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SOME IDENTITIES OF FULLY DEGENERATE BELL
POLYNOMIALS ARISING FROM DIFFERENTIAL EQUATIONS

SUNG-SOO PYO! AND TAEKYUN KIM?

ABSTRACT. Recently, degenerate, partly degenerate and fully degenerate Bell
polynomials are studied. In this paper, we study the differential equations on
fully degenerate polynomials. From this differential equations, we derive some
identities of the fully degenerate Bell polynomials.

1. Introduction

In combinatorial mathematics, the Bell polynomials, denoted by By, (x), are used
in the study of set partitions. The Bell polynomials are defined by the generating

function to be
(el > tr
en@ ) = EOB”("T)H

where B, (1) = B,, are called n-th Bell numbers. As is well known, the B, is equal
to the number of partitions of n-set(see [1,2,4,5,9,10,18]).

The Stirling numbers of second kind are defined by the generating function, for
nonnegative integer k,

et o k oo n
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n==k

where Sa(n, k) are called the Stirling numbers of the second kind.

Recently, many mathematicians have studied (1 + )\t)i, which is called the de-
generate exponential function(see [3,7,10-17]). If X\ goes to zero, then (1 + )\t)i
approaches to e'. Throughout in this article, we write ey(¢) for the degenerate
exponential function.

From the degenerate exponential function, the degenerate Stirling numbers of the
second kind, denoted by Sz x(n, k), are defined by

e - F S :
OO S sbl
! n—k '

It is well known that Sy x(n, k) converges to Sa(n, k) if X goes to 0. The degenerate
Stirling numbers of the second kind can be found in the [11,14].

In [10], the degenerate Bell numbers are introduced and studied as follows.
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[e.9]
(1 n )\)§(6)\(t)*1) = Z Beln,)\(m)
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In [12], T. Kim, D. S. Kim and D. V. Dolgy introduced the partly degenerate Bell
polynomials

glex®-1) _ a((erx-1) Zbeln,\

From the definition of partly degenerate Bell numbers, they gave some identi-
ties between several special numbers and those polynomials. In [17], they studied
the degenerate Daehee numbers, and obtained identities arising from differential
equations.

In this paper, we study the differential equations on fully degenerate polynomials.
From this differential equations, we derive some identities of the fully degenerate Bell
polynomials.

2. Identities for the fully degenerate Bell polynomials

Throughout in this article, for positive integer n, we denote (z), » for the gen-
eralized falling factorial z(z — A)(z — 2)) -+ (x — (n — 1)X). We use (}) = (j‘% for
generalized binomial coefficient. This give us that

’I'l
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In [7], D. Dolgy et al. defined the fully degenerate Bell polynomials, denoted by
B A(z), by the generating function to be

=

ex(z(ea(t) = 1) = (1+ Az((1+ A)¥ — 1))
= Z Bn,A(x)t_
n=0

The definition of fully degenerate Bell polynomials (2.1) shows the following iden-
tity easily

(2.1)

t

Hm (14 Az((1+ A)x —1))x = e D), (2.2)
A—0

The equation (2.2) says that limy_,o By, x(z) = By ().
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From the definition of fully degenerate Bell polynomials, they gave the identities

(see [7])

(z) = Z(l)l‘/\SQ,)\(na Dz'

- Z Z S1(1,m)Sox(n, A ™! (2.3)

=0 m=0

) (1) 0 Wy

The following can be obtained by differentiating the equation (2.1). Let F'(t,z) =
>0 o Ba, )\(I)% Then k-th differentiation gives us the following

Let us observe that
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and we easily get the identity
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From (2.5) and (2.6), we have
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(2.7)
From the equations (2.5) and (2.7), we have the following theorem.
Theorem 2.1. For any real A and nonnegative integer n,
Bn+1,)\(z)

n m m
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Let X tend to zero in the equation (2.8), then, only j = 0 is possible from A in the
equation (2.8). And we get k = 0 from Sy \(k — 7, 7). Finally, we get the following
identity

no o5 ()

3. Differential equation using the fully degenerate Bell polynomials

In order to write this paper briefly, let T denote ((1 + /\t)i —1)and F = F(t, z)
the fully degenerate Bell polynomials. That is,

F=F(t,z) = (14 ATxz))x. (3.1)
We observe that
Z—i = T(1+A\T2) * . (3.2)

By induction we see that

oNF
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= (WNATN 1+ M\Tz) 3 (3.3)
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Since
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From the equations (3.4) and (3.5), equation (3.3) becomes
N 1-NX
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We get the following by n differentiations of the equation F with respect to x.

aNF aN >
Z

(3.7)
aN "
n=N
From the equation (3.6) and (3.7), we have the following identity.

Theorem 3.1. For any real A and nonnegative integers n and N, withn > N,

aN n—N 1 . .
6—N = N! Z Z < > N+l’)\527)\(n—Z,N)SQ’)\(Z,Z)IEZ. (38)
=0 [=0

From the equation (2.3), we have
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The equations (3. ) and (3.9) give the following identities.

361



362 S-S Pyo and T. Kim

Theorem 3.2. For any real A and nonnegative integers n and N,
n—N i

N Y Z( ) IN-+1,S2 (1 — iy N)Sa 5 (i, 1)z
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Let, for brevity, G be a differentiable function with respect to t and F' = F(t) =
G>. Then we get the following differential equation
AGFY) = gWF. (3.10)

The following equation is obtained by taking the derivative to both sides of the
above equation (3.10).

AGF® L O M) — O p@) L @)
After taking N-th derivative of both sides of the equation (3.10), we have

N

AZ( ) POHD =% <JZ>G<Nk+1)F<k>. (3.11)

k=0
The equation (3.11) give us a following differential equation.

Theorem 3.3. Let G be any differentiable function with respect to t and F =
1
F(t) = GX, then F is a solution of the following differential equation.

/\Z ( > P+ — i (]/D GWN=k+1) pk) (3.12)

k=0

where F©O) = F and F*) = a—ﬁi for any nonnegative integer k.
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