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ON SIZE MULTIPARTITE RAMSEY NUMBERS
OF mKi, VERSUS P; OR K3

ANIE LUSIANI, EDY TRI BASKORO, AND SUHADI WIDO SAPUTRO

ABSTRACT. For given two simple graphs G and H, the size multipartite Ramsey num-
ber m; (G, H), is the smallest natural number ¢ such that every 2—edge coloring on the
edges of the complete balanced multipartite graph Kx; has a monochromatic copy of
G in the first color or H in the second color. Hattingh and Henning (1998) gave the
results for the size bipartite Ramsey numbers of stars versus paths, ma(K1,m, Pn), for
m,n > 2. In 2016, we have derived the size tripartite Ramsey numbers ms(mKi ., P3),
for m > 1,n > 2, where mK; ,, is a disjoint union of m copies of a star Ky, and P;3
is a path of order 3. In this paper, we determine the size multipartite Ramsey num-
bers mj(mKi n, P3) and m;(mKi n, K1 3), for all integers m,n > 2 and j > 3. We
also provide an exact value of ma(mKi n, P3), for m,n > 2 and ms(mKi », K1,3), for
(m=1n>1)or (n=1m>1).
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1. INTRODUCTION

For two simple graphs G and H, we say that F' — (G, H), if for any red-blue coloring
of the edges of a graph F, we always have a red subgraph G or a blue subgraph H.
The classical Ramsey number r(m,n) is defined as the smallest natural number p such
that K, — (K, K,). Burger and Vuuren (2004) have generalised this definition as
follows. Let j,1,n,s and t be natural numbers with n, s > 2. Then, the size multipartite
Ramsey number m (K, x;, Ksx;) is the smallest natural number ¢ such that Kj,. —
(Kpxis Ksxt) [1]. They also determined the exact values of m (Koo, K3x1), for j > 2.
For the bounds of the size multipartite Ramsey numbers, they gave a general lower
bound, a probabilistic lower bound, and a diagonal bipartite upper bound for the size
multipartite Ramsey numbers. Burger and Vuuren (2004) have established the following
growth property and the asymptotic limit for the size multipartite Ramsey numbers,
that will be used in this paper.

Proposition 1.1. [1] Let a,c¢ > 2 and j, k,b,d be natural numbers. Then
mi(Kaxy Kexa) < mi(Kaxpy Kexa) if k < j.

Theorem 1.2. [1] m;(K,x;, Ksxi) — 1 as j — oo for any n,s > 2 and [,t > 1.

Syafrizal et al. [8] generalized this concept by removing the completeness requirement.
So, the size multipartite Ramsey number, m;(G, H), is defined as the smallest positive
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integers ¢ such that K;.. — (G,H). If j = 2 then we have the bipartite Ramsey
number mo(G, H). In 1998, Hattingh and Henning [4] gave the results for the size
bipartite Ramsey numbers of stars versus paths, ma (K1 m, Py), for m,n > 2. For j > 3,
Syafrizal et al. determined the size multipartite Ramsey numbers for P versus stars [9].
Then, Surahmat et al. [7] gave the size tripartite Ramsey numbers for paths P, versus
stars, where 3 < n < 6. Furthermore, we gave the size multipartite Ramsey numbers for
stars versus cycles [5] and the size tripartite Ramsey numbers for a disjoint union of m
copies of a star K, versus P3 [6], which can be seen in Theorem 1.3.

Theorem 1.3. [6] For positive integers m > 2 andn > 3, we have that m3(mK ,,, P3) =
[,

Note that, if we consider in [6], for n > 3 and m = 3k + p where p € {0,1,2} and

[Pt By easy

positive integers k, it is proved that mg(mKln,Pg,) (n +1) +
calculation, we can have that k(n + 1) + [2 "+1 1= nH 1.

Now, we consider j > 2. In this paper, we use the generahzing concept of the size
multipartite Ramsey number of G and H,m;(G, H), for j > 2. We determine the size
multipartite Ramsey numbers m;(mKy ,, H), where H is P3 or K3, for all integers
m,n > 2,7 > 2. P3is a path of order 3, K3 is a star of order 4 and mKy,, is a disjoint
union of m copies of a star Ky ,. For additions, we determine the size tripartite Ramsey
numbers mz(mKq n, K1), form=1,n>1andn=1,m > 1.

We call some basic definitions will be used to show the results, as follows. Let G
be a finite and simple graph. Let vertex and edge sets of graph G are denoted by
V(G) and E(G), respectively. A matching of a graph G is defined as a set of edges
without a common vertex. Let e = uv be an edge in G, then u is called adjacent to
v. The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G. The
degree d(v) of a vertex v is |[N(v)|. The mazimum degree of G is denoted by A(G),
where A(G) = max{d(v)|lv € V(G)}. The minimum degree of G is denoted by §(G),
where 6(G) = min{d(v)|lv € V(G)}. A star K, is the graph on n + 1 vertices with
one vertex of degree n, called the center of this star, and n vertices of degree 1, called
the leaves. A factor of a graph G is a spanning subgraph of G. A graph G is said to
be factorable into the factors Fi, Fs, ..., F), if these factors are (pairwise) edge-disjoint
and JI_, B(F;) = E(G). If G is factored into Fy, F, ..., Fy, then F = {F}, Fy, ..., F}.} is
called a factorization of G [2]. Any red-blue coloring of graph Kj; is represented by
any factorization {Fy, F»} of graph Ky, where I is the red graph and F3 is the blue
graph. A path in G that contains every vertex of G is called a Hamiltonian path of G,
while a cycle in G that contains every vertex of G is called a Hamiltonian cycle of G.
A graph that contains a Hamiltonian cycle is itself called Hamiltonian. In 1952, Dirac
gave the following sufficient condition for a graph to be Hamiltonian.

Theorem 1.4. [3]
If G is a graph of order n and the minimum degree of G,0(G) > %, then G is a Hamil-
tonian.
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2. RESULTS

In this section, we determine for any graphs G and H the necessary and sufficient
conditions for m;(G, H) =1 as in Theorem 2.1 and the exact value of size multipartite
Ramsey numbers of mKj , versus P, for all integers j,m,n > 2 as in Theorem 2.2.

Theorem 2.1. For any simple graph G and H, the size multipartite Ramsey number
m;(G, H) =1 if and only if j > r(G, H).

Proof. Let m;(G, H) = 1, there is the smallest number j such that K1 — (G, H). We
consider that Kjx1 = Kj, then j > (G, H) since K; — (G, H). By Proposition 1.1, if
k < j, then m;(G,H) < my(G, H). Then, the sequence m;(G, H) is non-increasing for
increasing j. We will show that there is a natural number k such that mg(G, H) = 1. It
is clear that k = (G, H), since any red-blue coloring of the edges of graph Kj = Ky
contains red G or blue H as a subgraph. O

Theorem 2.2. For positive integers m,n > 2, we have
[Fin+ ] forj=2,

mi(mKia, Ps) = ["0]0 for 3 < j < r(mKig, Py),
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FIGURE 1. (a). Graph Koy, if m is odd. (b). Graph Koy, if m is even.
(¢). Graph Ky, 1), if m is odd.

Proof.
Case 1. For j = 2. Let t = [Z]n+ [Z].

We consider any factorization {G1,G2} of graph Ksy, such that Go 2 Ps. So,
A(G2) < 1 or Go is a matching. This implies that ¢t — 1 < §(G1) < t. Let A and B be
two partite sets of graph Koy;. We will show that G contains mKj ,,. Let A; = {a € Ala
is a leaf of mK ,}, A2 = {a € Ala is a center of mK;,},B; = {b € Blb € V(mKi,)}
and By = {b € B|b ¢ V(mKi,)}. We distinguish two cases as follows.

(1) m is odd.
Without lost of generality, there are | % | centers of mKy, in A and [%] centers
of mK1, in B. Therefore, [A;| = n[%] and |As| = | ]. Note that [A; U Ay| =
|[Ar|+|Az| =n[F ]+ [F] =t. Since |Ay| = [F], there are n| | leaves of mKy
in B. See Figure 1.(a). So, |B1| = [%] +n[%]. Since t > [By], so we have Gy
contains mKi .
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(2) m is even.

There are % centers of mKi, in each set A and B. Therefore, |A;| = "* and
|A2| = % Note that |A1 UA2| = |A1| + |A2| = % + % = t. Since |A2| = %,
there are % leaves of mKy, in B. See Figure 1.(b). So, |Bi| = % + % and

By = 0. Since t = |B;| = |B|, so we have G contains mKj .
Therefore, mo(mKi p, P3) < t.

To show that mo(mKi,, Ps) > t, we consider a factorization {Fi,Fh} of graph
Ky (t-1), such that F% is a maximal matching. If m is even, then [V(Kjy (1)) =
2t-1) =2([Fn+[H] -1 =mn+m—-2=m(n+1) -2 < [V(mKy,)|. Then,
F 2 mKy . If m is odd, then without lost of generality, there are [%] — 1 centers of
mKy, in A and [ ] centers of mK , in B. Therefore, |A1| = n[% ] and [A3| = [ 5] 1.
Note that [A;UAs| = |A1[+|A2| = t—1. Since |As| = [ F] —1, there are n(| F ] —1) leaves
of mKy, in B. So, |Bi| = [%]+n([F] -1)=n+1)([%] -1)+2and [By| =2n — 2.
See Figure 1.(c). We consider that the vertices in AU By only form (m — 1)K ,,. So, Fj
does not contain mK ,. Therefore, mo(mKy pn, P3) > t.

Case 2. For 3 < j <r(mKj,, P3). Let t = [@]

For j = 3,n > 3 see Theorem 1.3. Otherwise, we consider a factorization {Fy, F»} of
graph Kj, 1), such that I is an empty graph. So, I} = Kj,;_1). Since |V(F1)] =
it —1) = [ — j < m(n+1) = [V(mKi1,)|. Then, Fi 2 mKy,. Therefore,
Ky (4—1) doest not contain red mKi , and blue P3. Hence, mj(mKi ,, P3) > t.

Now, we consider any factorization {G1, G2} of graph Kj,, such that G2 2 Ps. So,
G is a matching. We will construct a disjoint union of m copies of star Ky, in Gi. We
consider two following cases.

(1) For |E(G2)| > [%], we define a vertex set W that contains the end points of [ %]

edges in G'2. We consider that if m is even, then |W| = m, otherwise [W| = m+1.
For some w € W, we define a vertex set A as follows:
A { W; if m is even,
W —{w}; if m is odd.

(2) For |[E(G2)| < [%5], we define a vertex set A, where |A| = m for any A C V(Ga).
Based on these two cases, we have |A| = m. Every vertex in A must be connected with
n vertices outside A by red edges. Therefore, we need mn vertices outside A to be leaves
of m center points in A. The number of vertices outside A is j [@1 +k > mn, where
k= —=2[%]+1, for m is odd and k = —2[ %], for m is even. Hence, there are mKi , in
G, where the center points are all of vertices in A. Therefore, m;(mK; ,, P3) < t.

Case 3. For j > r(mK,, P3).
This case is a direct consequence of Theorem 2.1. O

Theorem 2.3 is the size tripartite Ramsey numbers of combination graph mKj ,, versus
Kiz,foorm=1,n>1landn=1,m> 1.

[5]+1;  form=1andn>1,
Theorem 2.3. m3(mKi,, K13) =14 [F|+1 form=3andn=1,
[QTm]a form >2m #3, andn = 1.
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Proof.

Case 1. Form=1and n > 1.

To show that m3(K1,, K13) > [5] + 1, consider a factorization {Fg, Fp} of K3X[%]
such that Fp is a cycle with order 3[%]. Then, F does not contain K 3. Since Ff is
the complement of graph Fp relative to graph Kz, [z, then d(z) = 2[%] —2 < n, for
all z € V(Fg). This implies that Fr 2 K1,. See Figure 2, for n = 3.

X G

Fp= Cy = 1231231 Fp 2 Ky
Fp 53K,

FIGURE 2. Two examples for m3(K 3, K13) > 2 and m3(3K1 1, K13) > 2.

Now, we show that m3 (K1, K13) < [§]+1. We consider any factorization {Gr,Gp}
of Kjx(f2141) such that Gp does not contain a blue Ki3. So, A(Gp) < 2. Since
graph Gp is the complement of graph Gp relative to graph Kgx(l'%]+1), then §(Gg) >
2([5] +1) — A(Gp) = 2[%]. This implies that Gr 2 K1,.

Case 2. Form =3 and n = 1.

To show that mg(3K1,1,K1,3) > 3, consider a factorization {Fg, Fp} of K3xa such that
Fp = Cs = 1231231. See Figrue 2. Then, Fg does not contain a blue K 3. This implies
that F'r = 2K15. Then, Fg 2 3K1,1. Now, we show that m3(3K1,1,K1,3) < 3. We

Gy ;5 Ky G2 3K,

FIGURE 3. Gy 2 K3 but G1 2 3Kq 1.

consider any factorization {Gr,Gp} of K3x3 such that Gp does not contain a blue K 3.
So, A(Gp) < 2. Since graph G is the complement of graph G relative to graph Ksys,
then §(Ggr) > 4. This implies that Gg 2 3K 1. See Figure 3.
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Case 3. Form >2,m # 3 and n = 1.
To show that ms(mKi 1, K13) > [QTm], we color the edges of graph K3X(f%171) by red.

It is clear that K3 (r2my-1) 2 mKi,, since |V(K3x((%1—1))‘ =3[Z] -3 < 2m =
|V(mKi,1)|. Therefore, K3><(f%1—1) contains neither the red mK;; nor a blue Kj 3.
Now, we show that mg(mKy1, K1,3) < [2]. We consider any factorization {Gr, G}
of sz%w such that Gp does not contain a blue K3 3. So, A(Gg) < 2. Since graph Gr
is the complement of graph G'p relative to graph K ramy, then 6(GR) > 2[27"’] —-2>m,

for m > 2, m # 3. We know that |[V(Gg)| = 3[27"‘] > 2m,V¥m > 2,m # 3. Let graph G’
[V (GR)]

be any subgraph of G, where |V (G%)| = 2m. Then, §(G%) > m = “—5%£%. By Theorem
1.4, G’ is a Hamiltonin graph. So, G 2 G’ D Cap,. Therefore, Gr 2 mKy ;. a

Theorem 2.4. For positif integers m,n > 2 and j > 3, we have
m(14n)q, ;
mimy, Kog) = { P for 3 < < r(mEy Kig),

1; ’ for j > r(mKy,, Ki3).
Proof.
Case 1. For 3 < 7 < ’l‘(mKlyn,KLg).
To show that m;(mKy ,, K13) > [ML let t = (@] We color the edges of graph
K1) by ved. Since |V(K 1)l = jt—j = j™E] = j < m(14n) = [V(mE1,)],
then K, (;—1) contains neither the red mKj , nor a blue Kj 3.

Now, we show that m;(mK,, K13) < t. We consider any factorization {Gr,Gp}
of Kj; such that Gp does not contain a blue Kj 3. So, A(Gg) < 2. Since graph Gp
is the complement of graph Gp relative to graph Ky, then 6(Ggr) > (j — 1)t — 2 =
(=)™ -2 > n, for m,n > 2and j > 3. Thus, |V (Kjx)| = j[ ™) > m(1+n).
Note that, Gp is a graph (may be disconnected) whose every component is isomorphic
to a cycle, a path or singleton. We divide the vertices in Gp into m partitions, each
containing n + 1 vertices. Every vertex in A adjacent to at most one vertex in B, for
every different partition A and B in Gp. Thus, we construct mKj , in Gr as follows.
Let a € A. If a is adjacent to b in Gp, for any b € B, then induced subgraph of Gg
by {a} U B — {b} contains a star K ,. Otherwise, induced subgraph of Gg by {a} U B
contains a star Ky . Since there are m partitions, so Gr 2 mKj p.

Case 2. FOI‘j > T(mKljn,Kl’g).
This case is a direct consequence of Theorem 2.1.
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