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MATCHING NUMBER IN RELATION WITH
MAXIMAL-MINIMAL NULLITY CONDITIONS AND
CYCLOMATIC NUMBER BY COEFFICIENT RELATIONS

MERT SINAN OZ AND ISMAIL NACI CANGUL

ABSTRACT. Let GG be a simple graph. So called K> deletion process was
recently introduced by Wang. A subgraph G’ of G that is obtained as a
result of some K> deletion process will be called as a crucial subgroup. Let
v(G) and v(G’) be the matching numbers of G and G’, respectively. In
this study, we study the relation between v(G), v(G’) and the coefficients
of the characteristic polynomials of G and G’. Several results are obtained
on these notions. Moreover, conservation of maximal and minimal nullity
conditions after applying K> deletion process are studied. As a result of
this, when G satisfies the maximal or minimal nullity condition, we obtain
the conditions for the equality ¢(G) = ¢(G’) where ¢(G) and ¢(G’) denote
the cyclomatic numbers of G' and G’, respectively. Finally, for some graphs,
we state v(G) in terms of ¢(G), c¢(G"), n(G), n(G") and the coefficients of
the characteristic polynomials of G and G’ where n(G), n(G’') are the
numbers of vertices of G and G, respectively.

1. INTRODUCTION

Let G be a simple graph with vertex set V(G) = {v1, v2,--- ,v,} and edge
set E(G) ={e1, €2, -+ ,em}, namely, G is an undirected graph without loops
or multiple edges. The adjacency matrix A(G) of G is defined as an n X n
symmetric matrix [a;;] such that a;; = 1 in the case of vertices v; and v;
are adjacent, and a;; = 0 otherwise. Characteristic polynomial of G is de-
fined as det [z],, — A(G)] and it is denoted by Pg(z). The roots of Pg(z) are
called eigenvalues of GG. The multiplicity of zero as an eigenvalue of G is de-
fined as nullity of G and it is denoted by 7(G). The rank of G is defined as
the rank of A(G) and it is denoted by r(G). It is a well known equality that
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r(G)+n(G) = |V(G) =n. If V(H) C V(G) and E(H) C E(G), then H is
called a subgraph of G. If every component of a subgraph H of G consists of a
single edge or a 2—regular subgraph of G, then H is called a Sachs subgraph
of G, see e. g. [1]. To avoid ambiguity, we give another naming of Sachs sub-
graphs as elementary subgraphs and if the number of vertices of the subgraph
H is the same with the one for G, then H is called a spanning elementary
subgraph of G, see [3], [4]. If there is a path between every pair of vertices of
G, then G is called connected. A maximal connected subgraph of G is called
a component of G. The number of edges connected to the vertex v is called
the degree of v and is denoted by d(v). If d(v) = 1, then v is called pendant-
vertex and the edge which is incident to v is called a pendant-edge. The vertex
adjacent to the pendant vertex is called a quasi-pendant or a support vertex.
The null graph is defined as a graph with n vertices and no edges. If G does
not contain two cycles with at least a common vertex, then we call G as a
cycle-vertex-disjoint graph. Similarly, if G does not contain two cycles with at
least a common edge, then it is called a cycle-edge-disjoint graph. Clearly a
cycle-vertex-disjoint graph must be cycle-edge-disjoint, but the converse may
not be true.

A matching in a graph G is a set of edges such that none of them have a
common vertex and the maximum possible number of edges in a matching is
called a maximum matching. The number of edges that exist in a maximum
matching of G is called the matching number of G and in this paper we denote
it with v(G), see e. g. [15]. A matching that covers all of the vertices of G
is called a perfect matching and it is clear that in a graph G that contains a
perfect matching, 2v(G) is equal to the number of vertices of G. The dimension
of the cycle space is denoted by ¢(G) and given by the formula ¢(G) = m(G) —
n(G) + 0(G) where 6(G), m(G) and n(G) are the number of components,
number of edges and number of vertices of G, respectively. A graph G with
nullity 7(G) = n(G) — 2v(G) — ¢(G) is called as a graph G satisfying the
minimal nullity condition in [29] and [22|. Similarly, a graph G with nullity
n(G) = n(G) — 2v(G) + 2¢(G) is called as a graph G satisfying the maximal
nullity condition, see [26]. In some papers, the dimension of the cycle space
is also named as the cyclomatic number of the graph G. In [11], Delen and
Cangul defined a new graph invariant which is named as the omega invariant
which helps to determine numerous combinatorical and topological properties
of a graph or even of the realizations of a given degree sequence. Some extremal
problems related to the number of components and loops are studied in [12].
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Using the results in those papers, many relations on nullity, dimension of cycle
space, the number of vertices and edges of the graph, and the matching number
can be restated in terms of omega invariant which is very easy to calculate from
the vertex degrees of the graph. In [11], the following relation between the
cyclomatic number ¢(G), the number of components §(G) and the invariant
omega is given by the following relation:

Lemma 1.1. [11]| Let G be any graph with 0(G) components. Then the cyclo-
matic number ¢(G) of G satisfies the following relation:
Q(G)

o(G) = =5~ +6(G).

We can imply Pg(x) by emphasizing coefficients as the following: Pg(z) =
" +c1x" 4 eor™ 2+ -+ ¢p_17+ ¢y, Let us denote by ¢ (H) and ¢ (H) the
number of components in a subgraph H which are single edges and 2—regular
subgraphs, respectively. The relations

|A(G)| = Z(_l)"—cf(H)—Co(H)QCo(H) and ¢ = Z(_l)cf(H)JrCo(H)QCo(H)

where the first summation is taken over all spanning elementary subgraphs H of
G and the second summation is taken over all elementary subgraphs H with k
vertices for 1 < k < n, are given by Harary in 1962, see e.g. [3], [4], [9] and [10].

Nullity and rank of a molecular graph which are closely related to each other
are related to the nonzero coefficients of Pg(x) and are prominent notions in
chemistry. The chemical importance of nullity originate from Hiickel molecular
orbital theory. In 1931, a procedure for approaching molecular orbitals for con-
jugated molecules is publicised by E. Hiickel [19]. In chemistry, a conjugated
hydrocarbon can be considered as a molecular graph, where the carbon atoms
and bonds that exist between carbon atoms are represented by vertices and
edges of the corresponding molecular graph, respectively. Hiickel theory needs
the detection of eigenvalues and eigenvectors of the corresponding molecular
graph. In Hiickel theory, the eigenvalues and eigenvectors of A(G) correspond
to the energy of the corresponding molecular orbital and the Hiickel molecular
orbitals, respectively, see e.g. [29], [30]. The number of nonbonding molecu-
lar orbitals is the nullity of A(G). Hence, actually Hiickel theory and spectral
graph theory are "isomorphic", see [6] and [28]. Hence, if n(G) > 0 for the
molecular graph, then there is at least one nonbonding molecular orbital in G
and the corresponding chemical molecule is reactive and unstable or nonexis-

tent, see [6, 20, 27, 29, 30].
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If n(G) > 0, then G is called singular and if n(G) = 0, then G is called
nonsingular. Collatz and Sinogowitz came up with characterizing all singular
graphs in 1957, see [8]. This idea is really important in chemistry as explained
above and difficult to solve as well. However, some results for specific graph
types and cases are mentioned in [2, 5, 6, 7, 13, 14, 16, 17, 18, 21, 22, 23, 24,
25, 26, 29, 30, 31, 32|. In this study, our purpose is to take attention to the
connection between v(G) and nonzero coefficients of Pg(z), relatively n(G),
for any graph G and for particular graph types by using processes defined in
section 2.

2. MATCHING NUMBER, NULLITY AND COEFFICIENTS

In this section, we start with the definitions of K5 deletion process and
shrinking process. After that we mention a lemma given by Tam and Huang
in 2017, see [27]. We study the relevance of v(G) and the coefficients of Pg(x)
by using this lemma and K deletion process. Secondly, we recall two promi-
nent theorems that give the conditions for satisfying the maximal and minimal
nullity conditions for any graph G, see e.g. [22], [26]. We make use of these
theorems and shrinking process to show the conservation of maximal and min-
imal nullity conditions after applying Ko deletion process. Finally, we obtain
some results for some graphs that satisfy the maximal and minimal nullity
conditions. As of now, let us denote by kg"d and kg’ the maximum index of
all nonzero coefficients and the maximum index of all even nonzero coefficients
in Pg(z), respectively. Analogously, we let keG’fd and kg denote these two
numbers for Pgr(x), respectively. Observe that n(G) — k&d = n(G) and n(G")
can be stated similarly. Now, we are ready to give the following definitions:

Let G be a graph having at least one pendant vertex and thereby one pen-
dant edge. The process of taking out a pendant vertex and its adjacent vertex
from G is called K> deletion, see [27] and [29]. This process is called "Pendant
Edge Deletion" in [29] but we prefer "Kjy deletion" in our paper. Moreover,
we need the notion of a crucial subgraph of G. A crucial subgraph is defined
as follows: If there is no pendant vertex in G, then the crucial subgraph of G
is itself. If there are pendant vertices in G, then K5 deletion process is applied
consecutively until reaching up to a subgraph of G that has no pendant ver-
tices. When the desired subgraph is obtained, K9 deletion process will end and
the subgraph will be called a crucial subgraph of G. A crucial subgraph of G is
denoted by G’ and we denote the number of K5 deletions that we need to get
G’ from G by v(G) in this paper. All crucial subgraphs of G are shown to be
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isomorphic, see for details [27, 29]. In Figure 1, we have a graph G in the first
step and we apply K> deletion process to G until the fifth step where we get G’.

Let G be a cycle-vertex-disjoint graph. Let C(G) be the set of all cycles in
G. We shall call the process of shrinking each cycle in G to a single vertex to
get an acyclic graph T as shrinking process. The vertex set of T is taken to
be UgUW¢ where Ug consists of all vertices of G which does not belong to any
cycle of G and W consists of all the vertices ve, that are formed by shrinking
a cycle in G. There are three types of adjacency in Tz. Any two vertices in
Ug are adjacent in Ty if and only if they are adjacent in G. A vertex u in Ug
is adjacent to ve, € W if and only if w is adjacent to a vertex in some cycle
Ci. The vertices vg; and v¢; are adjacent in T if and only if there is an edge
between a vertex of C; € C(G) and a vertex of C; € C(G), see [29], [26]. In
Figure 2, we have a cycle-vertex-disjoint graph G in the first step and we get
T¢ in the second step by using the shrinking process.

AVAG VA

(1) (2} 3)
/ . Q . O

(4} (5}

FIGURE 1. K3 Deletion Process

We recall the following useful result:
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(1) (2)

FIGURE 2. Shrinking Process

Lemma 2.1. [27] For any graph G, we have
i) n(G) =n(G).
ii—) v(G)=v(G)+v(G-G).
iti—) To get G' from G,~(G) is equal tov(G—G").
We can prove the following fact about the matching numbers of a graph and
a crucial subgraph of it:

Theorem 2.1. Let G be a graph and G’ be the crucial subgraph of G. Then
kend k.e?}d
v(G) —v(G) = C2; - (2; .

Proof. Let G be a graph. By Lemma 2.1 (i), we have n(G) = n(G’). Let us
rewrite the equation by means of kf;"d, /ceé}d and as we know that number of
vertices of G’ is n(G) — 2v(G), we get n(G) — k& = (n(G) — 27(G)) — k&,

end end
en _kg‘r}

end __p.end
Hence, v(G) = kcf By Lemma 2.1 (iii), we have v(G — G') = %
end end
Consequently, by Lemma 2.1 (i7), we obtain v(G) — v(G') = ’ch - k%’ . g
Corollary 2.1.1. Let G be a graph and G’ be a crucial subgraph of G. Then
kend k.eT/Ld
v(G) = C2; if and only if v(G') = %
Proof. By Theorem 2.1, proof is clear. 0
Theorem 2.2. Let G be a graph and G’ be a crucial subgraph of G. Then
k.e'tien keven
v(G') = G2 implies that v(G) = G2

Proof. Let v(G') = @ By Lemma 2.1 (i) and (éi7), we know that v(G) —
v(G') = v(G). If we substitute the first equation into the second equation,



Matching number in relation with maximal-minimal nullity conditions

keve
then we get v(G) = -5

ke'b}en_ker},d k‘end . , kﬁ;en
v(G) = - + =%~ Since v(G') = -%—, we have two cases to show.

First one is kg = ke”d In this case we get required result clearly. Second

: kepd—1
case is kg? = k& + 1. In this case we have v(G) = -¢

get v(G) = ke;m. O
Corollary 2.2.1. Let G be a graph and G' be a crucial subgraph of G. If
' H, then

(@) = g

(G) and by the proof of Theorem 2.1, we have

. Consequently, we

k even + 2,7(G) — k&yen.
Proof. To prove the Corollary, we use Theorem 2.1 and 2.2. In the hypotesis

even

we have v(G') = K o by Theorem 2.2, v(G) = @ and by Theorem 2.1,
kend k) :i feven

we get V(G) = 2 + —%—. By the proof of Theorem 2.1, we attain
v(G) =v(G)+-4 5T 1t we arrange the last equality, then we get k&"4+2v(G) =
ke’ven D

Let us now define some notions for the next theorems. Let ke”e” and ke”‘m be

the maximum index of all even nonzero coefficients in the characterlstlc poly—
nomial of components K and S, of G’, respectively. We define the number of

jeven kg
components of G’ that verify the conditions v(K]) > K2/ —t— > v(S)) by
¢(G) and 9(G), respectively. Similarly as stated earlier, let us deﬁne k:f,"d and
k5 e the maximum index of all nonzero coefficients and the maximum index
of all even nonzero coefficients in the characteristic polynomial of correspond-
ing component of G’ respectively. Pq{(l‘) is the characteristic polynomial of
corresponding component of G’. Also, we define o(@G) as the number of even k
that are in Per(x) and greater than the sum of the k§"*" of every Poy(z) where
the summation is over all components of G'. Also, let #(G’) be the number of
components of G’. We can give the matching number of the graph G in terms
of the matching numbers of the components of G’, the number of even indices
in Pgr(x), and the indices of the coefficients of Pg(z) and Pg(z):

Theorem 2.3. Let G be a graph and G’ be a crucial subgraph of G. Then

kend k.end even (@) k%]{en 9(G) kggen
W(G) = "=+ | Y (K — —— |- s — V(S| —a(G).
i=1 =1

Proof. Let G be any graph. By the definition of Sachs subgraphs, we know that
k¢ie™ is constituted of elementary or spanning elementary subgraphs which are
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even

disjoint edges or disjoint cycles, see [3], [4], [15] . However, some —%— can be

less than or more than v(G’) for some combination of elementary subgraphs, so

even

the equality v(G') = kg

cannot be true all the time. Hence, for calculating

even

. . . k ! . .
v(G'), besides its equality to -%—, we have two cases for examining. If for some

even
kS

component K of G', v(K]) is greater than K—' then to calculate v(G) we

k.mmn

must add the positive difference of v(K]) (G) for corresponding

keven

o . . s’
component. Similarly, in the second case where I/(SZ{) is less than ——, we

km)en

subtract the positive difference of v/(S}) (GQ) for corresponding

component. Also, G’ can be disconnected and observe that H?L? k""d is equal

even

to kend Hence, ©(G’) can be more than -%— misleadingly, because of the the
multlphcation of some kf,”d of corresponding components that are odd. Thus,
we must subtract o(G) from v(G). by Lemma 2.1 (i7) and (7i7), we get

even ¢(G) k%’/ﬁn HQ) keven
(€4 U i !
v(G) =~(G) + ~E—+ ; V(K] = — 2~y )| —e(©)
Finally, by proof of Theorem 2.1, we get
kend k.end cven q(¢) keven keven
v(G) = 5 + G2 + ; v(K]) — Z —— — (S| —o(G).
g

Let C1 and Cs be two cycles in G. If there is a path between a vertex of C
and a vertex of Cy with the property that the internal vertices of the path do
not belong to any cycle, we call the cycles C7 and Cs as adjacent cycles. Let
us consider the case that G is cycle-vertex-disjoint graph and there is at least
one quasi-pendant vertex on the shortest path that is between every pairwise
adjacent cycles in G. In this case we give next theorems. We denote the
number of 4¢— cycles, odd-cycles and (4t + 2)—cycles in G’ by «(G), B8(G),
5(G), respectively.

Theorem 2.4. Let G be a cycle-vertez-disjoint graph and G’ be a crucial
subgraph of G. In G, there is at least one quasi-pendant vertex on the shortest
path that is between every pairwise adjacent cycles. Then matching number of
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G is equal to

B even , ,B(G)
V(@) = -2 +a(G) - |57

Proof. Let us consider a cycle-vertex-disjoint graph G and a crucial subgraph
G’. Observe that since G is a cycle-vertex-disjoint graph and there is at least
a quasi-pendant vertex on the shortest path that is between every pairwise
adjacent cycles in G, G’ constitutes of components which are only 2—regular
graphs or null graphs. Considering these components, let us denote 7; as the
number of vertices of cycle components C/, i.e., 2—regular components, and
we set matching number of every cycle component C! as the following:

ki1

7 1 = ry(mod4) or 3 = ry(mod4)
ke/’n L kf,?;]enr

v(C;) = - = 5, 2 = ry(mod4)
k:’;rrd+2 B k;:,1)en,+2

5— = —5—, 0=ry(mod4).

Moreover, we know that matching number of null components are zero, so we
get that ¥(G’) is equal to the sum of the matching numbers of cycle components
of G'. As a result, we have

B(G") 3(G") a(G)

k@/nd -1 ke/nd kg/nd )
AN I3 ) )
M@Y= ) St ) et >
i=1 =1 =1
By Lemma 2.1 (i7) and (i4i), we obtain
B(G") d 8(G") d G end
kSt —1 kS k5 + 2
v(G) = Z T+Z 5 T ‘ T+7(G)-
=1 =1 =1
Consequently, by the above equation we reach
k.even G/
u@) =" v - 125

O

Corollary 2.4.1. Let G be a cycle-vertex-disjoint graph with vertex set V(G)
and edge set E(G). Let there be at least one quasi-pendant vertex on the short-

est path between every pairwise adjacent cycles in G. G’ be a crucial subgraph
of G. Then

feven kend keqd 6 G/
wey =" BT R oy 28
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B(G")

Moreover, if | =5+] is even, then
k,er}d !
@) = 1 agen - | 2
Proof. Tt is clear by Lemma 2.1 (i), (¢ii), by proof of Theorem 2.1 and by
Theorem 2.4. O

We need some new symbols for the next theorem. Let us define a;, b; as the
number of vertices of corresponding ith component that is an even cycle and
jth component that is an odd cycle, respectively.

Corollary 2.4.2. Let G be a cycle-vertex-disjoint graph and G’ be a crucial
subgraph of G. Let there be at least one quasi-pendant vertex on the shortest
path between all pairwise adjacent cycles in G. Then

(G)+46(G") B(G")
Leven o a b B(G/) kend ke'r}d
C-tral@)= > S| IS -
=1 7=1

Proof. The proof is clear by Lemma 2.1 (ii), (i7i), by Theorem 2.4 and by
proof of Theorem 2.1. O

Theorem 2.5. (22| Let G be a graph. G satisfies the minimal nullity condition
if and only if the following conditions are all satisfied:

i—) All cycles of G are cycle-vertez-disjoint.

ii—) The length of each cycle of G is odd.

iii—) v(Tg) = v(Te — Wa).

Theorem 2.6. (26| Let G be a graph.G satisfies the mazimal nullity condition
if and only if the following conditions are all satisfied:

i—) All cycles of G are cycle-vertez-disjoint.

ii—) The length of each cycle of G is congruent to 0 modulo 4.

iii—) v(Tg) = v(Te — Wa).

Next two theorems show the conservations of minimal nullity and maximal
nullity conditions after appyling K> deletion process, respectively.

Theorem 2.7. Let G be a graph and G’ be a crucial subgraph of G. Then
n(G) = n(G) — 2v(G) — ¢(G) implies that n(G') = n(G') — 2v(G’) — c(G").
Proof. Let G be a graph that satisfies the minimal nullity condition. By

Theorem 2.5 (7), (4i) and (77), all cycles of G are cycle-vertex-disjoint, odd
and v(Tg) = v(Tg — Wg). Thus, all cycles of G’ are cycle-vertex-disjoint
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and odd. Now, we need to prove that v(Tg/) = v(Tr — Wer). We have
v(Te) = v(Tg — Wg) so we can find maximum matching without the edge
that connects each cycle to the related acyclic part of G. Also, we know that
v(G) = v(G') +~(G) by Lemma 2.1 (ii), (i73). Therefore, each edge that con-
nects each cycle to the related acyclic part of G cannot be counted in v(G).
As a result, we get v(Tg) = v(Tr — Wer). Hence, since all cycles of G are
cycle-vertex-disjoint, odd and v(T¢r) is equal to the v(Tg — W), G satisfies
the minimal nullity condition n(G’") = n(G’) — 2v(G’) — ¢(G’), by Theorem
2.5. (I

Theorem 2.8. Let G be a graph G’ be a crucial subgraph of G. Then
n(G) = n(G) — 2v(G) + 2¢(Q) implies that n(G') = n(G') — 2v(G’") + 2¢(G).

Proof. Let G be a graph. Let us consider the case that G satisfies the maximal
nullity condition. By Theorem 2.6, all cycles of G are cycle-vertex-disjoint
and the length of each cycle of G is congruent to 0 modulo 4. Hence, all
cycles of G’ are cycle-vertex-disjoint and the length of each cycle of G’ is
congruent to 0 modulo 4. Also, since G satisfies the maximal nullity condition,
we have v(Tg) = v(Tg — Wg). By the proof of previous theorem, we get
v(Ter) = v(Tr—Wer). Consequently, by Theorem 2.6, G’ satisfies the maximal
nullity condition n(G’) = n(G") — 2v(G’) + 2¢(G"). O

Corollary 2.8.1. Let G be a graph satisfying the mazimal nullity or minimal
nullity condition and G’ be a crucial subgraph of G. Then ¢(G) = ¢(G’).

Proof. Let G be a graph. We make the proof for maximal nullity condition and
minimal nullity condition can be proved similarly. Let G satisfy the maximal
nullity condition. We know that n(G’) = n(G) — 29(G) and by Lemma 2.1,
v(G) = v(G) + ~(G). Thus, we have n(G) = n(G’) + 2v(G) — 2(v(G) +
v(@)) + 2¢(G) that is equal to n(G) = n(G") — 2v(G") 4+ 2¢(G). Also, we know
that 1(G) = n(G’) by Lemma 2.1. Then by previous theorem, G’ satisfies the
maximal nullity condition since G satisfies the maximal nullity condition. As a
result, we get the equality n(G) = n(G’) — 2v(G") + 2¢(G) = n(G") — 2v(G") +
2¢(G"). Hence, we get ¢(G) = ¢(G'). O
Theorem 2.9. Let G be a graph satisfying the mazimal nullity condition and

even

G’ be a crucial subgraph of G. Then v(G) = kGQI + (G + M

Proof. Let G be a graph which satisfies the equality n(G) = n(G) — 2v(G) +
2¢(@G). By the proof of Theorem 2.8, since v(Tr) = v(Ter — Wer), reader can
observe that G’ consists of completely ¢(G) cycles and null graphs. We know
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that the lengths of all ¢(G) cycles of G’ are congruent to 0 modulo 4 by the

even

. k&Y
proof of Theorem 2.8 so that since for every cycle, we found that 45— + 1

v

is equal to v(G'), and hence we get v(G') = kg;n + ¢(G). By Lemma 2.1 we

know that v(G) = v(G') + v(G). Then we get v(G) = kg;,en + ¢(G) +v(G).
Since G satisfies the maximal nullity condition, if we write the last equation

even
/

in the maximal nullity condition, we get n(G) = n(G) — Z(kG2 + ¢(G) +
Y(G)) + 2¢(G). Since by Lemma 2.1 n(G) = n(G’) and n(G’) = n(G’) — k&,
we get k& — k& 4+ 2+(G) = n(G) — n(G’). Finally G’ consists of completely

¢(G) cycles and null graphs, k& = k& so v(G) = w, we get v(G) =

even

kGZI +¢(G)+ "ML By Corollary 2.8.1, ¢(G) = ¢(G'), and as a conclusion,
we get v(G) = “4 4 (@) + MAUE), O

Theorem 2.10. Let G be a graph satisfying the minimal nullity condition and
G’ be a crucial subgraph of G. Then

keven el n(@)=n(G’ . .
V(G) _ keGgen _ (é,) _|1_ ( )é ( )G’, Zf C(G) 18 even
& _ Gt m@-nE) i (@) s odd

Proof. Proof can be made similarly to previous theorem. 0

It is worthy to note that when G satisfies the maximal or minimal nullity
condition, G’ consists of exactly ¢(G) = ¢(G’) disjoint cycles and null graphs
by the proof of Theorem 2.7 and 2.8. Therefore, in Theorem 2.4, Corollary
2.4.1 and Corollary 2.4.2, we can write the condition that G satisfies the max-
imal or minimal nullity condition instead of the condition that G is cycle-
vertex-disjoint and at least one quasi-pendant vertex exists on the shortest
path between all pairwise adjacent cycles in G.

Theorem 2.11. Let G be a cycle-vertex-disjoint graph. Ifv(Te) = v(Ta—We)
kfé?)ﬁn

and v(G) = 45— — L@J, then G satisfies the minimal nullity condition and
the equality

w, if B(G') is even
v(G) =9 rgeloai A
G——"—, if B(G’) is odd
1s satisfied.
Proof. Let G be a cycle-vertex-disjoint graph. If v(Tg) = v(Tg — W), then

we need to show that the lengths of all cycles of G are odd by Theorem 2.5. By
the proof of Theorem 2.7, since v(T) = v(Tg — W¢), there exists a maximum
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matching without the edge that connects each cycle to the relative acyclic
part of G. Moreover, we know that v(G) = v(G’) + v(G) by Lemma 2.1
(44), (4i7) so that each edge that connects each cycle to the related acyclic
part of G cannot be counted in v(G). In brief, it means that ¢(G) = ¢(G’).
By the proof of Theorem 2.7 and Corollary 2.8.1, reader can observe that
G’ consists of only cycles and null graphs. So by Theorem 2.4 and hypotesis
v(G) = kz’;pn +a(G)— Lﬁ(gl)J = kPG;M - Lﬁ(g;/)j , we get the result that all cycles
of G' are odd. Since ¢(G) = ¢(G’), all cycles of G are odd, so G satisfies the
minimal nullity condition. Now, we know that n(G) = n(G)—2v(G)—c(G) and
we arrange the equation as n(G) = n(G) — 2(@ - L%G/)j) —¢(Q). Tt is clear
that 5(G’) = ¢(G). Thus, if S(G’) is even, then we get n(G) = n(G) — k&"
and if 3(G’) is odd, then we get 9(G) = n(G) — kZ*" — 1. As a result, the
equality

(@) =n(G) — kg, if B(G') is even
n(G) = n(G)=2w(G)=c(G) = { 2G) — (G — kiren 1, if B(C) is odd

is satisfied. Hence we get

keren —c(@) , "
I/(G)—{ < = if B(G') is even

2
RGO G B(GY) s odd.

|

Theorem 2.12. Let G be a cycle-vertex-disjoint graph. If v(Te) =v(Te—Wea)
and v(G) = kGT + a(@), then G satisfies the mazimal nullity condition and
the equality v(G) = w is satisfied.

Proof. Proof can be completed analogously to the proof of Theorem 2.11. [
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