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ON 5-REGULAR BIPARTITIONS WITH ODD PARTS DISTINCT
M. S. MAHADEVA NAIKA AND HARISHKUMAR T.

ABSTRACT. In his work, K. Alladi [1] considered the partition function pod(n), the number of
partitions of an integer n with odd parts distinct (the even parts are unrestricted). Later Hirschhorn
and Sellers [8] obtained some internal congruences involving infinite families of Ramanujan-type
congruences for pod(n). Let B,(n) denote the number of 5-regular bipartitions of a positive integer
n with odd parts distinct. In this paper, we establish many infinite families of congruences modulo
powers of 2 for B,(n). For example,

B, (32 Sgle 520H2 g2y gy gle 5201 g2y 1) =0 (mod 16),
for o, 3,7 > 0 and t7 € {28,92,124, 156}.
2010 MATHEMATICS SUBJECT CLASSIFICATION. 11P83, 05A17.
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1. INTRODUCTION

A partition of a positive integer n is a sequence of positive integers \; > Ao > - -+ > A\ such that
A1+ A2+ A = n. A partition is an m-regular partition if none of its parts is divisible by m. Let
bm(n) denote the number of m-regular partitions of n with by, (0) = 1. The generating function for
bm(n) is

= fm
b, "= g
;} (me" =

where
[ee)

fn= (075000 = [J (1= ¢™).

n=1

Calkin et al. [3] established congruences for 5-regular partitions modulo 2 and for 13-regular
partitions modulo 2 and 3 using the theory of modular forms. For more details, one can see [4],
(9], [12], [13] and [14].

Recently, the authors [11] obtained infinite families of congruences modulo powers of 2 for 5-regular
bipartitions with even parts distinct.

K. Alladi [1] considered the partition function pod(n), the number of partitions of an integer n
with odd parts distinct (the even parts are unrestricted). Subsequently Hirschhorn and Sellers [8]
obtained some internal congruences involving infinite families of Ramanujan-type congruences for
pod(n). For more details, one can see [5], [10], [15], [17] and [18].

Let B,(n) denote the number of 5-regular bipartitions of n with odd parts distinct and B,(0) = 1.
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The generating function is given by

o 10. 10) 2
;BO(R < 1000 (4% ¢*)oo )
:( oo (@°10")o0 (f;lw;q“’)oo)2
(0% ¢%) 00 (6% ¢%)o0

<f2f5f20>
fifafro

- n_ F313 1%

M 2 Bmd" =g

For example, there are 16 bipartitions with odd parts distinct for B,(5), namely

(0, 4+1), (441, 0), (3+2, 0), (0, 3+2), (0, 2+2+1), (242+1, 0), (1,4), (4,1), (24+2,1),
(1,242), (3+1,1), (1, 3+1), (2, 2+1), (241, 2), (3,2), (2, 3).
We prove many congruences of the following form. For «, 8 > 0,

o0
3 B, (16 .32 528 1 14 32 . 528 _ 1) =833 (mod 16).
n=0
2. PRELIMINARY RESULTS
In this section, we collect many identities which are useful in proving our main results.

Lemma 2.1. The following 2-dissections hold :
1 4 4q fifs

(2) f_f f14f4+ flO
and

s S f2f8
3) i 27 —4q 2

The equation (2) is essentially (1.9.4) in [7]. The equation (3) can be obtained from (2) by replacing
q by —q. Also see [2, p.40].

Lemma 2.2. The following 2-dissections hold :
fi _ fsfh f4f40

W fs fufpte TRIG
and
(5) fs _ fsfi +q I3 fiofao

fi ffo f2f8f20

The equation (4) was proved by Hirschhorn and Sellers [9] ; see also [16]. Replacing ¢ by —¢ in (4)

and using the fact that
. _ S
(&~ = i

we obtain (5).
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Lemma 2.3. [2, p.345] We have

6 2 £6
(6) fi= J]";GJJ‘?B —3qf + 4q3%
(7) = f3+qf; (mod 2).
Lemma 2.4. We require the 5-dissection due to Ramanugjan,
(®) fi = Fas(R(&°) " — ¢ = ¢ R(¢%)),
uhere (¢,9% ")
RO = (@ @

The equation (8) is the same as (8.1.1) in [7]. Also we can see [6], [19].

Lemma 2.5. We require the 7-dissection due to Ramanujan,

B(q" A7 c(q"
9) 1= fao (087; - qBEZ% -+ AE;D ;

where A(q) = f(=¢*,—¢"). B(q) = f(=¢*, =¢*) and C(q) = f(~q,~¢").
Lemma (2.5) is an exercise in [7], see [7, 10.5]. Also we can see [2, p.303, Entry 17(v)].

Lemma 2.6. For any positive integers k and m,

(10) 2m = fm o (mod 2),
(11) ,fm = 22,2’”‘ (mod 4),
(12) Sm = fim (mod 8).

Proof. We see that
(1-¢’=1-¢" (mod ?2),
from which it follows that (10).
The others (11) and (12) can be proved in similar fashion from
(1-9)'=(1-¢*? (mod4)
and
(1-qf=(1-g¢)" (mod8).

We prove the following Theorems:

Theorem 2.7. Let t; € {62,78}, t € {62,158}, t3 € {166,214}, t4 € {142,238}, t5 € {86,134},
te € {10,26}, t; € {28,92,124,156}, ts € {28,124,316,412}, ty € {92,188,284,476}, t1o €
{124,156}, then for all v, 8,y > 0, we have, modulo 16,

o0
(13) S B (16 5%0+6-5% — 1) " =84 + 8fufs,
n=0

o0

(14) 3B, (16 520+, 14 5204 1) q" = 8f1.fo0 + 8qfi,

n=0
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(17)

(18)

(19)

(20)

(21)

(29)

(30)
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B, (16 5242 g 5284 1) =0,

o0
3 B, (16 .32 . 526 1 14.320 . 52 _ 1) q" = 8f3 12,

n=0

o0
> B, (1632 520¥ 0y 2 g2l 52040 1) 7 = sq i,

n=0
o0
3 B, (16 .32+l 526, 4 14, 3% 526 1) 0" = 8fafs,
n=0
o0
> B, (16 .32+l 52641, 4 99 . g2 52841 _ 1) q" = 8f1f10,
n=0

o0
ZB" (16 .g20+1 528, | 9 g2+l 526+1 1) 0" = 8313,

n=0

oo
> B, (16-8%40 5% 44632 5% — 1) " = Sqfafs + 8F5 3,

n=0

S B, (163241 525y 38 20 5204 1) 0" = 83 fro +8¢° 1 f3),

n=0

B, (16 L3Rt 52l gy 320520 1) =,

=0,
B, (16 .g2otl 52642, 4y g20 52841 1) =
B, (16 (32042 528y | g g0+l 525 1) =0,

> B, (32-8% 5% P 123 51 1) " = 87,

n=0

o0
Y B, (32 Cgla 526 2Ly 4 og . gler 52641 g2l 1) q" =8¢ 17,

n=0

o0
> B, (32 e 201 2y g gte 204 v 1) 7" =8qf3,

n=0
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(31) B, (32 Cgla 52642 g2 4 g, gho 52641 g2y 1) =0,

o0
(32) 3 B, (32 . 3lot1 526 72y 4 yq . gla 526 72 _ 1) " = 8f2f3,

n=0

[ee)
(33) 3 B, (32 L glatl 528 72y 4 76 . 3o 520 72 1) n=8ff3,

n=0

o0
(34) Z BO <32 . 340(+1 . 523+1 . 72’)’n +4. 340’ . 52,3-{-1 . 72’Y+1 _ 1) qn = 8(12‘}('10‘]1'1357
n=0
o0
(35) Y B, (32 -glatl 52641 72y | g gla 52641 72y _ 1) " =83 f5 13,
n=0
(36) B, (32  glatl 52642 72y g gha 52641 72y _ 1) =0,
(37) B, (32 Cglatl 52642 g2y g gla 52641 g2y _ 1) =0,
oo
(38) Y B, (32-525n+28.525 - 1) Q" = 8f1fao + 8313,
n=0
o0
(39) > B, (325 4 1255 1) " = 8fufs + Safi
n=0

(40) B, (32 52+ 4 gy o520 1) = 0.

Theorem 2.8. Let t11 € {22,38}, tig € {34,66}, t13 € {26,42,58,74}, t1y € {44, 76}, tis €
{68,132}, t16 € {52,84,116,148}, then for all a, 8,y > 0, we have, modulo 4,

o0
41 B, (16-3%.520 . 727 4 9. 32 . 520 .72y _ 1) " = 253,
1
n=0
oo
42 B, (16-32% . 528 . 727+ 1 9. 320 . 520 . 720H2 _ 1) " = 23
7
n=0

B, (16 L3R+l 528 72, 9. 320 526 72y _ 1)
(43) _ { 2 if n=kBk+1)/2 for somek€Z,

= 0 otherwise.

oo
(44) 3 B, (16 L3201 526 72y 4 g 32042 528 2y _ 1) ¢ =2f3,
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(52)

(53)

(54)

(55)

(56)
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B, (16 .32+l 528 72, 4 34 3% . 526 72 1) =)

B, (16 L2042 528 72y 4y g20] 520 q2y 1) =0,

oo
3 B, (16 .32 52841 72y 4 9. 320 52642 72y _ 1) " =2f3,

n=0

B, (16 (3% 528+L 721y 4 g, 3% 526727 1) =0,

Bo (16 N 326& ) 52[3+2 . 727774 +t13 - 32& . 52ﬂ+1 ) 72’7 _ 1) = 07

oo
3 B, (16 (320 52841 g2y 49 g2 52641 72y 1) =23,

n=0

oo
ZB" (16 L3200 §2B+1 q2yHly Lo g2 526+1 g2y+2 _ 1) " = 2f3,
n=0

B, (16 L3201 52641 g2y, 4 9. 32 52641 g2y _ 1)

_ 2 if n=kBk+1)/2 for somek € Z,

- 0  otherwise.

oo
3 B, (16 -3l 52641 2y 4 9. g202 52641 2y _ 1) ¢ =2f3,
n=0

B, (16 CgRatl 52641 g2y, 4 34 g2a 52041 g2y 1) — 0,

B, (16 -32042 52641 g2y 4 g 320l 526+ g2y _ 1) =0,

o0
3B, (1632 5242 7P 4 9. 320 520 g 1) = 2f3,

n=0

B, (16 L3200 52042 g2y, g, 320 5260 g2y 1)

Il
o

B, (16 L3200 52043 g2y, g g 320 5262 g2y 1) 0,

o0
3 B, (32~32a.525.727n+4~32a-525.727—1) ¢ =213,

n=0

oo
> B, (323752 T g g% 5 T g = 2,

n=0



(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)
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B, (32 L2+l 526 72y, oy 320 526 72y _ 1)
{ 2 if n=kBk+1)/2 for somek € Z,

0 otherwise.

oo
3 B, (32 L3Rt 526 72y, 4y 32042 526 g2y 1) ¢ =23,

n=0

B, (32 .32+l 528 72, 4 6y . 320 52872y _ 1) =0,

B, (32 L2042 528 72y, 4y 320l 528 g2y 1) =0,

(o8]
DB, (3232 52 T g 3% 52 1) g = 2],

n=0

B, (32 cg2 52841 72y 4y 320 526 2y 1) =0,

B, (32 L3200 522 72y g 320 520 g2y 1) =0,

o0
DB, (3232 52T g 52 1) g = 2,

n=0

oo
ZBO (32 L3200 52B+1 q2yHly Ly g2 526+1 g2y 1) " =2f3,

n=0

B, (32 - 3201 5261 72y 4 g 320 52641 g2y _ 1)
{ 2 if n=k@Bk+1)/2 for somek € Z,

0 otherwise.

oo

> B, (32304 52 g g LT ) g = o],
n=0

B, (32 . 32at1 52641 72y 4 68 320 . 52+ 72y _ 1) =0,

B, (32 L3202 5261 g2y Ly 320l 52641 g2y _ 1) =0,

o
DB, (3237 522 T g g% 52 1) g = 2],

n=0

B, (32 .32 52642 72y 4y, 320 5264 2y 1) =0,

221
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(76) B, (32 L3200 5248 720y 4 pyo 320 52642 72y 1) =0.

3. PROOF OF THEOREM (2.7)

‘We have

S o _ 31313
B, -
I
_fifn f2
fifty It
_ 3% (f8f220 +qfff10f4o)2
fifi \f3fuo " f3fsfo )

(77)

from which we extract

Somenena=ofih g S0
=2fafi - fi{‘ . %
™ ~ans (gl ) (T )

from which we extract, for modulo 16,

T faf2 fao 10 fuf?
—9 1% _3 f3 ff5f20

1212 f0 e f
=2 (%) (F) 55— (3) () e
72(]‘? fi) fifao 84 72 72 Jififsf20
3
=2f };jcf 0 484/ £ fo b
i i

3
(79) z2f2§4f1‘]( i 4 10>+8qfffzo (i + afoliy)
20 30 13 3

iBo (An+1)q" = 2f1f§’ ( f214 f1f4f130 4qJ022fi1 ) f22f20>

n=0
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and
S 0 op (g ff Afafy 5! _f22f20)
Yoot =20 (o0 G- e B
_ 8f2ffff’o _ 2f216f5f20
I fa0 B
- ﬁf_lg()i> 5po (f_QS) (f_é)Q fifsfao
*8(f%f ) e 2 )\®) Th
=815 fio — 2f1. j} JZ)
S ( f1° f%fél) (f8f220 fif10f10
0 =8/t 2f 51 ~ 4 fi fggfzxo+ I3 fs foo

From the equation (79), we extract

(1) S By (n+ g =2 I g g
= ~ fwo f14f4 :
and
oo 3 204
3 Ba(sn+5)0" = SR L s
3
=sLI8 s
=38 (j:f) (E) (j:f ) Ffifs+8f 12
= 8f2f3 f5 + 8fsfio0
(82) =85 (f3 +afofio) +8fsfo.
From the equation (82), we extract
(83) > B, (16n+5)q" = 8f) + 8fufs
n=0
and
(84) > B, (16n+13)¢" = 8f3f5.

n=0

)

223
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The congruence (83) is the case 8 = 0 of the congruence (13). Suppose that the congruence (13) is
true for some integer 5 > 0. We have

oo
3 B, (16.525n+6.525—1) ¢ = Sf) + 8fufs

n=0
=8/% (R(¢®) ™' — ¢ - ¢*R())°
(85) +8f5.f100 (R(¢™) ™" — ¢* = ¢*R(¢™))

from which we extract

o0
ZBG (16 5% 414 5201 1) q" = 8f1fx + 8¢fs

n=0
(86) =8faf (R(¢°) " —q— ’R(¢°)) + 8aff,
from which we extract
(87) 3 B, (16 (5242 4 6. 52642 _ 1) 0" = 8f) + 8fufs,

n=0
which implies that the congruence (13) is true for 3+1. By mathematical induction, the congruence
(13) is true for all integers f3.
Employing (8) in (13) and then collecting the coefficients of ¢°"*4, we get (14).
Collecting the coefficients of ¢°"+ for i = 3,4 from (86), we obtain (15).
The equation (84) is the a« = 8 = 0 case of (16). Suppose the congruence (16) holds for o > 0 with
5 =0, we have

o0
3 B, (1630 + 1432 1) ¢" = 83 f2

n=0
=8(fs +dfis) (f1s + € f35)
(88) = 8f6f15 + 8¢° fis fis + 8¢° fo fi5 + 84" fis fi,
from which we extract
o0
(89) > B, (1630 4+ 10 - 32T — 1) ¢" = 8¢ f3 f15.
n=0

Collecting the coefficients of ¢3**2 in (89), we get

oo
(90) > B, (1637 0 + 14372 — 1) ¢" = 83 f3,
n=0
which implies that the congruence (16) is true for v + 1 with 8 = 0. Hence, by induction, the
congruence (16) is true for any integer o with 8 = 0.
Suppose that the congruence (16) holds for some integers a, 3 > 0. We have

o0
3 B, (16.32“.52/’n+14-32“~52*3—1) =83

n=0

(91) = 8213 (R(d"*)" = ¢ — ¢*R(¢"))°,
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from which we extract

o0
> B, (16 .32 52641y | 9. g2a+l 52641 1) 0" = 8qf3

n=0
By 5\ 3
(92) = 8¢fiof3 (R(@°) ™' —a— ¢*R(d"))" .
Extracting the coefficients of ¢°**4 in (92), we get
o0
(93) 3 B, (16 (320 52642 4 1y g2 52642 1) " =833,
n=0

which implies that the congruence (16) is true for 8+ 1. Hence, by induction, the congruence (16)
is true for any non-negative integers «, 8 > 0.

Using (8) in (16) and then collecting the coefficients of ¢
Employing (6) in (16) and then collecting the coefficients of ¢3", ¢
tively (18), (20) and (21).

Employing the equation (8) in the equations (18) and (21), we get respectively (19) and (22).
Using the equations (18) and (19) along with the equation (8), we obtain (23) and (24) respectively.
Using the equations (21) and (22) along with the equation (8), we obtain (25) and (26) respectively.
Collecting the coefficients of ¢ and ¢! in the equation (20), we get (27).

From the equation (80), we extract

S+l we arrive at (17).

3n+1 and ¢3**2, we obtain respec-

- 0 asTr o J3fi0 fifsfo0
(94) ;Bo@nw)q =8f{fs =25 mp + 80
and
- n_ oJif L f3*fsfo
;Bo(8n+7)q =85 0 27f15f45
=8(£> <fio> fifo _2<f_§) (f_é*) fifsfoo
—o\f3) \fo) o )\ 1 fa
(95) =8f3 fio — pfifsfn
fa

From the equations (80) and (95), we obtain
B,(8n+7)=B,(4n+3).

On induction, we get
B, (2T + 2972 —1) = B, (4n +3).
From the equation (94), we have

iBo(Sn‘f’?))anSfl(f%)Bfg 72<f_28> f2f4fin)0 +8qf;:’f5f120
n=0

fio fi) fifao f
3 £3 3
= 1;120f > - 2’%%;0 + 84113 f3 fro
3 3 14 2 4
(96) = 8% (f3 fro+ afio) — o 2;25 10 ( fgi it el “21];8 ) +8af3 f10 (£3 fr0 + afo) ,
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from which we extract

- n_ g6 o J3f3 5 5
(97) ;}Bo (IGTL + 3) q = 8f1 2f113f21f10 + SQfl f5
and
3B (160 11) g = 87573 + 72T L gpspe
o fi 10
ol g2\ g g3 AN EATT:
=8(fi)fifs +8( 5 fif3 f5 + 8fsfio
fi fio
= 8f1faf3 + 811 f5 f5 + 8fsfro
(98) =81y (f3 f10 + afio) + 8f5 (f3 + afafiv) + 8fs 10,
from which we extract
> B, (32n+11)¢" = 8f} f5 + 8f) + 8fufs
n=0

=8f1fs + 81 +8f1fs

(99) iBo (32n +11) ¢" = 8}
and o
i B, (32n + 27) q" = 8f, f4 + 8 £5 £
=0
=801 () +8(7)" £
(100) i B, (32n +27)¢" = 8f1.f20 + 8£3 5
n=0

The congruence (99) is & = § = v = 0 case of congruence (28). Suppose that the congruence (28)
holds for a > 0 with g =~ = 0. We have

> B, (32-3"n+12.3" —1) ¢" = 8f)

n=0
3
(101) =8(fs+4qf3)”,
from which we extract

oo
> B, (323" n 4 4. 3% — 1) " = 8f7 + 8¢f5

n=0

(102) =8 (fs+qff) +8af3.
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Collecting the coefficients of ¢®*! in (102), we get

> B, (323" n 44318 — 1) " = 8f) + 8]

n=0
3
(103) =8(fs+af)” +8£3.
from which we extract
(104) > B, (32 3% 0 + 4. 3% 1) " = 8¢,
n=0
which yields
105 B, (32-3%Hp 412 31071 _ 1) ¢" = 8f7,
1
n=0

which implies that the congruence (28) is true for a + 1 with 8 = v = 0. Hence, by mathematical
induction, the congruence (28) is true for all & > 0 with 8 =~ = 0.
Suppose that the congruence (28) holds for «, 8 > 0 with v = 0. We have

o0
Y B, (32.34“.526n+12-34a-523—1) " = 8f?

n=0
_ 9
(106) =835 (R(¢") ™" —q— *R(¢%)) ",
from which we extract
(107) 3 B, (32 - gla 528+l 4 9g . glo 52641 1) " = 8qf?,
n=0

which implies

108 B, (32 3% . 520+2y L 19. 3% . 52042 _ 1) n = 87,
1

n=0

which implies that the congruence (28) is true for 8 + 1 with v = 0. Hence, by induction, the
congruence (28) is true for «, 8 > 0 with v = 0.
Suppose that the congruence (28) holds for «, 8,y > 0. We have

o0
Y B, (32-34‘”-52ﬁ-727n+12-34“A52ﬂA727—1>q”58f{)

n=0
B(d)  Ald) 5, 50D\’
109 = 8/ < —q —¢'+q :
(109) o\l B A
from which we extract
o0
(110) 3 B, (32 Cgla 528 72y, o4 gda 52841 2941 1) R

n=0
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which implies

oo
(111) Z B, (32 L3l 528 72042, L 19 3l 528 q2y42 1) " = 8f7,

n=0

which yields that the congruence (28) is true for v + 1. Hence, by mathematical induction, the
congruence (28) is true for all integers «, 3,7 > 0.

Using (9) in (28) and then collecting the coefficients of ¢ , we arrive at (29).

Employing (6) in (28) and then collecting the coefficients of ¢®**! and ¢®"*2, we obtain (32) and
(33) respectively.

Utilizing (8) in (28) and then collecting the coefficients of ¢4, we get (30).

Collecting the coefficients of g5+ for i = 0,2, 3,4 from (30), we arrive at (31).

Using (32) and (33) along with (8), we get (34) and (35) respectively.

From the congruences (34) and (35), we obtain (36) and (37) respectively.

The congruence (100) is 2 = 0 case of congruence (38). Suppose the congruence (38) is true for
3 > 0. We have

n+4

3 B, (32 5% 498520 1) q" = 8f1 fro + 8f3f2
n=0
=8fafos (R(¢°) ™" —qa— °R(¢°))
(112) +8£2 1% (R(¢") ' — ¢ — ¢'R(¢"))°,

from which we extract

o0

Z B, (32 520ty 412 528+ 1) q" = 8f1fs +8afi fiy
n=0
= 8f5f100 (R(¢*) " — ¢* — ¢*R(¢™))
(113) +8aff3 (R(@) ' — - ?R()°,

which implies

o0
(114) 3 B, (32 - 526+2, | 98 . 52+2 _ 1) ¢ =81 foo + 8313,

n=0

which shows that the congruence (38) is true for 3 + 1. Hence, by induction, the congruence (38)
is true for all non-negative integers (3.

Employing (8) in (113) and then collecting the coefficients of ¢ *! from the resultant equation,
we get (39).

Collecting the coefficients of ¢°"*? for i = 3,4 from (38) along with (8), we obtain (40).
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4. PROOF OF THEOREM (2.8)

From the equation (81), we get for modulo 4,

- n_ 113
;Bo (8n+1)¢" = 27f113f;‘f10
s (f_> (f_> hf
AN fa)  fio
_ SN
=2 fio
1
(115) =2+ (f3 fr0 + afy) s
from which we extract
(116) > B, (16n+1)¢" = 2f}
n=0
and
(117) > B, (16n+9)q" = 2f5.
n=0

The equation (116) is the a = 8 = v = 0 case of (41). Suppose that the congruence (41) is true
for « > 0 with 8 =~ = 0. From (41) with 8 =~ = 0, we get

> B, (16-3n+2-3% — 1) ¢" = 2f}

n=0
(118) =2f3+2qf5,
from which we extract
oo
(119) ZB" (16- 3201, 4 9 32042 _ 1) " = 23,
n=0
which implies
oo
(120) ZBO (16 - 32042 4 2. 32042 _ 1) gn = 9f3,
n=0

which implies that the congruence (41) is true for o + 1 with 3 = v = 0. Hence, by mathematical
induction, the congruence (41) is true for all > 0. Suppose that the congruence (41) holds for
«, f > 0 with v = 0. We have

oo
> B, (1632 524 2.8 5~ 1) " = 2f}

n=0

(121) =2f% (R(¢°) " — q - R(¢%))°,
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from which we extract

o0
(122) ZBO (16 320 52841, 4 o 320 52642 _ 1) ¢ =23,

n=0

which yields

oo
(123) 3 B, (16 .32 52642 | 9. 32 52642 _ 1) ¢ =23,

n=0

which implies that the congruence (41) is true for 8 + 1 with v = 0. By mathematical induction,
the congruence (41) is true for all non-negative integers «, 8 with v = 0.
Suppose that the congruence (41) holds for «, 3,7 > 0. We have

o0
> B, (163252 . 10 2. 8% 5% 7 1) " = 2f]

n=0
B(¢")  AW) o 5CW@)Y
124 =2f} ( —q -+ ,

(124) w\ e "B A7)
from which we extract

o0
(125) 3 B, (16 L3200 528 72yl 4 o 32 528 72942 _ 1) "= 2f.

n=0

The congruence (125) reduces to

oo
(126) 3 B, (16 .32 . 526 7242y 4 9. g2 526 q2vH2 _ 1) = 2f3,

n=0

which implies that the congruence (41) is true for v+ 1. By mathematical induction, the congruence
(41) is true for all integers «, 8 and ~.

Using (9) in (41) and then collecting the coefficients of ¢ , we arrive at (42).

Employing (6) in (41) and then collecting the coefficients of ¢3", ¢®>"*1 and ¢®"*2, we obtain (43),
(44) and (45) respectively.

From the congruence (44), we get (46).

Using (8) in (41) and then collecting the coefficients of ¢®*+3, we get (47).

Collecting the coefficients of ¢°"*2 and ¢°"** from (41) along with (8), we obtain (48).

Collecting the coefficients of ¢°"*% for i = 1,2, 3,4 from (47), we arrive at (49).

From the congruence (117), we get

Tn+6

o0
(127) > B, (80n+9)¢" =2},
n=0
which is the @ = 8 = v = 0 case of (50).
The rest of the proofs of the identities (50) - (58) are similar to the proofs of the identities (41) -
(49), so we omit the details.
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From the congruence (97), we obtain
1

11503
B, (16n+3) " = 2——7—
n=0 ’ fllgfjflo
=2 <f_2>7 (ﬁy _flfg
AN fa) fio
_haf?
o
1
(128) = QG (£3f10 + af 1) ;
from which we extract
1
(129) B, (32n 4 3) " = 2f }
n=0
and
1
(130) B, (32n 4 19) ¢ = 2f 2
n=0

The rest of the proofs of the identities (59) - (76) are similar to the proofs of the identities (41) -
(49), so we omit the details.
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