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THE LINEAR MODEL FOR WAVE GENERATION OF A
BUMP

AZIS S. SANI AND L.H. WIRYANTO

ABSTRACT. A channel with a bump over flat bottom will affect the pro-
file of the water surface that flows over it. This phenomenon can be
modeled by the nondimensional Boussinesq equation. The governing
equation used is expressed in variable of speed, elevation, the height of
bump and Froude number. Here, we will investigate the dependance
of wave formed by a bump on Froude number and dimension of the
bump. In this paper, we focus only on the case of supercritical flow or
Froude number greater than 1. We will derive the analytical solution
for the free surface prole over a bump. From the analytical solution,
we conclude that a bump generate waves with 1 peak and 2 dales. The
formed peak does not propagate anywhere, but the two dales propagate
to the direction of the flow with different speed and amplitude. For-
ward Time Backward Space (FTBS) method is implemented to solve
the equation numerically. The obtained numerical results confirm the
analytical solution well.
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1. PROBLEM DESCRIPTION AND MODEL

FIGURE 1. Side view of the channel

Consider a 2-D fluid flows into a channel which has a bump on its base
as seen in Figure 1. In the figure we set the horizontal Z-axis along the
undisturbed free surface and in line with dashed line § = 0. The vertical §-
axis is perpendicular to the horizontal axis. The surface elevation is written
as § = 7(¥,t). The base of channel forms a bump and follows the function
y=—H+ h(7).
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Far upstream, as £ — —oo, the flow is uniform with velocity Uy and
depth H. The fluid flow then disturbed by the bump. Our problem here
is to describe the wave generation affected by the bump. An analytical
approach had been done by Wiryanto and Mungkasi [1] to find the model.
The fluid is assumed to be ideal and irrotational so that we can present
the fluid flow in terms of potential function ¢. This potential function is
satisfying certain conditions, those are

(1) Gzz + by = 0

in the flow domain —oco < Z < 0o, —H + h(T) < § < 7j(Z, t); the condition
(2) by — ez — 77 = 0,

(3) or + %(&%Jr&%) + 97 = %US

along the surface § = 7(Z,t), and

(4) <Z_5g - (Z_)ii_li =0,

along the bottom of channel § = —H + h(Z).

Since far upstream (Z — —oo) the flow is uniform, written as ¢ = UpZ,
we can write the potential function as a perturbation of the uniform flow,
in terms of

(5) Q_SZ U[)j"’_(i)(@agaf)

with @ is potential function of perturbation. Therefore, with (5), the gov-
erning equation (1)-(4) can be stated in terms of the .

The next step is to do a scaling to all variables so that we will get some
small parameters. In other side, we can expand the potential function of
perturbation @ in series of those small parameters. The solution of the series
is obtained in terms of those small parameters. With using depth average
velocity u we then obtain the Boussinesq-type model :

(6) e+ F(nNg + ug — hg) + €eF(Npugs + ugn — ugh) =0,
1
(7) Ut-l-Fua;—i—F?]x—keFuux:O.

with Froude number F' = Uy/+/gH is parameter that describes the strength
of fluid flowing into the channel and ¢ is gravitational acceleration. Variable
7 is the elevation of surface, u is the velocity of flow, and h is the height of
bump.

In this model all variables are given in non-dimensional and scaled. Pa-
rameter € presents the ratio between amplitude and uniform depth H. In
case that the amplitude is much smaller than the uniform depth, ¢ — 0, we
will get the linear model

(8) ne+ F(ng + ugp — hy) =0,

1
(9) ut+FUI+F7]z:O
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which can be solved analytically and numerically.

2. ANALYTICAL SOLUTION

The analytical solution consists both of steady and transient solution. The
steady solution is related to the condition of elevation and velocity which
are not change with time while the transient solution is change. Suppose
that the complete analytical solution for both elevation and velocity is :

(10) n(z,t) = no(z,t) + m(z,t)
(11) u(z,t) = uo(z,t) + ui(z,t)

2.1. Steady Solution.

The steady solution can be obtained with substituting n: = 0 and u; =0
to (8)-(9) so we have :

(12) N+ Uy —hy =0
1
(13) Fu, + Tl = 0

The value n; = 0 and u; = 0 is valid for this case because the steady solu-
tion states the condition of elevation and velocity that do not change with
time after long run. With applying ordinary substitution and elimination
technique to (12)-(13) we get the steady solution as below :

2

(14) M@ 0) = 3

(15) wo(z, ) = FTilh(x).

h(z),

2.2. Transient Solution.

To find the transient solution we must substitute the complete solution
(10)-(11) and steady solution (14)-(15) to the model (8)-(9) so we have :

(16) Ny + (FTllz + ulz) =0,
1
(17) U1y + Fui, + TMe = 0.

We can simplify (16)-(17) to be s, = As, with :
s = [n1,u1]T, and
—-F —-F
A - |: —1 :| .
+ —F
Note that the equation s; = As, is still in coupled condition so we must
change it to be uncoupled first to ease our process in finding the solution.
We know that matrix A has eigenvalues \y = 1—F and Ay = —1— F with
corresponding eigenvectors respectively X7 = [~F,1]T and X, = [F,1]7.
Therefore, we can make a relation s = Py with P is a 2x2 matrix consists of
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eigenvectors and y is a 2x1 matrix consists variable y; dan yo that we will

find later :
-F F
P

_|n

Y { 2 }

Afterwards we substitute s = Py to sy = As, :
(Py)t = A(Py)a

Py, = APy,
Yt = P_lAPym
yi = Dy,

with D is a diagonal matrix that consists of eigenvalues of A :

1-F 0
D= 0 -1-F

Note that y; = Dy, states uncoupled equations :

(18) y1e = (1 = Fy,,
(19) Y2, = (=1 = F)ya,

that have solution respectively :

(20) (est) = fGre — 1)
(21) ) = g5y~ 1)

with f and g are arbitrary functions that we will find next.
From relation s = Py, (20)-(21), and steady solution (14)-(15), now we
have complete solution as below :

2
(22) ) = gy —gh@) = Ff(roge = 1) + Fo(grgz —1
(23) u(w,t)zF;—ilh(x)—i-f(Fl_1x—t)+g(F+1x—t)

Substitute the initial value n(x,0) = 0 and u(z,0) = 0 to (22)-(23). These
initial value is valid because in ¢t = 0 there is no stream entering the channel
so the surface is still flat and the velocity is zero. With this step we get :

2
(24 ~F () + Folgrst) = =5 —h(),
(25) FlGm®) + () = o= h()
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From (24)-(25) we have :

(26) = !

1Y) = s -t
1 -1

27) S it Ty ey

With transformation © — (F' — 1)z for (26) and z — (F' + 1)z for (27) we
get :

(28) flz) =

h(z).

1
2(F —1)

(29) o) =

Next, substitute f(x) and g(z) to the relation s = Py to get the transient
solution :

h((F = 1z),

h((F +1)z).

B0 m(ant) = ~grp— (e — (P = ) = grsh(e = (P4 1)),
) w(@t) = gl — (F = 1) = gopshle = (F+ 1)),

In two subsection above, we obtain the steady solution (14)-(15) and the
transient solution (26)-(27). Thus, our complete analytical solution is :

(32)

2
n(z,t) = ﬁh(x) 2(FF_ 0 h(z — (F —1)t) — 2(F—F1}_1)h(x —(F+ 1)),
(33)
w(z,t) = F;—ilh(az) + ﬁh(m (P - 1)) — ﬁh(m —(F+1)0).

3. NUMERICAL SOLUTION AND STABILITY ANALYSIS

In this section we will use numerical approximation to obtain the solution
of model. As usual, in the first step we make space and time discretization.
We divide space domain [0,L] in width of Az so we have Nz sub-intervals
with end points z; = (j — 1)Az, for j = 1,2,..., Nz + 1. Similarly for time
discretization, we divide time domain [0,7] in width of At so we have Nt
time steps with each time is defined by ¢, = (n—1)At, forn = 1,2, ..., Nt+1.

We will apply The Forward Time Backward Space (FTBS) method to this
model. This method is appplied to the transport equation (18)-(19) and we
use absorbing wall type to define the right boundary condition. The left wall
is assumed to be far enough from the bump so the profile of fluid surface in
the left boundary is not affected by the existance of bump. Therefore, we
apply fixed end wall type to the left boundary.

19
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With FTBS method, we define :

59 T -
ot' At ’
0 Ty
(35) _y|’_’ _ Y Y
Ox ' Az
Thus, with applying (34)-(35) to (18)-(19) we have difference equations
AR —a-p Yij —Yij
At Az
(36) vt =1+ )y} — Cuyfy
and
+1 n n n
?JQ? — Y2, Y25 — Y251
i e R IR it Bl
AL (1+F)
(37) Y2 Tt = (1+ Co)ya — Coyalf 4
as the numerical solution for the uncoupled equations (18)-(19) with defining
courant number C7 = %(1 — F) and Cy = —%(1 + F). In general, for
m = 1,2, (36)-(37) can be written as :
(38) ym?Jrl =1+ Cm)ym? - Cmym?—l-

With relation s = Py we can obtain the numerical solution for the tran-
sient part. Furthermore, the complete numerical solution can be obtained
by adding this transient numerical solution to the steady solution (14)-(15)
with same discretization.

Next, we evaluate the stability of the scheme using von Neumann method.
Substitute y,,,7 = ryexp(iaAzj) to (38) and the scheme is stable if norm of
the amplification vector 7y, |7y, is not greater than 1, for m = 1,2. Thus,
we have :

r"lexp(iaAzj) = (1 + Cp)rexp(ialzy) — Cprlexp(iaAz(j — 1))
rm = (14 Cp,) — Cexp(—iaAzx)
rm = (14 Cp,) — Cp(cos(aAz) — isin(aAx))
rm = (14 Cp,) — Cpcos(aAzx) — iCpysin(aAx)
[7m| = /(1 + Cp) — Crpcos(alz))? + (Cppsin(aAz)

)

)2 <1

2C, (1 = cos(aAx)) + C% (1 — 2cos(alx) + (cos(alz))?) + C2 (sin(aAx))* < 0

2C (Cp + 1)(1 — cos(aAx)) <0
-1<C, <0
For m = 1 we get At < Az/(F — 1) and this valid for F' > 1 while for
m = 2 we have At < Az/(F + 1) that valid for all real of F. With this

result, we must choose At < Az/(F + 1) to make sure that |r,,| < 1 for
m = 1,2 and guarantee the stability of the scheme. Beside that, we can only
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set F' > 1 to make sure the stability condition satisfied in case of m = 1.
This means that the FTBS method is stable only for supercritical flow.

4. SIMULATION

4.1. Simulation for Analytical Solution.

elevation

Supercritical flow, F = 1.6
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FIGURE 2. Side view FIGURE 3. Side view
for supercritical flow for subcritical fow

Here, we simulate the analytical solution (32). We also compare the
simulation result to the analytical solution itself to see how the analytical
solution is shown in the simulation. In this case we use h(z) = 01/(1+0.1(z—
50)?) as function for the bump. We also set Az = 0.1 and At = Az/(1+F)
for discretization.

Both of the simulation in Figure 2 and Figure 3 show that there are
three waves formed, those are two dales and one peak. In Figure 2 the
peak does not move anywhere with time. This indicate that the peak is the
representation for the steady solution and the two dales are representation
for the transient solution. The middle dale is related to the first part of the
transient solution of elevation n; because the middle-dale moves slower than
the right-middle and this is confirmed in (32) by the coefficient F' — 1 of ¢
in the second part of n; which is smaller than the third part.

In Figure 3 the middle dale does not move with time, so this is the repre-
sentation for the steady solution. In other side, the peak moves to the left
with time. This shows that the peak is related to the second part of (32).
Note that the value of F' which is less than 1 causes the coefficient of ¢ in
function h to be positive. This indicates the movement to the left.

4.2. Simulation for The FTBS Method.
4.2.1. Supercritical Flow.

In Figure 4 we see that the simulation result for the FTBS method con-
firms the analytical solution well. The different result we can see in the

21
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next image, Figure 5. The result shows unstable simulation indicated by
red vertical-line. Note that the discretization with At = 0.04 and Az = 0.1
yield At = 0.04 > Az /(F+1) = 0.038. This shows that At we choose is out

of the stability boundary we have obtained in previous section. This causes
the unstability.

4.2.2. Subcritical Flow.

T T T T T T T
Subcritical Flow, F=06,t=3 Analytical Solution
Numerical Solution (FTES)
o ,

Channel Base

0w m @ m @ W @ @
F1GURE 6. FTBS method, At =0.01, Az =0.1

As we obtained in the previous chapter, the FTBS method will not show
the stability for subcritical flow. This is confirmed by the simulation result
in Figure 6 above that we can see a red vertical-line in the image.

5. CONCLUSION

The existance of a bump in the base of a channel will affect the profile
of surface that flowing on the channel. This problem can be modeled by



The linear model for wave generation of a bump

Boussinesq equation and solved numerically by The Forward Time Back-
ward Space method. But, this method only can be used for the case of
supercritical fluid flow. In this case the bump causes the formation of one
peak and two dales on the surface.
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