1}, Y_i, Y_{i+1}, Y_{i+2}\}] \cup (\cup_{j=1}^5 \{(u_j, v_{i-2})(u_j, v_{i+3})\})$. Then $D_5 \cong C_5 \times C_{n-4}$. Applying the induction hypothesis, $\alpha_s^2(D_5) = n - 4$ for $n \ge 7$ $(\alpha_s^2(D_5) = n - 6$ when n = 6). It is easy to see that $g_8 = g|_{D_5}$ is a S2IF of D_5 with weight $w(g_8) \ge (|P| - 12) - (|M| - 8) = |P| - |M| - 4 \ge n - 2$. Thus $\alpha_s^2(D_5) \ge n - 2$, which is a contradiction.

If $Y_{i-2} \cap P = \{(u_3, v_{i-2}), (u_4, v_{i-2}), (u_5, v_{i-2})\}$, then $\{(u_1, v_{i-2}), (u_2, v_{i-2})\} \subseteq M$. The function $g_9 : V(D_3) \to \{-1, 1\}$ is defined as follows: $g_9((u_2, v_{i-2})) = 1$, $g_9((u_3, v_{i-2})) = -1$ and $g_9((x, y)) = g((x, y))$ for each $(x, y) \in V(D_3) \setminus \{(u_2, v_{i-2}), (u_3, v_{i-2})\}$. It is not difficult to check that g_9 is a S2IF of D_3 with weight $w(g_9) \ge (|P| - 9) - (|M| - 6) = |P| - |M| - 3 \ge n - 1$. This derives that $\alpha_s^2(D_3) \ge n - 1$, a contradiction.

In either case, we always arrive at a contradiction. Consequently, $\alpha_s^2(C_5 \times C_n) = n$ for $n \geq 3$. This completes the proof of Theorem 11.

3 Further Remark

A set of vertices $B \subseteq V$ is called k-limited packing in G if $|N[v] \cap B| \leq k$, for all $v \in V$. The k-limited packing number, denoted $L_k(G)$, is the largest number of vertices in a k-limited packing set. Gallant et al. exhibited some real-world applications of the k-limited packing number to network security, market saturation and codes [3]. In 2017, Moghaddam et al. proved the signed 2-independence number of a regular graph of order n is two times the limited packing number and subtracts n and exhibited real-world applications of it to signed 2-independence number in graphs [4]. In this paper we determine the exact values of $\alpha_s^2(C_m \times C_n)$ for $m \leq$ $5, n \geq 3$. However, the proofs of the results obtained in this paper depend heavily on the fact that m is small. Thus it seems to be more difficult to determine the exact values of $\alpha_s^2(C_m \times C_n)$ for $m \geq 6$. We will study to establish some algorithm using our proofs in this paper and limited packing numbers for $m \geq 6$.

References

- G. Chartrand and L. Lesniak, Graphs and digraphs, 4th edn. Chapman and Hall, Boca Raton, 2005.
- [2] M.A. Henning, Signed 2-independence in graphs, Discrete Math. 250 (2002), 93–107.
- [3] R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, Discrete Appl. Math. 158 (2010), 1357–1364.
- [4] S.M. Hosseini Moghaddam, D.A. Mojdeh, B. Samadi, L. Volkmann, O signed 2-independence number of graphs, Electronic Journal of Graph Theoty and Applications, 5(1) (2017), 36–42
- [5] E.F. Shan, M.Y. Sohn and L.Y. Kang, Upper bounds on signed 2-independence number of graphs, Ars Combin. 69 (2003), 229–239.
- [6] L. Volkmann, Signed 2-independence in digraphs, Discrete. Math. 312 (2012), 465–471.
- [7] H.C. Wang and H.K. Kim, Signed 2-independence of Cartesian product of directed paths, International Journal of Computer Mathematics, 91(6) (2014), 1190–1201.

DEPARTMENT OF MATHEMATICS, SHANGHAI UNIVERSITY OF ELECTRIC POWER, SHANGHAI 200090, CHINA *Email address*: whchao2000@163.com.

DEPARTMENT OF MATHEMATICS EDUCATION, DAEGU CATHOLIC UNIVERSITY, KYEONGSAN 712-702, REPUBLIC OF KOREA

Email address: hkkim@cu.ac.kr, Corresponding author.