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Abstract

In the paper, we discuss the transformation of the asymptotic expansion for the distribution
of a statistic admitting Edgeworth expansion if the sample size is replaced by a random
variable.We demonstrate that all those statistics that are regarded as asymptotically normal in
the classical sense, become asymptotically Laplace or Student if the sample size is random. We
especially separate the case where the Student distribution parameter ("the number degrees of
freedom") is small. We show that the Student distribution with arbitrary "number of degrees
of freedom"can be obtained as the limit when the sample size is random. We emphasize the
possibility of using a family of Student distributions as a comfortable model with heavy tails
since in this case many relations, in particular, a likelihood function, have the explicit form
(unlike stable laws). Thus, the Laplace and Student distributions may be used as an asymptotic
approximation in descriptive statistics being a convenient heavy-tailed alternative to stable laws.

1 Introduction

In classical problems of mathematical statistics, the size of the available sample, i. e., the number
of available observations, is traditionally assumed to be deterministic. In the asymptotic settings
it plays the role of infinitely increasing known parameter. At the same time, in practice very
often the data to be analyzed is collected or registered during a certain period of time and
the flow of informative events each of which brings a next observation forms a random point
process. Therefore, the number of available observations is unknown till the end of the process
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of their registration and also must be treated as a (random) observation. For example, this
is so in insurance statistics where during different accounting periods different numbers of
insurance events (insurance claims and/or insurance contracts) occur and in high performance
information systems where due to the stochastic character of the intensities of information
flows, the size of data available for the statistical analysis can be often regarded as random.
Say, the statistical algorithms applied in high-frequency financial applications must take into
consideration that the number of events in a limit order book during a time unit essentially
depends on the intensity of order flows. Moreover, contemporary statistical procedures of
insurance and financial mathematics do take this circumstance into consideration as one of
possible ways of dealing with heavy tails. However, in other fields such as medical statistics or
quality control this approach has not become conventional yet although the number of patients
with a certain disease varies from month to month due to seasonal factors or from year to
year due to some epidemic reasons and the number of failed items varies from lot to lot. In
these cases the number of available observations as well as the observations themselves are
unknown beforehand and should be treated as random to avoid underestimation of risks or
error probabilities.

In asymptotic settings, statistics constructed from samples with random sizes are special
cases of random sequences with random indices. The randomness of indices usually leads to
that the limit distributions for the corresponding random sequences are heavy-tailed even
in the situations where the distributions of non-randomly indexed random sequences are
asymptotically normal see, e. g., [1] — [4]. For example, if a statistic which is asymptotically
normal in the traditional sense, is constructed on the basis of a sample with random size
having negative binomial distribution, then instead of the expected normal law, the Student
distribution with power-type decreasing heavy tails appears as an asymptotic law for this
statistic.

We use conventional notation: R is the set of real numbers, N is the set of natural numbers,
®(z) and (z) are the distribution function (d.f.) and the probability density of the standard
normal law, respectively, the symbol = denotes the weak convergence.

1.1 Laplace distribution as an asymptotic approximation

In 1774 P.S.Laplace introduced in his paper «Sur la probabilité des causes par les
événements» (see [5] and references in the book) a native probabilistic law for the error of
measurement in the following formulation: «the logarithm of the frequency of an error (without
regard to sign) is a linear function of the error». Later in 1911 the famous economist and
probabilist J. M. Keynes obtained the first law error again from the assumption that the most
probable value of the measured quantity is equal to the median of measurements (see [5]).
Later in 1923 E. B. Wilson suggested that the frequency we actually meet in everyday work in
economics, biometrics, or vital statistics often fails to conform closely to the normal distribution,
and that Laplace’s first law should be considered as a candidate for fitting data in economics
and health sciences (see [5] and references in the book). Fifty years later in scientific papers
(see [5]) one could often find appeals for using the first Laplace’s law as the main hypothesis
instead of the normal distribution for the economical, biometrical and demographic data.

Nowadays the first Laplace’s law is called the Laplace distribution. The distribution is
defined by its characteristic function (see [2| and references in the paper)

f) = 1122 t € R, (1.1)
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or by its density
1
l(z) = — exp{—m }, A >0, € RL (1.2)
Another name — double exponential distribution — shows an opportunity to obtain it as the

difference between two independent identically distributed exponential random variables which
are often used for modeling of lifetime of an observable object.

We now present the reasoning from [2]| which validates the use of Laplace distribution
in problems of probability theory and mathematical statistics as the limiting distribution for
samples of random size. Consider random variables N1, Ns, ..., X1, Xs, ... defined on a common
measurable space (€2, A). Let P be a probability measure over (€2, .4). Suppose that the random
variables N, take on positive integers for any n > 1 and do not depend on Xj, X, .... Define
the random variable Ty, for some statistic T,, = T,,(X1,...,X,) and any n > 1 by

Ty, (W) = T, ) (X1(w), -+, Xy () (W),

for every outcome w € (). The statistic 7,, is called asymptotically normal if there exist real
numbers ¢ > 0 and p € R! such that, as n — oo,

Plovn(T, — n) < z) = ®(x), (1.3)

where ®(z) is the standard normal distribution function.

The asymptotically normal statistics are abundant. Paper [2] contains some examples of
these statistics: the sample mean (assuming nonzero variances), the central order statistics or
the maximum likelihood estimators (under weak regularity conditions) and many others. The
following lemma, proved in [2], gives the necessary and sufficient conditions under which the
distributions of asymptotically normal statistics based on samples of random size converge to
a predetermined distribution F(z).

Lemma 1.1. ([2]) Let {d, },>1 be an increasing and unbounded sequence of positive numbers.
Suppose that N,, — oo in probability as n — oo. Let T, be an asymptotically normal statistic as
in (1.3). Then a necessary and sufficient condition for a distribution function F(x) to satisfy

Plovdu(Tn, — p) < z) = F(z), n = o
is that there exists a distribution function H(z) satisfying

H(z) =0, z < 0

F(z) = /OOO O(z\/y) dH(y), = € RY
P(N, < dyz) = H(z), n — oo.

It is well known (see e.g. [2]) that the Laplace distribution can be expressed in terms of a
scale mixture of normal distributions (with zero mean) with an inverse exponential mixing
distribution, i.e., for any x € R!,

@) = [ ®(avE) d@s),
0
where Q) (z) is the distribution function of the inverse exponential distribution

Qu(z) = e/ 2 > 0,
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and Ly(z) is the distribution function of the Laplace distribution corresponding to the density
(1.2).
Recall that the inverse exponential distribution is the distribution of the random variable

1
U?
where the random variable U has the exponential distribution, and the inverse exponential

distribution is a special case of the Fréchet distribution which is well known in asymptotic
theory of order statistics as the type II extreme value distribution.

V =

Lemma 1.1 can be applied to derive the following theorem which gives the necessary
and sufficient conditions for the Laplace distribution to be the limiting distribution of the
asymptotically normal statistics based on samples of random size.

Theorem 1.2. ([2|) Let ¢ > 0 and {d,}n>1 be an increasing and unbounded sequence of
positive numbers. Suppose that N,, — oo in probability as n — oo. Let T, be an asymptotically
normal statistic as in (1.3). Then

Plo/do(Ty, — 1) < 2) = Ly(z), n — oo

if and only if
P(N, < dyz) = Qi(z), n — oo.

Consider an example in which the random size of sample has the limiting inverse exponential
distribution @,(x). Let Y, Y, ... be the independent and identically distributed random
variables with some continuous distribution function. Let m be a positive integer and

N(m) = min{n>1: max Y; < max Yo}, m e N
1< j<m m+1< k < m+n
The random variable N(m) denotes the number of additional observations needed to exceed
the current maximum obtained with m observations. The distribution of the random variable
N(m) was obtained by S.S.Wilks ([6]). So, the distribution of N(m) is the discrete Pareto
distribution m
P(N >k = —, k> 1 14
(N(m) 2 k) = — " k> (149)
Now, let N®M(m), N (m), ... be the independent random variables with the same distribution
(1.4). Then the following statement was proved in [2]: for any z > 0,

lim P(l max N9 (m) < x) = e M7

n 1< j<n
Therefore, the limit is the distribution function of the inverse exponential distribution with
2)\% = m. And if

_ ()

Np = max N%(m), (1.5)
then Theorem 1.2 (with d, = n) gives the Laplace distribution as the limiting distribution of
regular statistics.

Theorem 1.3. ([2]) Let m be any positive integer. Suppose that NV (m), N®(m),... are
independent random variables having the same distribution (1.4), and a random variable N, is
defined by (1.5). Let T, be an asymptotically normal statistic as in (1.3). Then

P(U\/E(TNW, - :U‘) < :13) == L/\(m)(‘r)a n — oo,
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where Ly (x) is the distribution function of the Laplace distribution with density (1.2) with
A(m) = /m/2.

Further, the Laplace distribution plays the same role in the theory of geometric random sums
as the normal distribution plays in the classical probability theory (see e.g. [7]). In turn, the
geometric random sums play an important role in the investigation of speculative processes. The
reason of increasing usage of the Laplace distribution is also its representation as a scale mixture
of some well known distributions. For example, the Laplace distribution can be represented as
a scale mixture of symmetrized Rayleigh-Rice distribution with the mixing y2-distribution with
1 degree of freedom (see Corollary 3.2 in [2]).

The Laplace distribution as a probabilistic model for applications is also attractive because of
its extremal entropy property. This property often motivates a choice of Laplace distribution as a
model for the error of measurements when the accuracy randomly varies from one measurement
to the next (see [2]).

In applied economics and science, the popularity of Laplace distribution as a mathematical
(probabilistic) model is explained by the fact that the Laplace distribution has heavier tails
than the normal distribution does. So, in communication theory, the Laplace distribution is
considered as a probabilistic model for some types of random noise in problems of detection
of a known constant signal (see [7] — [10]). In [11] the Laplace distribution is referred to
as a model for speech signal in problems of encoding and decoding of analog signals. In
[12] an application of the Laplace distribution is discussed in relation to the fracturing of
materials under applied forces. In [13] and [14] authors give examples of application of Laplace
distribution in aerodynamics, when the gradient of airspeed change against its duration is
modeled by mixtures of the Laplace distribution with the normal distribution. Modeling of the
error distributions in navigation with Laplace distribution is investigated in [15].

This increased interest in Laplace distribution from applied sciences motivates the Laplace
distribution to be investigated in mathematical statistics and theory of probability. The
nonregularity of the Laplace distribution makes known difficulties of its use in problems of
testing statistical hypotheses. But the asymptotic methods of testing statistical hypotheses
developed in last decades now allow to use the Laplace distribution in mathematical statistics
(see |5] and references in the work).

1.2 Student distribution as an asymptotic approximation

The Student distribution is an absolutely continuous probability distribution given by the
density
D0+ D/2) (), 2%
py(T :7(14——) , —oo<x<o00. 1.6
= UETam TS (9
Here v > 0 is a parameter, I'( - ) is the Euler gamma function

I'(z) = / eVytdy, z > 0.
0

In particular, for v = 1, density (1.6) is

1
which corresponds to the Cauchy distribution. It is not difficult to see that the Student
distribution with the parameter v has no moments of order § > ~. If ¥ = n is a positive

pi(r) = —o0 < x < 00,
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integer, and if X, X1,..., X, are independent random variables with the same standard normal
distribution, then the r.v.
- X
y = v (1.7)

VXE+ .+ X2

has the Student distribution with the parameter n, which is called the number of degrees of
freedom. Representatiion (1.7) is the basis of testing hypotheses on a mean of normal samples
proposed in 1908 by W. S. Gossett, who used the pseudonym "Student" for his paper "On the
probable error of a mean" [16].

The important role played by the Student distribution in mathematical statistics in analysis
of normal samples is well known. Here the parameter v is closely related to the sample size
and takes positive integer values. However, we can say that in these problems the Student
distribution plays an auxiliary role as an abstract, ideal theoretical model.

The descriptive statistic does not use the Student distribution as an analytic model
"adjusted" to experimental data. (Recently papers appeared in which the Student distribution
is applied (without a theoretical basis) for describing some financial indices, in particular,
increments of logarithms of stock exchange prices. We mention the works of Praetz [17] and
Blattberg and Gonedes [18]). This can be confirmed by the fact that there is no book on the
theory (or practice) of statistical estimation which considers ax estimation problem for the
parameter of the Student distribution.

In the field of applied mathematics there seems to be insufficient trust in the Student
distribution as a model for describing the statistical behavior of real data. This lack of trust
is related to the fact that, istead of normal and Poisson distributions which are used as limits
in the central limit theorem, and instead of the Poisson theorem on rare events, the Student
distribution is not considered an asymptotic approximation.

It is necessary to emphasize that in view of the relative simplicity of representation, the
Student distribution could be a comfortable analytic model describing probabilistic statistical
properties of large risks since it is more heavy-tailed than the normal law. For example, the
Student distribution could be a comfortable alternative to stable laws, which are frequently
applied to describe these properties. The advantage of the Student distribution over stable
models is in the fact that the statistical analysis of Student models is simplier since, in this
case, the likelihood function can be written in explicit form in terms of elementary functions
while, for stable laws, this is impossible (excluding four exceptioxx). At the same time, for
0 < v < 2as |z|] = oo tails of the Student distribution decrease exponentially, a fact which
coincides with the asymptotic (as |z| — oo) behavior of tails of stable laws.

Our further arguments will be based on the two following lemmas.
Let N,, be an r.v. with a negative binomial distribution

P(NPV"‘ = k) = Cf—:lcl—2pr(1 _p)k717 k= 1727 e (18)

Here r > 0 and p € (0,1) are parameters and, for noninteger r,the value Cf;,i_g is defined in
the following way:
o1 _ Mir+k-1)
k-2 (k—1!-T(r)

In particular, for » = 1 relation (1.8) gives a geometrical distribution. It is known that

En,, — "‘L=PFp

p
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so E N,, = o0oasp—0.

A negative binomial distribution with the integer positive r admits an illustrative
interpretation in terms of Bernoulli trials. Namely, an r.v. with distribution (1.5) is the number
of Bernoully trials tested before the rth failure if the probability of success in a single trial is
equal to 1 — p.

Lemma 1.4. For any fized r > 0,

. Np,r _
;%P(EN <x) = G, (2),

p,r

uniformly in x € R, where G, () is the gamma distribution function with the shape parameter
which coincides with the scale parameter and equals T,

0, r < 0,
I P )

The proof is a simple exercise on the application of characteristic functions argument.

Lemma 1.5. Let v > 0 be arbitrary and let {d, },>1 be some infinitely increasing sequence
of positive numbers. Suppose that N, — oo in probability as n — oo. Let the statistic T,, be
asymptotically normal in the sense of (1.3). In order to have

P(a\/Z(TNn - ) < z) = F,(z), n— oo,

where F.,(z) is the Student distribution function with the parameter v, it is necessary and
sufficient that
P(Nn < dnl') - GV/QYW/Q(I), n — oQ.

Proof. It is not difficult to prove that for arbitrary v > 0 the density p,(x) of the Student
distribution with parameter 7 (see (1.6)) can be represented in the form

py(x) = E Uy pp(2/U, ), (1.9)

where U,y is a 1.v. with distribution function G/3,/2(). Indeed

E U7/2‘P(x\/U~r/2) =

~7Y/2 0 2
_ i TEINY yo-2g, —
= 26702, /70 (v/2) /0 exp { —u( 2 )} P =

~/2 2 4 A\ —(yHD)/2 [0
_ Y 7 4\ -0/ (121, _
= 2602,/ (v/2) () ow{=z) dz =

- 7 (w2+7)‘”+1)/2p(7+1) _
2041/2, /7T (v/2) 2 2

_ N+ D/2) o 2\

= W( +j/)_ C o= py(a).

However, density (1.9) corresponds to the distribution function E ®(z/U,2). Now the needed
statement follows from Lemma 1.1 with an account of the identifiability of scale mixtures of
normal laws, according to which if E <I>(a:V1) = E <I>(:EV2) for some positive random variables

Vi and Vs, then V3 Ly, (see, for example, [19]). O
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Corollary 1.6.Letr > 0 be arbitrary. Suppose that for anyn > 1 a r.v. N,, has the negative
binomial distribution with parameters p = 1/n and r. Let the statistic T,, be asymptotically
normal in the sense of (2.1). Then

Plovrn(Ty, — p) < z) = Fy(x), n—oo

uniformly in x € R, where Fy.(x) is the Student distribution function with parameter v = 2r.
Proof. By Lemma 1.4 we have
N, N, EN, N, r(n—-1)+1 N,

o EN, ar _EN,  nr :EN,,[H_O(%)}:UT

as n — oo, where U, is a r.v. with gamma distribution with a shape parameter coinciding with
scale parameter and equal to 7. Now the needed statement directly follows from Lemma 1.5.

Remark 1.7. The Cauchy distribution (y = 1) arises in the situation described in Corollary
1.6, when the sample size N,, has a negative binomial distribution with parameters p = 1/n,
r =1, and n is large.

Remark 1.8. When the sample size N,, has a negative binomial distribution with parameters
p=1/n, r =1 (ie., geometric distribution with parameter p = 1/n), in a limit as n — oo we
obtain a Student distribution with parameter v = 2 to which the following distribution function
corresponds:

1 x

This distribution was first described as a limit for a sample median constructed by a sample of
a random size having a geometric distribution in [20] (we note that this work does not say the
distribution function in the right-hand side of (1.10) corresponds to the Student distribution).

The main conclusion from the results given above can be formulated as follows. If the number
of random factors determining an observed value of a r.v. is a r.v. itself and its distribution
can be approximated with the help of gamma distribution having identical parameters (for
example, is a negative binomial distribution with a probability of success close to one; see
Lemma 1.4), then the functions of random factor values which, in the classic situation are
asymptotically normal, really are asymptotically Student. Hence, since gamma models with the
identical parameters and negative binomial models are widely used, the Student distribution
can be considered as quite a reasonable model in problems of applied statistics.

2 Asymptotic expansions

In this section we consider conditions under which the distribution functions of the statistics
based on samples with random sizes possess Edgeworth expansions. We briefly recall the setup
and some notation.

Consider random variables Ny, N, ... and X1, Xs, ..., defined on the same probability space
(Q, A, P). By Xi,Xs,...X,, we will mean statistical observations whereas the r.v. N,, will be
regarded as the random sample size depending on the parameter n € N. Assume that for
each n > 1 the r.v. N, takes only natural values (i.e., NV, € N) and is independent of the
sequence X1, Xs, ... Everywhere in what follows the r.v.’s Xi, Xs,... are assumed independent
and identically distributed.
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For every n > 1 by T,, = T,,(X1, ..., X,,) denote a statistic, i.e., a real-valued measurable
function of Xji,..,X,. For each n > 1 we define a r.v. Ty, by setting Ty,(w) =
TNn(w)(Xl(w), ...,XNn(w)(w)), w € Q

The following condition determines the asymptotic expansion (a.e.) for the distribution
function of T}, with a non-random sample size.

Condition 1. There ezist | € N, p € R, 0 > 0, a« > /2, v > 0, Cy > 0, a differentiable
d.f. F(z) and differentiable bounded functions f;(x),7 = 1,...,1 such that

l
sup ’P(an"(Tn —p) < x) = Fl@)- Y n?? fx)] < % n €N
x Jj=1

The following condition determines the a.e. for the d.f. of the normalized random index N,,.

Condition 2. There exist m € N, f > m/2, Cy > 0, a function 0 < g(n) T co,n — o0, a
d.f. H(z), H(0+) = 0 and functions h;(x), i = 1,...,m with bounded variation such that

x>0
Define the function G, () as

/ Floy) dH(y) + 3 02 / Flay")dhi(y) +

1/g(n) = 1/g(n

=

3

F X [y ) dHe) +

1/g(n)
l m 0
#3S wgw) [yey) dn) (2.1)
=t o=t 1/9(n)

Theorem 2.1. Let the statistic T,, = T, (X1, ..., X,,) satisfy Condition 1 and the r.v. N,
satisfy Condition 2. Then there exists a constant C3 > 0 such that

Cs + CyM,
sup | Pog’(n)(Ty, — 1) < @) — Gula)| < CLEN;™ + =220,
where .
a l
M, = st;p / ‘8y + Z J/2 iy ))’ dy
1/g(n) J=1

and the function G, (z) is defined by (2.1).
The proof directly follows from the formula of total probability, according to which

sup[P(o g"(n)(Tn, — p) < @) = Gu(@)| < L + Ion,
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where
Ly = sup 7 (Flay) + Z (v9(m)) " fi(ay"))
1/g(n) J=1
<dp( < 0) = 1) = 3 )|
Lo g sup P(ok”(Tk ) < z(%)) -
~#e () )~ 2 el v =4
Now

1/g(n) =1
0 ! . Gy CyM,
_— v —j/2 f. v < ~3 24Vin
Loy (Far) + 3 st ftay ] av < 35+ =5
and
o) 1 »
O

Let ®(z) and ¢(z) respectively denote the d.f. of the standard normal law and its density.

Lemma 2.1. Let I = 1, 0 < g(n) 1 o0, F(z) = ®(z), fi(z) = guso®(1 — 2?)p(x). Then the
quantity M, in Theorem 2.1 satisfies the inequality M, < 2+ Clus|o®, where

C = %sup{w(u)(u4+2u2+1)} = 16

u=0

~ 0.47.
2me3

Consider some examples of application of Theorem 2.1.



Transfer theorems concerning asymptotic expansions for the distribution functions

2.1 Student distribution

Let X1, Xy, ... be i.i.d. r.v.’s with EX; = pu, 0 < DX; = 072, E|X1?*® < 00, § € (0
E(X; — u)®> = pa. For each n let

) and

1
i)
T, = 2(X1 + .. + X,). (2.2)

Assume that the r.v. Xj satisfies the Cramér Condition (C)

limsup |E exp{itX;}| < 1.

[t|—o0

Let G, (x) be the Student d.f. with parameter v > 0 corresponding to the density (see (1.6))

, = € R,

_ T(v+1/2) z? | ~Or)/2
o) = (1)

Y
where I'(+) is the Euler’s gamma-function and v > 0 is the shape parameter.
For r > 0 let )
T.’!'

—ry ,r—1 d 2 0
—F(T) /6 Y Yy, T )
0

be the gamma-d.f. with parameter r > 0. Denote

H.(z) =

mm:/ﬂm@lgywwxz>o (2.3)

Applying Theorem 2.1, we obtain the following result.
Theorem 2.2. Let the statistic T,, have the form (2.2), where X1, X, ... are i.i.d. r.v.’s with

EXi=p, 0<DX; =072 E[X| < o0, d €(0,1) and E(X; — p)® = ps. Moreover, assume

that the r.v. Xy satisfies the Cramér Condition (C'). Assume that for some r > 0 the r.v. N,
has the negative binomial distribution

PN, = k) = (k+r—2)---r 1 ( 1

1 ke N
(k—1)! n" _ﬁ) ’ e

Let Go,(x) be the Student d.f. with parameter v = 2r and g,(x) be defined by (2.3). Then for
r > 1/(1+20), as n — oo, we have

(V=D +1 (T, — 1) < 1) = Gala) — 9D

NacenEsil
W@?WM)T=L

— ( — min( 1/2+0)))7 r>1,

O(n~r(/2H)), (1+20) ' <r<1.

197
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2.2 Laplace distribution
Consider the Laplace d.f. Ay(x) corresponding to the density

1
ZA(x)zﬁexp{—% }, A >0, z € R

Let Y1, Y5, ... be i.i.d. r.v.’s with a continuous d.f. Set

N(m) = min{i>1: max Y; < max Y.}, meN
1 <j<m m+1< k < m+i

It is known that (see (1.4))

P(N(m) > k) = # ko>l (2.4)

Now let N(V(m), N®(m), ... be i.i.d. r.v.’s distributed in accordance with (2.4). Define the r.v.

then, as it was shown in [2],

lim P(M < x) =™ 1 >0,

n—00 n

and for an asymptotically normal statistic T,, (see (1.3)) we have
Plovn(Tu,m) — p) < ) — Momy(z), n — o0, z € R,

where Ay () is the Laplace d.f. with parameter A(m) = +/m/2.
Denote
1— 2%y

ln(z) = / o(z+/y) de™v, z € R. (2.5)

Theorem 2.3. Let the statistic T,, have the form (2.2), where X1, Xo, ... are i.i.d. 1.v.’s
with EX7 = 1, 0 < DXy = 072, E|X > < 00, § € (0,1) and E(X; — n)* = pz. Moreover,
assume that the r.v. Xy satisfies the Cramér Condition (C). Assume that for some m € N the
r.v. N,(m) has the distribution

Pam) = B) = (22)" - (E245) ken

m+k m+k—1
Then
3
130 lm(‘r) 1
sup ’P(U\/T_l (Thamy = 1) < @) = Msem(2) — 367‘ - O<n1/2+6)’ o

where l,,,(z) is defined in (2.5).
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