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Abstract: In the present paper, we have considered acyclic transmission network in which number of nodes are
capable of receiving or sending a signal to the target nodes. To model the proposed acyclic transmission network,
the present study combined the concepts of Markov process and minimal cuts incorporating copula to find the
various reliability measures. The considered network can have four possible states namely operable, partial failure,
critical failure and complete failure. The considered network can be repaired in two different ways. When the
network is in critical state it is repaired with general repair whereas in complete failure state repaired with the help
of two different repair rates namely general and exponential which has been incorporated with the application of
Gumbel-Hougaard family of copula. Various reliability characteristics such as transition state probabilities,
asymptotic behavior, reliability, mean time to failure and sensitivity of the proposed network have been evaluated
with the help of minimal cuts coupling with Markov process using Gumbel-Hougaard copula, supplementary
variable technique and Laplace transforms.

Keywords: Network reliability, Acyclic transmission network, Mean time to failure, Sensitivity, Supplementary
variable techniques, Gumbel-Hougaard family of copula.

1. Introduction

Networks are the prominent part in many real-world systems such as computer architecture, data
communications, software engineering, voice communications, transportations, oil and gas production and electrical
power systems (Gertsbakh and Shpungin 2016). A network is a combination of nodes and links which is also known
as vertices and edges respectively. A network model is defined by G= (V, E) in which ‘V” and ‘E” show nodes and
edges set respectively. Examples of nodes (vertices) are railway stations, road intersections, mobile routers in
mobile communication etc. and links (edges) are railways, roads, wireless paths etc. (Colbourn 1987).

Network Reliability is the probability of transferring the information/flows/messages from a source node to
a sink node. Network reliability is an important concept in the planning, designing, manufacturing, and maintenance
of controlling of networks. The network reliability evaluation problem occurs in a wide range of situations including
telecommunications, interconnection networks, parallel processing networks and many others (Gertsbakh and
Shpungin 2016). On the basis of connectivity, when all terminals are connected to each other i.e. if all nodes are
terminal then it is called all-terminal connectivity. If there are only two terminals then the possibility to reach signal
from one node to another one, that probably lead to source-terminal or s-# connectivity (Levitin 2005).Traditionally,
network reliability considers binary state network in which both the components and system can possibly be in two
states: completely working or totally failed. However, network reliability analysis in the context of multi-state
network is based on performance level not on the connectivity level.

Basically, the network reliability problems are classified into two parts with respect to of flow viz. Binary
state flow network (BFN)/multi-state flow network (MFN) and Multi-state node network (MNN). In BFN, the
capacity of each arc is either 0 or 1 whereas, in MFN, the capacity of each arc can be a non-negative integer. The
BFN/MEFN satisfies the flow conservation law whereas MNN does not. These networks have their own utilization in
many real-life problems, like electrical power distribution, transportation networks, cellular telephones and
computer networks here it is suggested that refer to (Levitin 2005, Yeh 2012).
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The considered acyclic transmission network (ATN) consists of number of nodes which are capable of
receiving and sending a signal via different edges. The proposed network consists of a root node where the signal
source is placed, a number of leaf nodes that can only receive a signal and a number of intermediate nodes (neither
source node nor sink node) which are capable of transmitting the received signal to some other nodes. The whole
network is in working condition if a signal from the root node is transmitted to the leaf nodes, otherwise, the
network fails. An example of the acyclic transmission network is a radio relay station, where a transmitter located at
the root node (position) and receivers are located in the terminal nodes (positions). The aim of this network is to
propagate the signals from transmitters to the receivers (Gertsbakh and Shpungin 2016, Yeh 2006). (Levitin 2003)
evaluated the reliability for acyclic transmission networks of multi-state elements with time delays from an
algorithm based on extended universal generating function method. In this work it is assumed that the network fails
if the signal generated at the source node cannot reach the terminal nodes within a specified time. (Levitin 2001)
calculated the reliability of acyclic transmission networks with its multi-state elements from an algorithm based on
universal generating function technique. A Multistate—node acyclic network (MNAN) was first investigated by
Malinowski and Preuss in 1996. In this study researchers evaluated the reliability of multistate node of acyclic
networks using minimal cuts (MC) based on an algorithm and some simple concepts. (Levitin 2001 and Malinowski
and Preuss 1996) also discussed reliability evaluations for MNAN by one of the best-known algorithm and these
algorithms are based on universal generating function (UGF) technique and branch and bound method. (Levitin
2005) discussed different algorithms and applied UGF method to find the reliability of binary and multi state
systems.

Reliability analysis of the systems is traditionally done with the help of probability distributions. Usually a
single distribution is used in failure/repair analysis. But if two different distributions are to be applied
simultaneously in repair /failure, one can take help of copula. The copula is a function which joins or couples a
multivariate distribution function to its one-dimensional marginal distribution functions. Copulas are multivariate
distributions functions whose one-dimensional margins are uniform on the interval [0, 1].The copula approach is
very natural when any system is repaired/failed by a couple of ways (Nelsen 2006). There are some important
families of copulas with their different characteristics. The family of Archimedean copulas has been studied by
numbers of authors. (Ram and Singh 2008) applied Gumbel-Hougaard family of copula and determined the
availability, M.T.T.F and cost analysis of complex system under preemptive repeat repair discipline. (Nailwal and
Singh 2016) calculated the reliability of cold standby redundant systems with preventive maintenance using
Gumbel-Hougaard family of the copula. (Munjal and Singh 2014) considered the complex repairable system
consisting of 2-out-of-3: G subsystems connected in parallel for finding the reliability characteristics and using
Gumbel-Hougaard family of copula. (Nailwal and Singh 2011), the researchers evaluated the performance and
reliability analysis of a complex system having three types of repairs with the application of copula. (Srinivasan and
Subramanian 2006) the researchers considered standby systems with more than two units and these systems are
studied only when either the lifetime or the repair time is exponentially distributed. (Kumar and Singh 2013)
discussed the reliability analysis of a complex system having two repairable subsystems viz. A and B connected in
series. This study also included a special type of delay i.e. reboot delay and used Gumbel-Hougaard family of copula
to obtain various transition state probabilities, reliability, availability, MTTF, cost analysis and sensitivity analysis.
(Nailwal and Singh 2012) investigated the reliability characteristics of a complex system having nine subsystems
arranged in the form of a matrix in which each row contains three subsystems. The considered system analyzed the
different types of power failures which also lead to failure of the system.

From above discussion, it is clear that many researchers analyzed the reliability of different networks by
incorporating the probabilistic evaluation based on inclusion-exclusion, the sum of disjoint products methods and
universal generating method (UGF). Researchers also analyzed reliability of acyclic transmission network by using
UGF method and also discussed many algorithms based on different concepts like minimal cut, Dijkstra's and
Kruskal's algorithm. Further, it is also clear from above discussion that reliability analysis of the acyclic
transmission network using both Markov process and minimal cut yet to be studied.
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Keeping above facts in view, here in the proposed work we tried to combine the concepts of Markov
process and minimal cut to evaluate the reliability characteristics of the acyclic transmission network. In the
considered network there are four different possible states, namely operable, partial failure, critical failure and
complete failure. The network is said to be in partial failure state, if one of the edges fails but the signal is
transmitted to both the sinks. But if any further failure occurs in the network and the signal flows to only one of the
sinks then it is said to be in critical state. If there is no flow to any of the sinks then the network is in complete
failure state. When the network is in the critical states, it is repaired by general distribution whereas when it is in
complete failure state then the network is repaired by two different types of distributions namely general and
exponential. The proposed acyclic transmission network has been studied to evaluate the reliability characteristics
with the application of minimal cuts and Markov process incorporating Gumbel-Hougaard family of copula,
supplementary variable technique and Laplace transforms. The reliability measures such as transition state
probabilities, asymptotic behavior, MTTF and sensitivity of the network has been obtained. The considered acyclic
transmission network and the transition diagram of the network are shown in Figures 1 and 2 respectively.

Assumptions:

(i) Initially, the acyclic transmission network is in the good state.

(ii) In the considered network there are four possible minimal cuts:

@11,2}{1,3}

(b){3,5}{2,4}

() {1,2} {2,3} {3,5}

@)1{1,3}12,3}12. 4}

(iii) The network has four possible states: good, degraded, critical and completely failed.

(iv) Network has three types of failure: partial, critical and complete failure.

(v) The network is repaired when it is in the critical and complete failure states.

(vi) Transitions from critical states S¢ and So to initial state S follow the general distribution.
(vii)Transitions from the completely failed states S», S4, S7 and S to initial state Sy follow two different
distributions incorporating Gumbel-Hougaard family of the copula.

Table 1: Descriptions of notations used in Transition Diagram

States Descriptions
S, The state when all the edges of the network are in working condition.
S] The state when the edge {1, 3} fails and the network is in degraded state.
S The state when the edges {1, 2} and {1, 3} in the network fail and
2 network is in completely failed state.
S. The state when the edge {3, 5} fails and the network is in the degraded
’ state.
S The state when the edges {3, 5} and {2, 4} in the network fail and the
¢ network is in the completely failed state.
S5 The state when the edge {1, 2} fails and the network is in the degraded
state.
S, The state when the edges {1, 2} and {2, 3} in the network fail and the
network is in the critical state.
S7 The state when the edges {1, 2}, {2, 3} and {3, 5} in the network fail and
the network is in the completely failed state.
S, The state when the edge {1, 3} fails then the network is in the degraded
state.
S, The state when the edges {1, 3} and {2, 3} in the network fail and the
network is in the critical state.
Sm The state when the edges {1, 3}, {2, 3} and {2, 4} in the network fail and
the network is in the completely failed state.
Ay ! s Py | 25 | 2y Th_e dlffertent fal_lu_re rates corresponding to their edges in the network
using possible minimal cuts.

165



166

S. Bisht and S. B. Singh

P(1) The probability that the network is in S; state at instant time ¢, i=1 to 10.

P(s) Laplace transform of Pi(t).

¢] (x) Repair rate in states S and S, in the network with the elapsed repair
time X .

#,(x) Repair rate in states S,,S,,S, and S|, in the network with the elapsed
repair time X .

o(x) Coupled repair rate

Letting u#, = e’ and U, = ¢2 (x) the expression for joint probability (completely failed state S», S4, S7 and Sy to

good state Sg) according to Gumbel-Hougaard family of copula is given by
/6
o) = exp|(x) + (togg, ()]

Figure 1: Acyclic Transmission Network

Figure 2: Transition diagram for the acyclic network

2. Solution of the Model

Taking Laplace transformation of equations (A.1.1)-(A.1.15) and using equation (A.1.

state probabilities of the proposed acyclic network as

1
F(s)= 36)
Py=—tu L
(s+4,) B(s)
[_)z(s): 1131‘12 [l_m:' 1
(s+4,) s B(s)
2(s) = it !

(s+4,) B(s)

E(S): /124235 [1_m:' 1
(S+2’z4) s B(s)

Biy=—to ]
(s+4;) B(s)

B=— ]
(s+45) B(s)

16), we obtain the transition

@1

22

(23)

(2.4)

2.5)

(2.6)

@7
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B (s) = —astarl {1—%} 1

(s Ayy)(5+ Ayg) s | Bs) 2.8)
R9=G : m) B:s) e
B(s)= (Sfﬁ B:s) 2.10)
fals)= (s +ﬂﬂi3jlgﬁﬂq3) [1 _@J' st) @11
where
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The Laplace transformations of the probabilities that the system is in up (i.e. either good or degraded state) and
failed state at any instance are as follows:

P (8) = By(s) + P(s)+ Py(s) + Pu(s) + B (8) + Bu(8) + By (s) .12)
P (s)= [1+ Ay s Ay Aos LS } ! 2.13)
(s+4,) (s+24,) (+4;) (5+45) (s+4,) (s+4,)|B(s)

P (5) = P () + P,(8) + P, () + By (s)

{1—%} 1, o [l—%} L, ke
B(s) (s+4,) s B(s) (s+A4,;)(s+4y)

2 _ Ay
Biown(8) = G A

L=s0(s) | 1 ki [1=sp(s)| 1
s B G+A)6+h) | s B

N

3. Asymptotic behavior of the Network

Using Abel’s lemma in Laplace transformation
Lilg1 {sﬁ (S)} =LimF(t)=F , provided the limit on right hand exists the following time independent up
S 1—>®

and down states probabilities are obtained:

Ay s o P A A ] 3.0

P”p =1+ .
/’{’IZ 124 2’23 ]’35 /123 ﬂ'z4 B(O)
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1
Ptlown Zj’l _+ﬂ’3 21 125 - j‘l3‘_ (32)
0 oo o

where B(0) = l_in(‘)n B(s)

Particular case: When repair follows exponential distribution. In this case the result can be
1

S R Z1C)) §2 (s)= exp[xg +1{logg, (x) }9]5

T (3.3)
s+exp[x’ +{logg,(x)}"]’

4. Reliability analysis of the network

Let the failure rate of the network with different edges bed; =0.3,4,=0.2,4,=04,
Ay =0.1,4,;, =0.15,1,, =0.5, repair rates g =0,0 =1 and x=1. Putting these values in equation (2.13) and

using equation (3.3) one can obtain Table 2. Also, if repair follows exponential distribution, then
Reliability (R)=F,, (1) = e +0.3e™ —03e™"* +0.363636"" —0.3636367"* +0.1904761% "

—0.1904761%7"* +0.28571427""% —0.2857142~"%
Table 2: Time vs. Reliability

Time(t) | Pup(t)
0 1

0.9424
0.8389
0.7338
0.6367
0.5555
0.4834
0.4212
0.3674
0.3209
0.2806

—

\OOO\]O\LII-';WN

—_
(=)

Figure 3: Time vs. Reliability

5. Mean time to failure of the network

Mean time to failure (MTTF) of the network is given by

MITT.F= £1_1)1()1 £, (s) (5.1)

Assuming that the repair follows exponential distribution, i.e.
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T2 ) 5 (- expl’ + {logd, (')’
STAE) s+exp[x’ + {logg, (1)}’ ]’

Now, let the repair rate ¢ = 0, f=1 and x= 1, then

@). Setting A3 =0.3,4,5,=0.4,1,, =0.1,4,; =0.15, 4,5, = 0.5, and varying A,,as 0.01, 0.02,

0.03, 0.04, 0.05, one can obtain variation of MTTF with respect to 41 , from equation (5.1), values are given in Table
3.

(ii). Assuming 4,, = 0.2, 4,5, = 0.4, 4,, =0.1,4,; =0.15, 4,5 = 0.5, and changing 4,, as 0.01,

0.02, 0.03, 0.04, 0.05 can see variation of MTTF with respect to ﬂu from equation (5.1), values are given in Table 3.

(iii). Letting 4,; =0.3,4,, =0.2, 4,5, =0.4,4,; =0.15,4,; =0.5, and altering A,,, as 0.01,

0.02, 0.03, 0.04, 0.05 one can determine variation of MTTF with respect to 124 from equation (5.1), values are
given in Table 3.

(iv). Assuming 4,3 = 0.3, 4,, =0.2,4,, =0.1,4,; =0.15, 1,5 = 0.5, and changing 4,5, as 0.01,

0.02, 0.03, 0.04, 0.05, the variation of MTTF with respect to 135 can be obtained from equation (5.1), values are
given in Table 3.

). Setting A4,; =0.3, 4, =0.2,4,5;,=0.4,4,, =0.1, 4,5 = 0.5, and varying 4,5, as 0.01,

0.02, 0.03, 0.04, 0.05 one can obtain variation of MTTF with respect to A, from equation (5.1), values are given in
Table 3.

The variation obtained in MTTF with respect to different failure rates is shown in Figure 4.

Table 3: Variation in MTTF w.r.t. Failure rates

f::i“re MTTF w.rt A, | MITFwrtd; | MTTF wrtd,, | MTTFwr.td;s | MTTF wr.td,;
0.01 8.4887 10.4032 38.1943 7.3246 47.0814
0.02 8.46404 10.2604 21.5277 7.3576 26.249
0.03 8.4466 10.1262 15.9721 7.3856 23.1666
0.04 8.42948 9.9999 13.1941 7.4202 15.8327
0.05 8.41269 9.8809 11.5278 7.4509 13.7495

Figure 4: Failure rate vs. MTTF
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6. Sensitivity of the network

Sensitivity of the network reliability with respect to parameters & can be obtained by

s

S, :% ,where E=A,,, 415,45, Aysand A, (6.1)

The computed sensitivities with respect to different parameters are listed in Table 4. The same is also shown in
Figure 5.

Table 4: Sensitivities w.r.t. different parameters

Time Sfilz S/1| 3 S;vas Sf{za S;‘24
0 0 0 0 0 0
1 -5.41994 | 2.946685 | -1.82551 | -0.33854 | -0.29901
2 -23.5437 11.96128 | -10.6537 | -0.30977 | -0.23265
3 -78.4001 39.73755 | -38.5026 | -0.17368 | -0.03419
4 -235.319 119.7443 | -118.641 | -0.03886 | 0.188641
5 -667.298 | 340.4482 | -339.479 0.05726 | 0.393291
6 -1824.47 | 932.0885 -931.24 | 0.106631 0.5662
7 -4862.35 | 2485.818 | -2485.08 | 0.111935 | 0.705562
8 -12715.2 | 6502973 | -6502.32 | 0.078946 | 0.813897
9 -32767.9 16762.53 -16762 | 0.013617 | 0.895022
10 -83469.5 42705.8 | -42705.3 -0.0789 | 0.952881

Figure 5: Sensitivity vs. Time

7. Conclusion

In the present study, various reliability measures have been computed for the acyclic transmission network
with the help of minimal cuts and Markov process incorporating different types of failure. In this model various
reliability measures like transition probabilities, asymptotic behavior, reliability, MTTF and sensitivities with
respect to different parameters have been obtained with the help of the proposed method unlike done in the past.

Figure 3 provides the variation of reliability with respect to time. By observing the figure one can visualize that it
decreases from its initial stage with respect to time.

From Figure 4, we can easily visualize that MTTF with respect to A5, 4,; and /112 are continuously and slowly
decreasing though, the variation is found to be decreasing linearly. Further, it is observed that the MTTF with

respect to /174 is decreasing exponentially whereas it is decreasing continuously with the different rates. The highest

and the lowest value of MTTF have been found with respect to failure rates of edges 4,5 and A, respectively.

Figure 5 shows the sensitivity of the proposed network with respect to different parameters. Critical examination of

the figure reveals that sensitivity of system corresponding to the parameters ﬂ'lz and /13 5 is decreasing with respect

to time whereas it is increasing corresponding to parameter 113 . Moreover, it is observed that sensitivity of the
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system corresponding to the parameters 123 and 124 firstly decreases then slowly increases with respect to time.

The system is found to be most sensitive with respect to parameter ﬂ, 3.
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Appendix A.1

Formulation of Mathematical model

By probability considerations and continuity arguments we can obtain the following set of difference-differential
equations governing the present mathematical model

[% oy + s + g +A3}Po O = [ PP, (x.0dx+ [ 9P, (x,0d+ [ 9P, (x.)dx

+[ ()R, (x,1)dx AL
) }P(r)—& B0
720 B (A12)
(0 o
_5+§+(p(x)]f§(x,t)—0 (A13)
_i%}P(t)—ﬂgP(t)
|t 4 (3U0) = 4550 (A14)
(0 0
s (p(x)}ﬂ(x, H=0 (A.15)
_E%}P(n—& ()
72N (A.1.6)
_iw}P(r)—ﬂzP(t)
_dt 51%6 — 3% (A.1.7)
_g + % + (/)(x)}P; (x,0)=0 (A.1.8)
_i%}P(z)ﬂq X0
_dt 3178 370 (A19)
_i%}P(t)—ﬂzP(r)
P R (A.1.10)
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0 0
[5+a+¢)(x)}l’m(x,t):0 (A.1.11)

Boundary conditions

P(0,1)=A,P () (A.1.12)
P,(0,t) = A,,B(¢) (A.1.13)
F(0,8) = A5 B (1) (A.1.14)
B(0,8) = 2, B(0) (A.1.15)

Initial conditions

1 ifi=0

0 isl (A.1.16)
l

P,-(0)={



