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1. INTRODUCTION

Throughout this paper, we assume that |¢| < 1 and use the standard

notation
n—1 (o)
(a;g)n = [J(1—ad")  and  (a;9) == [J(1 - ag").
k=0 k=0

For |ab| < 1, S. Ramanujan’s theta function f(a,b) is defined by

fla,b) = Z G+ /2pn(n=1)/2.

n=—oo

From Jacobi’s triple product identity, it follows that

fla,b) := (—a;ab)s(—b; ab)oo (ab; ab) .
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Ramanujan defined the following special cases of f(a,b) [1, p. 36]:
N n —q; —(q)co
o) = faa)= Y ¢ =0tV L) = 1LY

n=—o0 (¢ =)o
V) = 3\ - n(n+1)/2 _ m
" ) ;q (G050
f(—CZ) = f(_(], _q2) _ Z (_1)nqn(3n—1)/2 _ (Q7Q)oo

Also after Ramanujan, define

X(@) == (=4 ¢*)oo:

For convenience, we denote f(—¢") by f, for a positive integer n and
it is easy to see that

fi f3 f3 fifa
(1) #l=a) =% =5 vl = 7 =
Notethat, if ¢ = €™ then f(—q) = e ™/12(7), where n(7) denotes
the classical n—function for Im(7) > 0. The theta-function identity
which relates f(—q) to f(—¢") is called theta-function identity of level
n. Ramanujan recorded several identities which involve f(—q), f(—q?),
f(—=q") and f(—¢®") in his second notebook [3] and ‘Lost’ notebook
[4]. Recently M. Somos discovered around 6200 theta-function iden-

¥(q)

and  /(—q)

tities of different levels using computer and offers no proof for them.
Furthermore, B. Yuttanan [6] has proved certain theta-function iden-
tities by employing Ramanujan’s modular equations and used them to
find certain partition identities. M. Somos [5] discovered many new
theta-function identities of level six and he runs PARI/GP scripts to
obtain these identities. The main purpose of this paper is to prove
some of these identities which highly resemble Ramanujan’s record-
ings. After expressing theta-function identities, which we are proving
in Section 2, in terms of f(—¢™) by using (1), we obtain the arguments
in f(—q), f(=4¢%), f(=¢*) and f(—¢°), namely —q, —¢*, —¢* and —¢° all
have exponents dividing six, which is thus equal to the ‘level’ of the
identity six. Also, Theorem 2.6 is due to M. S. Mahadeva Naika [2] in
which the author has obtained interesting results on cubic continued
fraction which are analogous to Rogers-Ramanujan continued fraction.
However, our proofs are much more elementary and we have used only
Ramanujan’s modular equations. Before proceeding to state and prove
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Somos’s identities, we first recall some preliminary results. In Section 2
of this paper we prove Somos’s new identities of level six and in Section
3, we establish colored partitions for them.

The complete elliptic integrals of the first kind K (k) is defined by

/ 1-— k251n2

where k, 0 < k < 1, is called the modulus of K and the complementary
modulus £’ is defined by &' := /1 — k2. Let K, K’, L and L’ denote
the complete elliptic integrals of the first kind associated with moduli
k, k', | and ' respectively. Suppose that

K' L
2 ==
(2) N =T

holds for some positive integer n. Then a modular equation of degree

n is a relation between the moduli & and [ which is induced by (2).
Ramanujan expressed his modular equations in terms of o and 3, where
a = k% and B = [2. Then, we say that 3 is of degree n over a and call

the ratio
21
mi=—,
Zn
the multiplier, where z; = oF) (%, %; 1;a) and z, = oF] (%, %; 1;6),
where
Fi(a,b; = x", r| <1,
Sy (0, b 5 1) ;(W, ]

denotes the basic hypergeometric function with
(a)p :=ala+1)(a+2),...(a+n—1).

In sequel, we need the following modular equation of degree 3. Ra-
manujan [1, p. 234] expressed his modular equations in terms of o and

67

B3 1/8_m—1 a’ 1/8_3+m
®) (E) 2 and (?) - 2m
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where 8 has degree 3 over . If ¢ = exp(—nwK’/K), then one of the
fundamental properties of elliptic functions affirms that [1, p. 101]:

2 11
(4) P(q) = =K(k) = 2P | 5,5 K ).

m 2°2
Ramanujan recorded several formulas for o, v, f and y at different
arguments in terms of «, ¢ and z ;= oF) (%, %; 1;a) by using (4) [1,
pp. 122-124]. The following lemma provides such formulas and we list
only few of them.

Lemma 1.1. If a, q and z are defined as above

(5) elg) = Vz
(6) p(—q) = Vz(1-a)/
(™) vla) = /5l

2. SOMOS’S IDENTITIES OF LEVEL 6
Theorem 2.1. We have
V) ©=¢*)  P(¢P)

W) =g e
Proof. By employing (6), (7) and then (3), we have

A0S - () B (=)

(3) [

: z3y/ M. <m+3>)

2 2

| &

where m = z1/z3 is the multiplier, on using (3) and (7), we obtain

Seri -3 (2 (5) -5

which completes the proof. O

Theorem 2.2. We have

¢(—9) ), (%)
o(—¢*)  P(¢?) v U(q)
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Proof. On using (6), (7) and then (3) we have
(p3(_q) B ’t/13(q) _ <ﬁ>1/2 ((1 _a)3>1/4 - 1 (a_3>1/8
(=) ol T\ 1-5 2\ 8

B (zl>1/2 [ +m
23
B 921 (= V2 —1
S m? (Z) 2
923 2 1/2 53 1/8
-5 ()

3 (¢°)
% U(q)

Where we employed (3) and (7) to complete the proof.

Theorem 2.3. We have

F(=a) _ (=0 (V)
e(—¢3) ¢(—q) P(g®)

Proof. From (6), (7) and then on using (3), we have

¢*(—q) 8w3(q)

e (_>/ l((111?3)3>1/4+4(%3>1/8]

B (3—=m)* 2m+6
= Vma [ 4m? m
9 m+1 2
 omym 2 '

Since m is the multiplier, on using (3) and (6) we have

) -

Which completes the proof.

Theorem 2.4. We have
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Proof. Using (6), (7) and then (3) we have

e RNON (C RO

1/2 2
= 2z (§> [Lﬂ +1) —2m + 2}

Z1 4
_ o (3omy
oym\ 2

3_ 2
= 23m3/2( m) ,
2m

where m = z/z3 is the multiplier. Further on using (3) and (6) we

have

) g ) (g)m [(11__ c;) T/‘* _ &)

Which completes the proof of the theorem. O

Theorem 2.5. We have

V3 (q)

V2 (q°) 3¢%—f)
U(q®)

— 12q =

! 0D e el

Proof. From (6), (7) and then on using (3) we have

P | ) <_>/ [3 (4= /3)?’)”4 6 <%>/

¢(—q) ¥(q) 7
3z [(m+1)?
i
323 [m?>+6m—3
- \/ﬁ[ [ ]

—I—m—l]
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Since m = z;/z3 is the multiplier,

¢*(—4¢*) V3 (q%) % 5
3 12 = 3 18m — 9
©(—q) i U(q) dm~/m (3m”+ 18m =)
oz [12m4-4m® — (m® + 9 — 6m)
N m 4m

_ mz 3—m\>
N m 3 m 2m

LS R (S0

2m

- (2 (4)”

1-p
_ Pl (=)
W) e(=¢*)

where we have used (3), (7) and (6) respectively to complete the proof.
U

Theorem 2.6. [2] We have

Pl (=a) =9 (=7") _ v'(a)
eH—a) —¢*(=a®) @ (¢®)

Proof. From (6) we have

Pl (—q) =90 (=¢") _ (1 —a) —925(1 - B)
P=a) —¢(=¢*)  Hl—a)-A0-p)

(8)

Where (3 has degree 3 over o and m = z;/23 is the multiplier. On
dividing both numerator and denominator of right side by 22 it is easy
to see that

¢l(=q) = 99" (=¢*) _ m*(1—a)—9(1 - p)

=) =M (=®)  m*(1l—a)—(1-5)

From [1, Eq. (5.5), p. 233], we have

9) 1—a= (m + ié(ri; m)” and 1-p=

(m+ '3~ m)
16m '
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On employing these in (8), we obtain
40 -9 4(_ .3 3
¢'(—q) s@(q)_m( +m>

—q) — M=)

m—1) 3+m )3 /16m? 1z
)3(3+m)/16m

Which completes the proof. O
Theorem 2.7. We have
(¢'(—a) — ¢'(=¢") (¢'(—0) — 9" (—4%)) = 649> (—)V*(9) > (—*)P*(¢?).
Proof. If B has degree 3 over a, from (6) we have
(#'(=9) = ¢'(=") (¢ (—a) — 96" (—4%))
=[7(1—a)— 21— B)] [57(1 — ) = 9235(1 — B)]
=z [m*(1—a) = (1= )] [m*(1 —a) = 9(1 - B)]

where m = z;/z3. Employing (9) in the right side of the above, we
obtain

(" (=) — ' (=¢%) (¢ (=) — 94 (—4%))

= 22(m+3)(m = D)(m + 1)*(m — 3)°

2.2
2123

= 25 m 8)m — 1)(m 4+ 1)(m — 3
1622 2m 24+2m —3(m+1)*(m — 3)?
4m 16m2

= 162725 () [(1 — ) (1 — /3)]1/2
2 2
= 64g21(1 - @) * 2 (a/q)' /" (1 = 8) P (8/4%) "
= 649" (—9)¢" ()" (=4*)*(¢).
Where we have used (3), (6) and (7) respectively to complete the proof.
O

Theorem 2.8. We have
=)  ¢(=a) [V , V(%)
R ") ‘4{w<q3> ey }
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Proof. On employing (6), if 5 has degree 3 over a we obtain

e @) () e () ()

A RIONCEIRONCED

Now on using (3), we obtain

1 {3¢3(—q3) N 903(—(1)} _m’+3

a L wl=q)  w(=¢®))  mym
_4 Vvm@B+m) 3(m—1)
B 4m dmy/m

4m 4m+/m
NEYE 1/2 a_g 1/8 3 (% 1/2 5_3 1/8
2 \ 23 5 2 21 a

P, ()
_4{w(q3) e }

Where m = z1/z3, the multiplier and we have used (7) to complete the

{3903(—(13) 903(—61)} 4 {\/ﬁ(3+m) 3(m — 1)}

proof. (|

3. APPLICATIONS TO PARTITIONS

The identities obtained in Section 2 have appliations to the theory of
partitions. In this section, we present partition interpretations of some
of the results obtained in the previous section. In sequel, for simplicity,
we adopt the notation

n
((’L17 (,L27 ARAS] ('Ln; q)OO = H(aj7 q)007

j=1
and define,

(@600 = (074" 4" )oos
where r and s are positive integers and r < s. For example, (¢°F; ¢%)s

means (¢%, ¢% ¢®)so which is (¢% ¢®) e (4% ¢®)oo-

Definition 10. A positive integer n has | colors if there are | copies of
n available colors and all of them are viewed as distinct objects. Parti-
tions of a positive integer into parts with colors are colored partitions.
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For example, if 1 is allowed to have 2 colors, then all the colored parti-
tions of 2 are 2, 1, +1,, 1,+ 1, and 1, +1,. Where we use the indices
r (red) and ¢ (green) to distinguish the two colors of 1. Also
1
(a5 0")%
is the generating function for the number of partitions of n where all
the parts are congruent to a (mod b) and have & colors.

Theorem 3.1. Let p1(n) denote the number of partitions of n into
parts congruent to 1 (mod 6) with 4 colors and parts congruent to
+3 (mod 6) with 6 colors. Let pa(n) denote the number of partitions
of n into parts congruent to £1 (mod 6) with 3 colors and parts con-
gruent to +2 (mod 6) with 4 colors. Let ps(n) denote the number of
partitions of n into parts congruent to +2 (mod 6) with 4 colors and
parts congruent to +3 (mod 6) with 6 colors. Then, for any positive
iteger n > 1, we have

pi(n) = pa(n) = ps(n —1).

Proof. Rewriting the products of Theorem 2.1 subject to the common
base ¢® by employing (1), we deduce that
1 1 _ q
(@ @) (@5 a5 (@56 0%

The three quotients of the above identity represent the generating func-

tions for pi(n), p2(n) and p3(n) respectively. Hence the above identity
is equivalent to

00 00 00
S " = 3 p)a =03 ps(n)d”,
n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = 1. Now on equating the coeffi-
cients of ¢" in the above, we are lead to the desired result. O

The following table verifies the case for n = 2 in the above theorem.

p1(2)=10: 1,4+ 1, Ly + Ly, 1, + 1, 1y + 15, 1, + 1y, 1+ 1y,
1+ 15, 1y + 15, 1y + 15, 1, + 1,

p2(2)=10: 1,4+ 1,1, + 1.1+ 151, + 1, 1, + 15, 1, + 1,
2,24, 20, 2.
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Theorem 3.2. Let p1(n) denote the number of partitions of n into
parts congruent to 1 (mod 6) with 9 colors and parts congruent to
+3 (mod 6) with 6 colors. Let pa(n) denote the number of partitions
of n into parts congruent to £1 (mod 6) with 5 colors, parts congruent
to £2 (mod 6) with 4 colors and parts congruent to +3 (mod 6) with
6 colors. Then for any positive integer n > 1, we have,

p1(n) —9pa(n — 1) =0.
Proof. Rewriting the products of Theorem 2.2 subject to the common
base ¢°, we deduce that

1 9q

- —0.
(0 a0 0% (a8 a8 1¢%)s

The quotients of the above represent the generating functions for p;(n)
and po(n) with p;(0) = p2(0) = 1 as discussed in Theorem 3.1 and on
equating the coefficients of ¢", we are lead to the desired result. O

The following table verifies the case for n = 2 in the above theorem.

pr(2) =45 1, + 11w + Loy Ly + 1, 1p+ 1o, 1, + 1y, T + 1, 1, + 1,
1, +1,L;+ 1,1, +1,, 1, +1,, 1, + 1, 1, + 1,,, 1, + 1,,
1, +1, 1L +1,,1, +1;, 1, + 1, 1, + 1, 1, + 1, 1, + 1o,
Ly +1,, 1,4+ 1,1, + 1,1, 4+ 1, 1,4+ 1, 1, + 1,, 1, + 1,
1o+ 1,1+ 13, 1+ 1, 1y + 15, 1, + 1, 1, + 1, 1 + 15,
1, +1,,1,+1,,1, + 1,1, +1;, 1, + 1, 1, + 1, 1, + 15,
1, +1,,1,+1;,1, + 1;.

p2(1) =5 : 1T31w71!]7 1()» ]-’U'

Theorem 3.3. Let p1(n) denote the number of partitions of n into
parts congruent to +1 (mod 6) with 8 colors and parts congruent to £2
(mod 6) with 4 colors. Let pa(n) denote the number of partitions of n
into parts congruent to £1 (mod 6) with 9 colors and parts congruent
to +3 (mod 6) with 6 colors. Then for any positive integer n > 0, we
have,

9p1(n) — 8pa(n) = 0.

Proof. Rewriting the products of Theorem 2.3 subject to the common
base ¢, we deduce that
9 8

— — 0.
(5 65 0%) 0 (@F a8 10%)00
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The quotients of the above represent the generating functions for p;(n)
and po(n) with p;(0) = p2(0) = 1 as discussed in Theorem 3.1 and on
equating the coefficients of ¢", we are lead to the desired result. O

The following table varifies the case for n = 2 in the above theorem.

pi(2)=40: 1, +1,, 1, + 1,1, + 1,1, + 1,1, + 1,1, + 1,1, + 1,
L+ 1+ 1w, L+ 1, 1+ 1, 1, + 1, 1 4+ 16, 1 + 1,
1+ 1,1, +1g, 1y + 1y, 1 + 1, Ly + 15, 1, + 1, 1, + 1y,
g+ 1y 1+ 1,1+ 15, 1, + 1, 1+ 1y, 1 + 1, 1y + 1,
L+1,, 1, +1,,1,+1,1, +1,, 1, +1,, 1, + 1,,1, + 1,,
L+ 10,20 20, 29, 2.

p2(2) =45 1+ 1, 1y + Loty + 1, 1y + 151, + 1,1, + 1,1, + 1,
1o +1,, L +1,1, + 1, L, + 1,1, + 1, 1, + 1, 1, + 1,
1, +1,,1, +1,, L, +1;, L, + 1,5, 1, + 15, 1, + 1, 1y + 1o,
Lo+ 1y Lo+ Lo Lo+ 101, + 1.1y + 1,01, + 1o, 1, + 1,
Lo+ Loy + 1, Ly 1y, I+ Lo L+ 1y 1y + 1y, 1 + 1,
L+ Loy + 1,1, + 1,1, + 11y + 1,01, + 1, 1o + L,
L+ 1,1, + 1, 1, + 1,

Theorem 3.4. Let p1(n) denote the number of partitions of n into
parts congruent to £1 (mod 6) with 8 colors, parts congruent to +2
(mod 6) with 4 colors. Let ps(n) denote the number of partitions of n
into parts congruent to +1 (mod 6) with 5 colors, parts congruent to
+2 (mod 6) with 4 colors and parts congruent to +3 (mod 6) with 6
colors. Then for any positive integer n > 1, we have

p1(n) —8pa(n — 1) =0.

Proof. Rewriting the products of Theorem 2.4 subject to the common
base ¢°, we deduce that

1 8q

(57 i 5% (5 a . a5 0%)

=0.

The quotients of the above represent the generating functions for p;(n)
and pa(n) with p;1(0) = p2(0) = 1 as discussed in Theorem 3.1 and on
equating the coefficients of ¢, we are lead to the desired result. O
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The following table varifies the case for n = 2 in the above theorem.

p1(2) =40 L+ 1, Ly + Lo Ly + 1, I+ 1, L, + 1, 1, + 1, 1, + 1,
Li+1;,10L +1,,1, +1, 1, + 1,1, + 1,1, +1,, 1, + 1,,
1+ i Ly + 1g Ty 1y, T+ 1yo Lo+ 1 Ty + 1y 1y + 1,
14 1o 1y + 1,01 + 1y I+ 1y 1, 4+ 1o 1y + 1,0 1y + 1,
1+ 10,1y + 101, + 1,1, + 10,1, + 1.1, +1,. 1, + L,
Lo+ 10,25, 20, 25, 2.

(1) =5: 1.1, 1,1, 1,

Theorem 3.5. Let pi(n) denote the number of partitions of n into parts
congruent to £1 (mod 6) with 4 colors. Let ps(n) denote the number
of partitions of n into parts congruent to £2 (mod 6) with 4 colors .Let
ps3(n) denote the number of partitions of n into parts congruent to +1
(mod 6) with 8 colors, £2 (mod 6) and +3 (mod 6) with 4 colors. Let
pa(n) denote the number of partitions of n into parts congruent to +3
(mod 6) with 4 colors. Then for any positive integer n > 1, we have,

4pi(n) — 12pa(n — 1) = 3ps(n) + pa(n).
Proof. Rewriting the products of Theorem 2.5 subject to the common

base ¢°, we deduce that
4 12¢ 3 1

e 50 @56 e (@0
The quotients of the above represent the generating functions for p;(n),
p2(n),ps(n) and ps(n) with p1(0) = p2(0) = p3(0) = pa(0) = 1 as
discussed in Theorem 3.1 and on equating the coefficients of ¢", we are
lead to the desired result. O

Theorem 3.6. Let p1(n) denote the number of partitions of n into
parts congruent to £2 (mod 6) with 4 colors, pa(n) denote the number
of partitions of n into parts congruent to +1 (mod 6) with 8 colors
and p3(n) denote the number partitions of n into parts congruent to
+1 (mod 6) with 4colors and py(n) denote the number of partitions of
n into parts congruent to =1 (mod 6) with 12 colors and +2 (mod 6)
with 4 colors respectively. Then for any positive integer n > 1, we have

pr(n—1) = 9pa(n — 1) = p3(n) — pa(n).
Proof. Rewriting the products of Theorem 2.6 subject to the common
base ¢°, we deduce that
q 9q 1 1

(6550 (G565 (@560 (0156550500
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The quotients of the above represent the generating functions for p;(n),
p2(n),ps(n) and ps(n) with p1(0) = p2(0) = p3(0) = pa(0) = 1 as
discussed in Theorem 3.1 and on equating the coefficients of ¢, we are
lead to the desired result. O

Theorem 3.7. Let p1(n) denote the number of partitions of n into
parts congruent to £1 (mod 6) with 10 colors and parts congruent to
+3(mod6) with 8 colors. Let pa(n) denote the number of partitions of n
into parts congruent to +1 (mod 6) with 8 colors and parts congruent
to £2 (mod 6) with 4 colors. Let ps(n) denote the number of partitions
of n into parts congruent to £1 (mod 6) with 8 colors and parts con-
gruent to +£2 (mod 6) with 4 colors. Let ps(n) denote the number of
partitions of n into parts congruent to +1 (mod 6) with 16 colors and
+3 (mod 6) with 8 colors. Let ps(n) denote the number of partitions of
n into parts congruent to +1 (mod 6) with 14 colors, parts congruent
to +£2 (mod 6) with 12 colors and parts congruent to +3 (mod 6) with
6 colors. Then for any positive integer n > 0, we have

pi(n) — 9p2(n) — ps(n) + 9pa(n) = 64ps(n).
Proof. Rewriting the products of Theorem 2.7 subject to the common

base ¢°, we deduce that

1 9

(05,4871 0%) 0 (68T, a5 0%
1 9 64

(5 65 %)% (e, 2710 (015, @15, a1 0%) 0

The quotients of the above represent the generating functions for p;(n),
p2(n), ps(n), pa(n) and ps(n) with pi(0) = p2(0) = ps(0) = pa(0) =
p5(0) = 1 as discussed in Theorem 3.1 and on equating the coefficients
of ¢", we are lead to the desired result.

UJ

Theorem 3.8. Let p1(n) denote the number of partitions of n into
parts congruent to +1 (mod 6) with 8 colors, parts congruent to +2
(mod 6) with 4 colors and parts congruent to +3 (mod 6) with 4 colors.
Let po(n) denote the number of partitions of n into parts congruent to
+3 (mod 6) with 4 colors. Let ps(n) denote the number of partitions of
n into parts congruent to £1 (mod 6) with 4 colors. Let ps(n) denote
the number of partitions of n into parts congruent to £2 (mod 6) with
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4 colors. Then for any positive integer n > 1, we have
3p1(n) + pa(n) = 4[ps(n) — 3ps(n — 1)].

Proof. Rewriting the products of Theorem 2.8 subject to the common
base ¢°, we deduce that
3 1 _ 4 1 3q
@ e @50 @5 ®)s @5

The quotients of the above represent the generating functions for p;(n),
p2(n), p3(n) and ps(n) with pi(0) = p2(0) = p3(0) = pa(0) = 1 as
discussed in Theorem 3.1 and on equating the coefficients of ¢", we are
lead to the desired result. O
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