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S(N)-ALMOST PRIME SUBMODULES

STEVEN AND IRAWATI

ABSTRACT. In this article, we focus on some notions of prime submod-
ules over a commutative ring with identity. Suppose R is a commutative
ring with identity and M is an R-module. A proper submodule N of
M is called prime if rm is element of N implies r element of (N : M)
or m element of N. In this article we give a generalized version of
prime submodule in its localization which named as S(N)-almost prime
submodule. This generalization was obtained by creating generalized
version of almost prime submodule such that the submodule is not al-
most prime but its localization is almost prime. Furthermore, some
characterizations of S(N)-almost prime submodules and its relation to
S(I)-almost prime ideals are given in this article.
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1. INTRODUCTION

In this article, all rings are commutative with identity and all modules
are unital. Let R be a ring and M be an R-module. Suppose N is a
proper submodule of M. N is called prime submodule if rm € N implies
r € (N :M)orm € N, where (N : M) = {r € R:rM C N} is a
residual of N by M [2]. Furthermore, N is called weakly prime submodule
if 0 # rm € N implies r € (N : M) or m € N [1]. In 2012, Hani A.
Khasan gave a new notion of prime submodule, i.e. a proper submodule N
of M is called an almost prime submodule if rm € N — (N : M)N implies
re(N:M)ormeN [9].

A concept which related to prime submodule is multiplication module.
An R-module M is called multiplication module if for all submodule N of
M, there exists an ideal I of R such that N = IM [2]. Here, I is called
representation ideal of N. By this notion, we can define a multiplication
between two submodules. Suppose N and K are submodules of M with
I and J are representation ideals of N and K respectively. The product
of N and K is NK = IJM. As for m,m’ € M, we have (m) = AM
and (m’) = BM where A and B are representation ideals of (m) and (m/')
respectively. So mm’' = ABM [2].

A notion of ring localization was explained by Huishi in [10]. Suppose
R be a ring and S be a multiplicatively closed set of R, i.e rs € S for all
r,s € S. We denote Rg as a localization of R in S. It is clear that Rg is
a ring with identity. Similarly, if M is an R-module, then Mg denotes a
localization of M in S which is an Rg-module. Furthermore, if S = R — P
for a maximal ideal P of R, then Mg is called the localization of M at P
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and denoted as Mp [10]. The information about these notions are available
in [6]. In this article, the localization of module refers to module over its
ring localization, i.e. Mg is a module over Rg.

Another related concept of prime submodule is about an element of R
which is prime to a submodule of M. Suppose M be an R-module and N
be a submodule of M. An element r € R is called prime to N if rm € N
for m € M implies m € N. Futhermore, S(N) = {r € R| Im ¢ N
such that rm € N} is the set of all elements in R which are not prime
to N. The submodule N is called a primal submodule if S(N) forms an
ideal of R [4]. Combining the notion of prime submodule and localization
of module gives us another kind of prime submodule. In this article we
introduce S(INV)-almost prime submodule which is a generalized notion of
almost prime submodule.

In this article, we dedicate the second section to introduce S(IN)-almost
prime submodules and give its characterization. In the third section, we give
some characterizations of submodules which both S(V)-almost prime and
primal. Furthermore, we give the condition such that S(V)-almost prime
submodule is almost prime. In the fourth section we give similar notion of
S(N)-almost prime submodules in ideals, which is S(I)-almost prime ideals.
In the last section of this article, we give some relations between S(I)-almost
prime ideals and S(N)-almost prime submodules, with I = (N : M).

2. S(N)-ALMOST PRIME SUBMODULES

Definition 2.1. Let R be a ring and M be an R-module. A proper sub-
module N of M is called S(N)-almost prime submodule if Np is an almost
prime submodule for each maximal ideal P with S(N) C P.

Corollary 2.1. Let N be a proper submodule of R-module M. If N is S(N)-
weakly prime submodule, then N is an S(N)-almost prime submodule.

Proof. Suppose N is an S(INV)-weakly prime submodule of M and P any
maximal ideal of R with S(N) C P. Let ;—) € Rp,% € Mp such that
% € Np — (NP : Mp)Np. Note that {OJWP} - (Np : ]\4]3)]\7137 SO % S
Np — (Np : Mp)Np C Np — {Op.}. Since Np is weakly prime, then

- € (Np: Mp)or %t € Np. Hence N is S(NV)-almost prime submodule. [
Lemma 2.2. Let M be an R-module and N be a proper submodule of M
with S(N) C P where P is a mazimal ideal of R. Then (N : M)Mp =
(Np: Mp)Mp=(N:M)pMp=((N:M)M)p

Proof. By [7, Theorem 2.21] (Np : Mp) = (N : M)p. Then (Np : Mp)Mp =
(N : M)pMp. We will prove (N : M)Mp = (N : M)pMp. Take arbitrary

k
mée (N : M)Mp. Tt meansm:g:lri% with r; € (N : M), m; € M,p; ¢

PVi=1,2,.. k. Since 1p ¢ P, we have m = zk: L€ (N M)pMp. So
(N : M)Mp C (N : M)pMp. =

For another containment, take % € (N : M)pMp. It means =+ = i:l .
with r; € (N : M),m; € M,p;,q; ¢ PV i =1,2,....,k. Since R— P is
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k
a multiplicatively closed set, then ¢;p; ¢ P Vi = 1,2,....k. So > ri;ﬁ];_ €
i=1

(N : M)Mp. Hence (N : M)M)p C (N : M)Mp. So, we prove that
(N : M)Mp = ((N: M)M)p. We can easily prove (N : M)pMp = ((N :
M)M)p by similar argument. Hence (N : M)Mp = (Np : Mp)Mp = (N :
M)PMP:((N:M)M)P. O

Theorem 2.3. Let M be an R-module. Every almost prime submodule N
of M is an S(N)-almost prime submodule.

Proof. Let P be any maximal ideal of R such that S(N) C P. We will
prove that Np is a proper submodule of Mp. Assume the contrary, that
Np = Mp. Take arbitrary m € M, it means % € Mp = Np,sodp ¢ P
such that pm € N. Since S(N) C P and p ¢ P, then p is prime to N. This
giveusm € N and M C N, contradiction. Hence Np is a proper submodule
of Mp.

Let % € Rp, % € Mp such that % € Np—(Np : Mp)Np. So3s ¢ P such
that srm € N. We will prove srm € N — (N : M)N. If srm € (N : M)N,
then 7% = 0 € (N : M)M)p. By lemma 2.2, 7% = =70 € (N :
MYM)p = (Np : Mp)Np, a contradiction. Hence srm € N — (N : M)N.

Since N is an almost prime submodule of M, we have r € (N : M) or
sm € N. If r € (N : M), then TMp = (rM)p C Np by [7, Corollary 2.9].
It means % € (Np : Mp). If sm € N, then % = % € Np. Hence N is an
S(N)-almost prime submodule of M. O

Theorem 2.4. Let N be a proper submodule of R-module M. If S((N :
M)N) C (N : M), then N is a prime submodule if and only if N is an
almost prime submodule.

Proof. It is clear that a prime submodule is an almost prime submodule.
For the converse part, suppose N is an almost prime submodule. Take an
arbitrary r € R and m € M — N such that rm € N. Since m ¢ N it is
sufficient to prove r € (N : M).

(1) Case 1: rm € N — (N : M). Since N is an almost prime submodule,
then r € (N : M).

(2) Case 2: ™m € (N : M)N. Since we have m ¢ N and rm € (N :
M)N, then r € S(N: M)N) C (N : M)

Both cases give us r € (N : M). It means N is a prime submodule of M. O

Theorem 2.5. Let M be an R-module and P is a mazimal ideal of R.
Suppose N is a submodule of Mp. Consider N = {x € M|{- € N}. If
S((N : M)N) € P and S(N) C P, then N is a submodule of M and

N = Np. Furthermore, if N is an almost prime submodule of Mp, then N
s an almost prime submodule of M.

Proof. By [7, Proposition 2.16] Np = N. Furthermore, suppose Np is an
almost prime submodule of Mp. We will prove N # M. Assume the
contrary that N = M. By [7, Corollary 2.2] Np = Mp, contradiction.
So Np = N is a proper submodule of M. Let r € R,m € M such that
rm €N — (N :M)N.
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We will prove % € Np — (Np : Mp)Np. It is clear that % € Np. If
Tr € (Np : Mp)Np, then by Lemma 2.2 1 € (Np : Mp)Np = ((N :
M)N)p. It means 3 g ¢ P such that grm € (N : M)N. Since ¢ ¢ P, it
means ¢ ¢ S((N : M)N). Sorm € (N : M)N, a contradiction. Hence
% € Np — (Np : MP)NP.

Since N = Np is an almost pime submodule, then % € Np or ﬁ € (Np:
Mp).

(1) If = € Np, then s ¢ P such that sm € N. Note that s ¢ P implies
s ¢ S(N). Som e N. ~

(2) It ﬁ € (Np : Mp), then ﬁ]\/fp C Np = N. Furthermore, Vz € M,
Iz € (rM)p C Np. So rz € N Vz € M which means r € (N : M).

Hence N is an almost prime submodule of M. O

Lemma 2.6. Let M be an R-module and N be a submodule of M. Then
(N:M)2C((N:M)N:M).

Proof. Take arbitrary m € M and r € (N : M)?, it means r = Y s;t;
i=1

with s;,¢; € (N : M),n € N. Since t; € (N : M) Vi € {1,2,...,n}, then

tim € N Vi € {1,2,....,n}, so rm = > (sit;)m = >_ si(t;m) € (N : M)N.

i=1 =1
Hence (N : M)? C ((N : M)N : M). O

Theorem 2.7. Let N be a submodule of R-module M and P be a mazimal
ideal of R with S(N) C P.

(1) If (N : M) be an almost prime ideal of R,then (N : M)p is an almost
prime ideal of Rp.

(2) If (N : M)p is an almost prime ideal of Rp, S((N : M)N) C P

and M is a multiplication module, then (N : M) is an almost prime

ideal of R.

Proof. Suppose N be a submodule of M.

(1) Let (N : M) be an almost prime ideal of R. First, we need to verify
that (N : M)p # Rp. If (N : M)p = Rp, then 1, = {£ € (N :
M)p. Tt means Ip ¢ P such that p-1g € (N : M). By [7, Lemma 2.7
p € (N :M)C S(N)C P, contradiction. Hence (N : M)p # Rp.
Let .2 € (N : M)p such that 22 € (N : M)p — (N : M)?% with
r,s € R and p,q ¢ P. It means Ju ¢ P such that urs € (N : M).
Now, we need to prove that urs ¢ (N : M)?. Assume the contrary
that urs € (N : M)?. It means = € (N M)%, contradiction.
So urs € (N : M) — (N : M)% Note that (N : M) is an almost
prime ideal in R, so ur € (N : M) or s € (N : M). This implies
r=w €(N:M)por?e(N:M)p. Hence (N : M)p is an almost
prime ideal in Rp.

(2) Suppose (N : M)p is almost prime ideal in Rp. It is clear that
(N : M) is a proper subset of R. If (N : M) = R we have
(N : M)p = Rp, contradiction. Let r,s € (N : M) such that
rs € (N : M)~ (N : M)% Since 1 ¢ P, then 1o € (N : M)p.
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We will show that 1= ¢ (NV : M)%. If o € (N: M)3, then Jq ¢ P
such that grs € (N : M)?. By Lemma 2.6 grs € (N : M)? C ((N :
M)N : M).

Claim: ¢ € S((N : M)N). Since rs ¢ (N : M)? and M multipli-
cation module, then rsM ¢ (N : M)>M = (N : M)N. It means
Im ¢ (N : M)N such that rsm ¢ (N : M)N, but grsm € (N :
M)N. So ¢ € S((N : M)N) this prove the claim. Furthermore,
g € S(N : M)N) C P, contradict the fact that ¢ ¢ P. Hence
12 € (N:M)p—(N:M)p. Since (N : M)p is an almost prime
ideal in Rp, then {~ € (N : M)p or £~ € (N : M)p. Claim
that if £~ € (N : M)p, then r € (N : M). Assume the contrary
that r ¢ (N : M), it means {— ¢ (N : M)p, contradiction. So
r € (N : M). By similar argument we have ﬁ € (N : M)p implies
s € (N :M). So (N : M) is an almost prime ideal in R.

|

It is well known that R-module M is called finitely generated if it has
a finite generating set, and M is called faithful if ann(M) = {Or}, where
ann(M) is annihilator set of M. In the next theorem we will give the
relation between faithful, multiplication and finitely generated module to
its localization.

Theorem 2.8. Let M be an R-module and P be any mazimal ideal of R.

(1) If M is a faithful R-module, then Mp is a faithful Rp-module.

(2) If M is a multiplication R-module, then Mp is a multiplication Rp-
module.

(3) If M is a finitely generated module R-module, then Mp is a finitely
generated Rp-module.

Proof. Let M be an R-module.

(1) Suppose M is faithful R-module. To prove Mp is faithful, we need
to show ann(Mp) = ({Onmp} : Mp) = {Og,}. Take arbitrary © €
({Onp} : Mp). Claim: If & € ann(Mp), then r € ann(M). To
prove the claim, assume the contrary that r ¢ ann(M), it means
Im € M such that rm # 0ps. Since % € Mp, then pﬂ’; 0%, thus
% ¢ ann(Mp), contradiction. This proves the claim. Furthermore,
since r € ann(M) and M is faithful, it means r = Og. So I = Orj.
Hence Mp is faithful Rp-module.

(2) Suppose M is a multiplication module. Let N be arbitrary submod-
ule of Mp. Note that M is a multiplication module. By Theorem
2.5, N = Np with N = (N : M)M submodule of M. Moreover, by
[7, Lemma 2.19] and Lemma 2.2 N = Np = ((N : M)M)p C (Np :
Mp)Mp. Furthermore, it is clear that (Np : Mp)Mp C Np = N.
So, Mp is a multiplication module.

(3) Suppose M is finitely generated with B = {b;}?"_; be the generator
of M for n € N. We will prove that B’ = {11’—; ?_, is the generator

1=

of Mp. Take arbitrary % € Mp, withm € M,p ¢ P. Since m € M,
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n
then m = Zribi with 7, € R,b; € M Vi € {1,2,...,n}. So % =

n TL

%R Sy Z ;’lb— So B’ is the generator of Mp. Hence Mp is
—=

finitely enerat d

O

Theorem 2.9. Let M be a finitely generated faithful multiplication R-
module and N be a proper submodule of M with S(N : M)N) C P. If
N is an S(N)-almost prime submodule of M, then (N : M) is an almost
prime ideal of R.

Proof. Let P be a maximal ideal of R with S(N) € P. By Theorem 2.8
Mp is a finitely generated faithful multiplication Rp-module. Since N is an
S(N)-almost prime submodule, then Np is an almost prime submodule of
Mp. By [9, Theorem 3.5] (Np : Mp) is an almost prime ideal. Furthermore,
(Np: Mp) = (N : M)p by [7, Theorem 2.21]. So by Theorem 2.7, (N : M)
is an almost prime ideal of R. O

In the next two theorems, we will give some characterizations of S(N)-
almost prime submodules related to its finite direct sum and tensor product.

Theorem 2.10. Let M, M’ are R-modules and N, N’ are proper submodules
of M and M’ respectively. If N&N' is an S(N&N')-almost prime submodule
of M&M' and S(NON') C S(N), then N is S(N)-almost prime submodule
of M.

Proof. Suppose P is any maximal ideal of R such that S(N) C P. Take
arbitrary %% € Np — (Np : Mp)Np. We will prove that r (m m0) e (No
N)p—((NeN)p: (M&M)p)(N&N)p. Since T2 € Np and r-0e N/,
then £ % & (N & N')p.

We will prove - @ ¢ (N& N)p: (M3 M)p)(N & N)p. Assume
the contrary that £ - "% e (N @ N')p : (M & M')p)(N & N')p. From
Lemma 2.2, we have (N & N')p : (M & M")p)(N & N')p = (N & N’ :
M & M')(N & N'))p. It means there exists ¢ ¢ P such that q(rm,0) €
(NeN :Ma M)(NaeN'). By [12, Lemma 3.2] and [12, Lemma 3.3], we
have (NN - Mae M) NeN)C(NeN : Ma M)Ng (NN :
M ® M)N') C (N : M)N & (N : M')N'). So (grm,0) = gq(rm,0) €
(N : M)N @ (N’ : M'")N'), which means grm € (N : M)N. It follows
tm _ 4" ¢ ((N': M)N)p = (Np : Mp)Np, contradiction. Hence £ -0 ¢
(NG}N/)P — ((NEBN’)p : (M@]\/[/)p)(NéBN,)p.

Since N & N' is S(N & N')-almost prime submodule, then £ € (N & N')p :

(M @& M')p) or ™0 ¢ (N o N')p.
Case 1: Suppose 7 € (N @& N')p : (M © M')p). By [12, Lemma 3.2] we
have— (N%N/ M@M/)pC(N M)P—<Np Mp)

Case 2: Suppose (mTO € (N & N')p. It means 3q ¢ P such that g(m,0) €
N @ N’. This implies ¢gm € N. Since ¢ ¢ P and S(N) C P, then m € N.
Thus = € Np.

From case 1 and case 2, N is S(NN)-almost prime submodule of M. (]
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In [6], David Einsenbud gave a relation of a localization with a tensor
product. In the next theorem, we will give a relation between an S(N)-
almost prime submodules with the tensor product. Proving this relation
needs these following lemmas.

Lemma 2.11. Suppose N is a proper submodule of R-module M and P is
any mazimal ideal of R such that S(N) C P and S((N : M)N) C P. Then
Np is an almost prime submodule of R-module Mp. In other words, if Np is
an almost prime submodule of Rp-module Mp, then Np is an almost prime
submodule of R-module Mp.

Proof. Take arbitrary r € R, % € Mp with m € M and p ¢ P such
that r% € Np — (Np : Mp)Np. Noted that ﬁ € Rp. So % = ﬁ%
We will prove that =% ¢ (Np : Mp)Np. Assume the contrary that = €
(Np : Mp)Np = ((N : M)N)p. So 3q ¢ P such that grm € (N : M)N.
Since ¢ ¢ P and S((N : M)N) contained in P, then rm € (N : M)N, a
contradiction. Hence % € Np — (Np: Mp)Np.

Since N is an S(N)-almost prime submodule of M, then Np is an almost
prime submodule of Mp as Rp-module. So ﬁ € (Np: Mp) or % € Np.
We will prove that - € (Np : Mp) (with Np as submodule of Rp-module
Mp) implies r € (Np : Mp) (with Np as a submodule of R-module Mp).
Assume the contrary that r ¢ (Np : Mp). It means {— ¢ (N : M)p C (Np:
Mp), contradiction. So we have r € (N : M) or m € Np. Hence Np is an
almost prime submodule of R-module Mp. (|

Corollary 2.12. Suppose N is an S(N)-almost prime submodules of M.
Then N ® Rp is an almost prime submodule of M @ Rp for all P maximal
ideals of R with S(N) C P and S((N : M)N) C P.

Proof. By lemma 2.11, Np is an almost prime submodule of R-module Mp.
By [6, Lemma 2.4], Np % N® Rp and Mp = M ®Rp. Hence Np = N® Rp
is an almost prime submodule of R-module Mp = M ® Rp. O

Next characterization of tensor product is hold for almost prime submod-
ules but it is failed for S(IN)-almost prime submodules. Proving this fact
needs two following lemmas.

Lemma 2.13. Suppose M, M' are R-modules and I is an arbitrary ideal of
R. Then M M) =(IMM')=(MeIM).

Proof. We will prove I[(M@M') = (IM®M'), as for [(M@M') = (MQIM')

by using similar argument.

First, we will prove (M ®M') C (IM®M’). Take arbitrary m € I(M®M'),
n

it means m = > 7;(m;®n;) withr; € Tand m; € M,n; € M'Vi=1,2,...,n
i=1
n

and n € N. Then m = Y (r;m;) ®n; € (IM © M'). Hence I(M « M') C
i=1
(IM  M).
For other inclusion, take arbitrary m € (IM®M’), it means m = > (r;m;)®
i=1

iz
n; with r; € I and m; € M,n; € M’ Vi = 1,2,...,n. By definition of tensor
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n n

product, we have m = > (rym;) @ n; = > ri(m; ® n;) € I(M ® M'). So
i=1 i=1

(IM o M) CI(Me M. O

Lemma 2.14. Suppose M, M’ are R-modules and N, N’ are submodules of
M and M’ respectively. Then (N @ N': M & M') C (N : M).

Proof. Take arbitrary r € (N ®@ N’ : M ® M') and m € M. Note that
(m,0) € MM’ Sorm®0 =r(mx0) € N®wN'. Thisimpliesr € (N : M).
Hence (N & N’ : M © M’) C (N : M). 0

Theorem 2.15. Suppose M, M’ are R-modules and N, N’ are proper sub-
modules of M and M' respectively. If N ® N’ is an almost prime submodule
of M« M’, then N is an almost prime submodule of M.

Proof. Take arbitrary r € R and m € M such that rm € N — (N : M)N.
Since m®0 € M ® M’ and 0 € N’ , then rm ® 0 € N ® N'. We will prove
that rm® 0¢ (N® N : M @ M')(N ® N').

Assume the contrary that rm® 0 € (N® N’ : M ® M')(N ® N’). Then
by Lemma 2.13 and Lemma 2.14, we have rm ® 0 = r(m ® 0) € (N @ N’ :
MoM)N@N)C(NoN' :M@M)N®N' C(N:M)N®N', which
implies rm € (N : M)N, contradiction. Hence rm®0 e NN —(N® N’ :
M ® M')(N @ N’'). Since N ® N’ is an almost prime submodule, we have
re(NoN :Me@M)ormo0e NN

Ifre (N®N : M® M), then it is clear that r € (N ® N’ : M « M') C

(N : M).
Ifm®0e N®N', then m € N. Hence N is an almost prime submodule of
M. |

3. S(N)-ALMOST PRIME SUBMODULE AND PRIMAL SUBMODULE

In this section, we will give some characterizations of a submodule which
both S(N)-almost prime and primal submodule. We will give the result
of our observation about behavior of submodule which both S(N)-almost
prime and primal including its relation to an almost prime submodule. We
begin this section by proving this trivial but useful lemma.

Lemma 3.1. Let M be an R-module and N be a primal submodule of M.
Then S(N) is a proper ideal of R.

Proof. Assume the contrary that S(N) = R. It means 1p € S(IN). Then
dm € M — N such that m = 1gm € N, contradiction. U

Theorem 3.2. Let M be an R-module and N is a primal submodule of M
with S((N : M)N) C S(N).

(1) If for any ideal I of R and any submodule K of M such that IK C
N — (N : M)N implies I C (N : M) or K C N, then N is an
S(N)-almost prime submodule of M.

(2) If M be a multiplication module and N is an S(N)-almost prime
submodule of M, then for any ideal I of R and any submodule K
of M such that IK C N—(N : M)N impliesI C (N : M) or K C N.
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Proof. Suppose N is a primal submodule of M.

(1)

(2)

Suppose the assumption in first point in theorem is true and let P
be any maximal ideal of R such that S(N) C P. Since N is a proper
submodule of M, by [7, Theorem 2.17] Np is a proper submodule
of Mp. Take arbitrary I ideal of Rp and K submodule of Mp such
that IK C Np — (Np : Mp)Np. By [7, Theorem 2.16] I = Ip
and K = Kp. We will prove IK C N. Take arbitrary rk € IK,
with r € I,k € K. It is clear that £~ € Ip and {~ € Kp. Then
% € IpKp C Np. It means g ¢ P such that grk € N. Since ¢ ¢ P
implies ¢ ¢ S(N). Then rk € N. So IK C N.

We will prove IK ¢ (N : M)N. Assume the contrary that K C
(N : M)N, by [7, Proposition 2.1] and Lemma 2.2 (IK)p C ((N :
M)N)p = (Np : Mp)Mp, contradiction. So we have proven IK C
N — (N : M)N. By the assumption of theorem, I C (N : M) or
K C N. Then by [7, Proposition 2.1], Ip C (N : M)p = (Np : Mp)
or Kp C Np. Furthermore, by [9, Theorem 3.1] Np is an almost
prime submodule of Mp. It means N is an S(N)-almost prime
submodule.

Suppose N is S(N)-almost prime submodule and M be a multipli-
cation module. Take arbitrary ideal I of R and K any submodule of
M such that JK C N—(N : M)N. By Lemma 3.1, S(N) is a proper
ideal of R. It means 3P a maximal ideal of R such that S(N) C P.
We will prove IpKp C Np — (Np : Mp)Np. Since N is an S(N)-
almost prime submodule, then Np is an almost prime submodule of
Mp. Note that IK C N implies IpKp = (IK)p C Np. So it is
suficient to show IpKp ¢ (Np : Mp)Np. If IpKp C (Np : Mp)Np,
then Vr € I,k € K we have % € (Np : Mp)Np. By Lemma 2.2,
th e (Np: Mp)Np = (N : M)N)p. It means 3¢ ¢ P such that
grk € (N : M)N. Note that ¢ ¢ P implies ¢ ¢ S((N : M)N), so
rk € (N : M)N. Hence IK C (N : M)N, contradiction. Then we
have proven that IpKp C Np — (Np : ]VIP)NP.

By Theorem 2.9 and [9, Theorem 3.1], we have Ip C (Np : Mp) or
Kp C Np. If Kp C Np, then by [7, Proposition 2.1] K C N. If
Ip C (NP : Mp) = (N : M)p, then I C (N : M)

|

The notion of multiplication between submodules that we have in multi-
plication module gives us two following theorem which have similar proof to
Theorem 3.2.

Theorem 3.3. Let M be a finitely generated faithfully multiplication R-
module and N is a primal submodule of M with S(N : M)N) C S(N).
Then the following are equivalent.

(1)
(2)

For any K, L submodules of M such that KL C N — (N : M)N
implies K C N or LC N.
N is an S(N)-almost prime submodules of M.
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Theorem 3.4. Let M be a finitely generated faithfully multiplication R-
module and N is a primal submodule of M with S(N : M)N) C S(N).
(1) For any m,m’ € M such that mm' C N — (N : M)N impliesm € N
orm’ € M.
(2) N is an S(N)-almost prime submodules of M.

Lemma 3.5. Let M be an R-module and N be a proper submodule of M.
Suppose T be a multiplicatively closed set of R. If N is a prime submodule
Of M, then MT/NT = (M/N)T

. N
Proof. Define f : My — (M/N)p with f(%t) = ™8, /
We will prove that f is a mapping. Take arbitrary %, 5~ € (M/N)r with
&= T—,/ It means s € T such that s(t'm — tm’) = 05;. Moreover, st'm =
stm’. Then f(%) _ m+tN _ st m+N _ st/'mt+N __ st?;ztt—b/—N _ m;—N _ f(rtn_/)

t st t st't
We will prove f is surjective. Take an arbitrary ™+ It means Js € T

such that (sm) + N = s(m + N) € M/N. It follows that sm € M. Then
3% = % € M.

It is trivial to prove that f is a module homomorphism. We will prove
ker(f) = Nr. Suppose ¥ € Nr. Then f(%) = "‘;N = % = O(p1/Ny, Which
means § € ker(f). Hence, Ny C ker(f). For another containment, suppose
% € ker(f). Then % = O(pr/n),- It means mJ{N = Jtv—,, for some t € T. It
follows there exists s € T such that s(m+N) = N. It means s(m+N) = N,
then sm € N. Since N is a prime submodule of M, then r € (N : M) or
m € N. Hence %t = %t € Nr. So both cases give us %t € Nr. Then
ker(f) = Nr.

So, by first isomorphism theorem My /Ny = (M/N)7. O

Theorem 3.6. Let N both primal and almost prime submodule of R-module
M with S((N : M)N) C S(N). If K be a prime submodule of M with K C
N and S(K) C S(N), then N/K is an S(N/K)-almost prime submodule of
M/K.

Proof. Since N is almost prime submodule of M, then N is an S(N)-almost
prime submodule. Take arbitrary » € R,m € M such that rm € N — (N :
M)N. Because N is a primal submodule, it means S(N) is an ideal of R.
Note that S(N) is a proper ideal of R. If S(N) = R, then 1p € S(N). It
means Im ¢ N such that m = 1gm € M, contradiction. Since S(N) is
a proper ideal of R, then 3P a maximal ideal of R such that S(N) C P.
By [7, Proposition 2.1], K C N implies Kp C Np. Since N is an S(N)-
almost prime submodule, then Np is an almost prime submodule of Mp.
By [9, Theorem 2.4], Np/Kp is an almost prime submodule. By Lemma
3.5, (N/K)p is isomorphic to Np/Kp which an almost prime submodule.
Hence, N/K is an S(N/K)—almost prime submodule. O

Finally, by observing the behavior of S(IV)-weakly prime and S(N)-
almost prime submodule which primal, we have two following theorems.

Theorem 3.7. Let M be an R-module and N is both S(N)-weakly prime
submodule and primal submodule of M with S({Op}) € S(N). Then N is
a weakly prime submodule of M.
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Proof. Suppose N be an S(N)-weakly prime and primal submodule of M.
Take arbitrary r € R,m € M such that 0p; # rm € N. Because N is a
primal submodule, then S(N) is an ideal of R. This means S(N) is a proper
ideal of R. If S(N) = R, then 1z € S(N). It means 3m ¢ N such that
m = lpm € M, contradiction. Since S(N) is a proper ideal of R, then 3P
a maximal ideal of R such that S(N) C P.

We need to show that 0y # rm € N implies Ops,, % € Np. It is clear
that % € Np. Assume the contrary that ﬁ = Op, it means 3¢ ¢ P such
that grm = 0p;. Note that ¢ ¢ P implies ¢ ¢ S({0p}). So rm = Oy,
contradiction. Hence, Orr, # T3 € Np.

Since N is an S(N)-weakly prime submodule of M, then Np is a weakly
prime submodule of Mp. Because 0y, % € Np, then ﬁ € (Np : Mp)
or - € Np. If - € Np, then 3s ¢ P such that sm ¢ N. Noted that s ¢ P
implies s ¢ S(N). It means m € N.

If £ € (Np : Mp), then - € (Np : Mp) = (N : M)p by [7, Theorem
2.21]. Consequently 3t ¢ P such that tr € (N : M). We will prove that
tr € (N : M) implies r € (N : M). Assume the contrary that r ¢ (N : M).
Then Jdx ¢ N such that rx ¢ N, but trz € N. It means t € S(N) C P,
contradiction. Hence r € (N : M). Then we have m € N or r € (N : M).
So, N is a weakly prime submodule. O

Theorem 3.8. Let M be an R-module and N is both S(N)-almost prime
submodule and primal submodule of M with S(N : M)N) C S(N). Then
N is an almost prime submodule of M.

Proof. Suppose N be an S(N)-almost prime and primal submodule. Take
arbitrary r € R,m € M such that rm € N — (N : M)N. To simplify it, we
give the idea of the proof. Firstly, we will show that S(V) is a proper ideal
of R which means 3P a maximal ideal of R such that S(N) C P. Moreover,
we will prove that 1 € Np— (Np : Mp)Np. Since N is S(NV) almost prime
we will have - € (Np : Mp) or {- € Np. Lastly, we will prove r € (N : M)
orm € N.

Since N is a primal submodule, then S(N) is an ideal of R. We will prove
S(N) is a proper ideal of R. If S(N) = R, then 15 € S(N). So 3m ¢ N such
that m = 1gm € N, contradiction. So we have S(N) is a proper ideal of R
which implies 3P a maximal ideal of R such that S(N) C P. Furthermore,
since N is an S(N)-almost prime submodule of M, then Np is an almost
prime submodule of Mp.

We will prove that ﬁ% € Np—(Np : Mp)Np. It is clear that %% € Np.
Assume the contrary that ﬁ% € (Np : Mp)Np. By Lemma 2.2, % =
1-15 € (Np: Mp)Np = ((N : M)N)p. It means Jg ¢ P such that grm €
(N : M)N. Since ¢ ¢ P, then ¢ ¢ S(N : M)N). Sorm € (N : M)N,
contradiction. This implies ﬁ% € Np— (Np: Mp)Np.

Since Np is an almost prime submodule of Mp, then ﬁ € (Np : Mp) or
1= € Np. If & € Np, then Jq ¢ P such that ¢gm € N. Since ¢ ¢ P, it
follows m € N.

If 7~ € (Np : Mp), then by [7, Theorem 2.21] 1~ € (Np : Mp) = (N : M)p.
It means 3t ¢ P such that tr € (N : M). Now, we need to prove r € (N :
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M). Ifr ¢ (N : M), then 3z ¢ N such that ra ¢ N, but trz € N. It means
t € S(N) C P, leads to a contradiction. So r € (N : M). Hence we have
r€ (N :M)ormeée N. It means N is an almost prime submodule. ]

In his article, Hani A. Khasan showed a characterization of almost prime
submodule as in following theorem. We will present his theorem and prove
the submodule version of that theorem.

Theorem 3.9 (Theorem 2.5 in [9]). Let M be an R-module and N be a
proper submodule of M. The following are equivalent:

(1) N is an almost prime submodule
(2) Forre R—(N: M), (N:<r>)=NU(N: M)N:<r>)
(3) Forre R—(N: M), (N:<r>)=Nor((N:M)N:<r>)

Theorem 3.10. Let M be an R-module and N be a proper submodule of
M. The following are equivalent:

(1) N is an almost prime submodule.
(2) FormeM—N, (N:Rm)=(N:M)U((N:M)N : Rm).
(3) Forme M — N, (N:Rm)=(N:M) or ((N:M)N:Rm).

Proof. 1 = 2. It is clear that (N : M)U((N : M)N : Rm) C (N : Rm). For
other containment, take arbitrary m € M — N. If rm € (N : M)N, then
re (N:M)N:Rm). If rm ¢ (N : M)N, then rm € N — (N : M)N.
Since N is an almost prime submodule and m ¢ N, it means r € (N : M).
Hence (N : Rm) C (N : M)U((N : M)N : Rm). For 2 = 3 it is well known
that if an ideal is union of two ideals, then it is equal to one of them. For
3 = 1. Take arbitrary r € R,m € M such that rm € N — (N : M)N with
m € M — N. To prove N is almost prime submodule, it is sufficient to show
r € (N :M). Since rm € N, thenr € (N : Rm) withr ¢ (N : M)N : Rm).
It follows that ((N : M)N : Rm) # (N : Rm). By the theorem assumption,
(N:Rm)=(N:M). So,r€ (N :Rm)=(N:M). Then, N is an almost
prime submodule of M. 0

By combining Theorem 3.8, Theorem 3.10, Theorem 3.2, and [9, Theorem
2.5] the following theorem is obtained.

Theorem 3.11. Let M be an R-module and N be a primal submodule of
M. Then the following are equivalent:

1) N is an S(N)-almost prime submodule of M.

2) Forme M —N, (N:Rm)=(N:M)U((N:M)N:Rm).
3) Forre R—(N: M), (N:<r>)=NU(N: M)N :<r>).
4) N is an almost prime submodule of M.

(
(
(
(

4. S(I)-ALMOST PRIME IDEALS

In this section, we introduce similar notion of S(N)-almost prime sub-
modules in ideals and we call it S(I)-almost prime ideals. It is well known
that an ideal I of R is called prime ideal if rs € I implies r € [ or s € I.
In 2003, D. D Anderson and Eric Smith gave a generalization of prime ideal
that is: an ideal I of R is called weakly prime ideal if 0 # rs € I impliesr € T
or s € I [3]. In 2005, Bhatwadekar and Sharma gave a more generalized no-
tion that is: an ideal I of R is called almost prime if rs € I—I? implies r € I
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or s € I [11]. In this section, we give some characterizations of S(I)-almost
prime ideals and some remarks of proving idea of the characterization since
it is analogue to prove in submodule version.

In this section we need some similar notions as in submodule. Let I
be an ideal of ring R, » € R is called prime to [ if rs € I implies s € I.
Furthermore, we can construct a set S(I) = {r € R|3s ¢ I such that rs € I'}
which is the set of all elements in R that not prime to I. Moreover, [ is
called a primal ideal of R if S(I) is an ideal of R [4].

Definition 4.1. Let R be a ring. A proper ideal I of R is called S(I)-
locally prime ideal if Ip is a prime ideal of Rp for each mazimal ideal P

with S(I) C P.

Definition 4.2. Let R be a ring. A proper ideal I of R is called S(I)-weakly
prime submodule if Ip is a weakly prime ideal of Rp for each mazimal ideal
P with S(I) C P.

Definition 4.3. Let R be a ring. A proper ideal I of R is called S(I)-almost
prime submodule if Ip is an almost prime ideal of Rp for each mazximal ideal

P with S(I) C P.

Remark 4.1. Let R be a ring and I be an ideal of R.

(1) If I is S(I)-locally prime ideal, then I is an S(I)-weakly prime ideal.

(2) If I is an S(I)-weakly prime ideal, then I is an S(I)-almost prime
ideal.

(3) If I is an almost prime ideal, then I is an S(I)-almost prime ideal.

Next remark is giving a relation of I as an ideal of R compared to I as
a submodule when we consider R as an R-module. Using the remark, we
can prove the characterization of S(I)-almost prime ideal which similar to
submodule version in section 2 and section 3.

Remark 4.2. Let R be a ring. Then the following statements are hold:

(1) (I:R)=1 for I any ideal of R.
(2) R is a multiplication R-module.
(3) If R is a faithful R-module, then R is an integral domain.

Theorem 4.3. Let I be a proper ideal of R and S(I?) C I. Then I is prime
ideal of R if and only if I is almost prime ideal.

Theorem 4.4. Let R be a ring. Suppose P is a maximal ideal of R with
S(I*) C P and S(I) C P. If I is an ideal of Rp, then I = {a € R|{- € I}
is an ideal of R and I = Ip. Furthermore, if I is an almost prime ideal of
Rp, then I is an almost prime ideal of R.

Theorem 4.5. Let I be an ideal of R and P be a mazximal ideal of R with
S(I) C P.
(1) If I is an almost prime ideal of R, then Ip is an almost prime ideal
Of Rp.
(2) If Ip is an almost prime ideals of Rp and S(I?) C P, then I is an
almost prime ideal of R.
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Theorem 4.6. Let R, R’ be a ring and I,I' are ideals of R and R’ re-
spectively. If I & I' is an S(I & I')-almost prime ideal of R & R and
S(IaI')CS(), then I is an S(I)-almost prime ideal of R.

Theorem 4.7. Let R be a ring and I is both S(I)-almost prime and primal
ideal of R with S(I?) C S(I). Then I is an almost prime ideal of R.

5. S(N)-ALMOST PRIME SUBMODULES AND S((N:M))-ALMOST PRIME
IDEALS

In this section we gives a relation between elements that prime to a sub-
module N and element that prime to its residual ideal (N : M). In addition,
we give some characterizations related to S(NNV)-locally prime submodules
with S(I)-locally prime ideals, S(V)-almost prime submodules and S(I)-
almost prime ideals with I = (N : M).

Lemma 5.1. Let M be an R-module and N be a submodule of M. Ifr € R is
prime to N, then r is prime to (N : M). Equivalently S((N : M)) C S(N).

Proof. Suppose r € R is prime to N. Take arbitrary s € R such that
rs € (N : M). To prove r is prime to (N : M), we need to prove s € (N : M).
Note that rs € (N : M) implies rsm € N for any m € M. Since r is prime
to N, we have sm € N for any m € M, which means sM C N. So,
s € (N : M). Hence r is prime to (N : M). O

Note that the inclusion of S(N) C S((IN : M)) is not generally true. In
the next Lemma, we give two characterizations for having the true inclusion.
For doing this, we need a notion of cancellation module that is: M an R-
module is called cancellation if for all ideal I, J of R such that IM = JM
implies I = J.

Lemma 5.2. Suppose M is an R-module and N is any submodule of M.

(1) If M is a cyclic module and v € R is prime to (N : M), then r is
prime to N. Equivalently if M is cyclic, then S(N) C S((N : M)).
(2) If M is finitely generated faithfully multiplication module and r is
prime to (N : M), then r is prime to N. Equivalently if M is finitely
generated faithfully multiplication module, then S(N) C S((N : M)).

Proof. Suppose N be a submodule of M.

(1) Suppose M is cyclic with M = (m). We will prove S(N) C S((N :
M)). Take arbitrary r € S(IN). It means exists ¢ € M — N such
that ro € N. Since M is cyclic, we have z = sm for some s € R.
Then rsm = rxz € N. Note that s ¢ (N : M). If s € (N : M), then
sm € N, a contradiction. It is clear that rs € (N : M). Since m
is generator of M and rsm € N, then we have s ¢ (N : M), but
rs € (N:M). Sore S(N: M)).

(2) Take arbitrary r € S(IN). It means there exist m ¢ M such that
rm € N. Note that to prove r € S((N : M)), we need s ¢ (N : M)
such that rs € (N : M).

Since M is a multiplication module and rm € N, then r(m) =
r((m): M)M C ((rm) : M\)M = (rm) C N = (N : M)M. One can
easily se that M is a cancellation module. Then, r((m) : M)M C
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N = (N : M)M implies r({m) : M) C (N : M). If ((m): M) ¢ (N :
M), we have s ¢ (N : M) such that rs € (N : M).
We claim that ({(m) : M) & (N : M). To prove the claim, suppose
((m) : M) C (N :M). It means m € (m) = ((m) : M\)M C (N :
M)M = N. Hence m € N, contradiction. So ((m) : M) & (N : M).
It is clear ((m) : M) # @. So, we have s € ((m) : M) — (N : M)
such that rs € (N : M). Hence, r € S((N : M)) which implies
S(N) C S((N 5 M)).

O

In these following theorem and lemma, we abbreviate finitely generated
failthfully multiplication module as fgfm module. Two last lemmas give
us some relation between S((N : M)) ideal and S(N) submodule.

Theorem 5.3. Let M be an R-module and N be a proper submodule of M.
(1) If (N : M) is an S((N : M))-locally prime ideal and R/(N : M)-
module M /N is torsion-free, then N is an S(N)-locally prime sub-
modules of M.
(2) Suppose M is a cyclic or fgfm modules. If N is an S(N)-locally
prime submodules, then (N : M) is an S((N : M))-locally prime
ideal and R/(N : M)-module M/N is torsion-free.

Proof. Suppose N be a submodule of M.

(1) Let P be any maximal ideal of R such that S(N) C P. We will prove
Np is a prime submodule of Mp. From Lemma 5.1, S((N : M)) C
S(N) C Pand (N : M)isan S((N : M))-locally prime ideal implies
(N : M)p is a prime ideal. We will prove that Rp/(N : M)p-
module Mp/Np is torsion-free. Take arbitrary 1% + (N : M)p €
Rp/(N : M)p, OJWP/NP #+ % + Np € Mp/Np such that %% + Np =
(;—j—i—(N : M)p)(%-f—NP) = Oprp/np = Np. It means ;—,%—l— € Np, so
3t ¢ P such that trm € N. Since t ¢ P implies ¢t ¢ S(N), we have
(r+(N:M))(m+ N)=(rm)+ N = N. Since R/(N : M)-module
M/N is torsion-free and % # Orrp/np = Np, then r € (N @ M). It
means € (N : M)p and Mp/Np is torsion-free. From [4, Theorem
2.2], Np is prime. Hence N is an S(NN)-locally prime submodule of
M.

(2) Let M be a cyclic or fgfm R-module. Take arbitrary P maximal
ideal of R such that S(N) C Rp. By Lemma 5.2 , we have S(N) C
S((N : M)) C P. Then Np is a prime submodule of Rp-module Mp.
By [4, Theorem 2.2], (N : M)p is prime ideal of Rp. So (N : M) is
an S((N : M))-locally prime ideal of R.

We need to prove R/(N : M)-module M/N is torsion-free. Take
arbitrary r+(N : M) € R/(N : M) and N = 0p;/y # m+N € M/N
such that (rm)+N = (r+(N : M))(m+N) = 0p;/y = N. It means
rm € N. Clearly ﬁ% € Np. Since N is an S(IN)-locally prime
submodule, we have ﬁ €(N:M)por % € Np. The case % € Np
implies 3t ¢ P and tm € N. Since ¢t ¢ S(N), we have m € N, that
leads to a contradiction. So - € (N : M)p. It follows 3¢ ¢ P such
that tr € (N : M). Note that ¢t ¢ S((N : M)) implies r € (N : M).
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It means 7 + (N : M) = (N : M) = Ogryn.m). Hence M/N is
torsion-free.

O

Note that every cyclic module is finitely generated multiplication module.
Using this fact, we are able to give the relation between S(N)-weakly prime
submodules with S((N : M))-weakly prime ideals and S(N)-almost prime
submodules with S((IV : M))-almost prime ideals which are represented in
the following theorems. Since the proof are similar, we only give the proof
for S(N)-almost prime submodule version. The theorem which support the
proof of weakly prime version can be found in [2], [7] and [5].

Theorem 5.4. Let M be an R-module and N be a proper submodule of M.

(1) If M is a multiplication module and N is an S(N)-weakly prime
submodules of M, then (N : M) is an S((N : M))-weakly prime
ideal of R.

(2) If M is a faithfully cyclic or fgfm module and (N : M) is an
S((N : M))-weakly prime ideal of R, then N is an S(N)-weakly
prime submodules of M.

Theorem 5.5. Let M be an R-module and N be a proper submodule of M.

(1) If M is a multiplication module and N is an S(N)-almost prime
submodules of M, then (N : M) is an S((N : M))-almost prime
ideal of R.

(2) If M is a faithfully cyclic or fgfm module and (N : M) is an
S((N : M))-almost prime ideal of R, then N is an S(N)-almost
prime submodules of M.

Proof. Suppose N be a submodule of M.

(1) Suppose M be a multiplication module and N be a proper submodule
of M. By Theorem 2.8, Mp is a multiplication Rp-module. Let
P be any maximal ideal such that S(N) € P. By Lemma 5.1,
S((N : M)) C S(N) C P. Since (N : M) is an S((N : M))-almost
prime ideals of R, we have (N : M)p is an almost prime ideal of Rp.
From [7, Theorem 2.21], (Np : Mp) = (N : M)p. Furthermore, by
[9, Theorem 3.5] Np is an almost prime submodule. Hence, N is an
S(N)-almost prime submodule.

(2) Let M be a faithfully cyclic or fgfm R-module. Both of them
implies M is finitely generated faithfully multiplication R-module.
Based on Lemma 2.8, Mp is finitely generated faithfully multiplica-
tion Rp-module. Suppose P is any maximal ideal of R such that
S((N : M)) C P. By Lemma 5.2, S(N) C S((N : M)) C P. Since
N is an S(N)-almost prime submodule, then Np is almost prime
submodule. By [9, Theorem 3.5], (Np : Mp) is an almost prime
ideal. By [7, Theorem 2.21], (Np : Mp) = (N : M)p is an almost
prime ideals. Hence, (N : M) is an S(N : M)-almost prime ideal.

O
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