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OBSERVATIONS ON IDENTITIES AND RELATIONS FOR
INTERPOLATION FUNCTIONS AND SPECIAL NUMBERS

IREM KUCUKOGLU AND YILMAZ SIMSEK

ABSTRACT. The main motivation of this paper is to study and inves-
tigate a new family of combinatorial numbers with their generating
functions. Firstly, we obtain some finite series representations includ-
ing well-known numbers such as the Apostol-Bernoulli numbers, the
Apostol-Euler numbers, a family of combinatorial numbers, the Daehee
numbers, the Changhee numbers and the Stirling numbers of the second
kind. Secondly, applying Mellin transform to these functions, we give
interpolation functions for these numbers. We investigate some proper-
ties of these functions and other related complex valued functions. We
observe that some special values of these functions give us the terms of
some well-known infinite series. Thus, these functions unify the terms
of some well-known identities and functions such as Hasse identity, the
polylogarithm function, the digamma function, the Riemann zeta func-
tions, the alternating Riemann zeta function, the Hurwitz zeta function,
the alternating Hurwitz zeta function, the Hurwitz-Lerch zeta function
and the other functions. Moreover, we give some remarks and observa-
tions about these functions related to some special numbers and poly-
nomials such as the Stirling numbers of the second kind, the harmonic
numbers, the array polynomials and also related to hypergeometric func-
tions, the family of zeta functions. We also give not only Riemann inte-
gral representation, but also Cauchy integral representations for this new
family of combinatorial numbers. Finally, in order to compute numerical
values of these interpolation functions and other related complex valued
functions, we present two algorithms. Furthermore, by using these al-
gorithms, we provide some plots of these functions. Also, we investigate
the effects of their parameters.
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1. INTRODUCTION

Interpolation functions for the special numbers and polynomials are very
important in analytic number theory and mathematical pyhsics. The moti-
vation of this paper is to derive interpolation functions for the combinato-
rial numbers y1 (n, k; \). We investigate some properties of these functions
and other related complex valued functions. We also investigate relations
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tration of Akdeniz University(with Project Number: FDK-2017-2375).
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between these functions and some well-known functions such as the poly-
logarithm function, the digamma function, the Riemann zeta functions, the
alternating Riemann zeta function, the Hurwitz zeta function, the alternat-
ing Hurwitz zeta function, the Hurwitz-Lerch zeta function and the other
functions. Moreover, we give some finite series representations including the
Apostol-Bernoulli numbers, the Apostol-Euler numbers, the combinatorial
numbers y (n, k; A), the Daechee numbers, the Changhee numbers and the
Stirling numbers of the second kind.

In order to derive the results of this paper, we need the following notations,
definitions, identities and formulas:

Let N={1,2,3,...}, Ngo =NU{0}. Here, Z, R and C corresponds the
set of integers, the set of real numbers and the set of complex numbers,
respectively. Let tacitly assume that

1, n=0
no__ b
0 _{0, neN

Simsek [33] defined the combinatorial numbers y; (n, k; A) by means of the
following generating function:

(1) Fyi(t, ki A) = )\e + 1 Zyl n, k; A) —

where k € Ny and A € C. From the above equation, one has the explicit
formula for the combinatorial numbers y; (n, k; \) as follows:

(2) 1 (n, ki \) kuZ( )

where n € ZT. Note that for A = 1, the numbers y; (n, k; \) are reduced to
the following combinatorial sum:

k
A
3 B(n, k) = k! k1) = C "
® (k) = b (ki) = > (5 )5
7=0
(cf. [30], [33], [31]).
As in [33], assuming that A # 0, Table 1 includes some values of the
numbers y1(n, k; A) for k =0,1,2,3,4 and n =0,1,2,3,4, 5:

n\k 0 1 2 3 4

0 1 A4+1 gA24X+3 M+ +00+3 %L4A4+é)\3+}—1/\2+é/\+ﬁ
10 A A2+ D% 4 A N N DR
20 A 202 + A X4 2n2 4 I 2/\4+3)\3+)\2+é)\
3.0 A AN+ A 8)\3—1—4)\2 z §A4+§,\ +2)7 + 6)\
40 A 8AZ 4+ A N+ 8AT+ A VI SUIDTCIE A

5 0 A 16A% 4 A 1)\3+16)\2+ 3A %,\ 1>\3+8)\2+ A

Table 1. Some numerical values of the numbers y1(n, k; ) (¢f. [33]).

The Stirling numbers of the second kind S3 (n, k) are defined by the fol-
lowing explicit formula:
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0 e iR (5 )eve s

=0

These numbers have the following relations: S3(0,0) = 1, Sa(n,v) = 0 if
v >n; Sa(n,0) =0ifn > 0 (cf. [3], [6], [7], [9], [38]; and the references cited
therein).

A relation between the Stirling numbers of the second kind and the com-
binatorial numbers y1 (n, k; A) given by (c¢f. [30]):

(5) So(n, k) = (=) y1 (n, ks —1).
In [4, p.4, Eq-(7)], Boyadzhiev gave the following two identities related to
the Stirling numbers of the second kind:

(©) > ( k )k’“ = Z( i )52 (p.) jla? (1 +2)"

k=0 =0
and
™ ,
) (D) Rt = ") Sy (pg) (1) el (1 — )"
kZ:O< k ) z ; ( ] ) 2P J)J x x

It also should be note that

®) Bomn) =3 () 5242 (m)

=0

(cf. [33]).
The A-array polynomials S (z;\) are defined by Simsek [27] with the
following generating function:

()\e —1 tn

ZSTL L)) O

where v € Ny and A € C. For A =1, these polynomials are reduced to the
classical array polynomials S} (z):

Sy (z) = 5y (x;1)

which are given by the following combinatorial sum:

n

) 1@ =3 (1 )am it

=0

(cf. 2], [B], [6], [26, Theorem 2], 27, Remark 3.3]).
A relation between the A-array polynomials S} (z; \) and the combinato-
rial numbers y; (n, k; \) given by

Sp(030) = (=) yy (n, ks —N).
The A-Stirling numbers are defined by

Sy(n, v; \) = ‘Z )”7( ))\J
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(cf. [24], [27]). A relation between the A-Stirling numbers and the combi-
natorial numbers y; (n, k; \) given by

(10) Sa(n,v; A) = (=1)"y1 (n,v; =) .
The Bernstein basis functions B} (z) are defined as follows:
(1) B =} )t a-a
and integral formula for these polynomials are given as follows:
1
(12) [ Bt @i =
z)dr =
k n+1
0
(cf. [23]).

The Apostol-Bernoulli numbers B, () are defined by

t — tn

1 ) — — E / -
(13) Fi (1) Aet =1 = Bn()\)n!7

where |t +log A\| < 27 (¢f. [38]).
The Apostol-Euler numbers &,()\) are defined by

2 - "
14 A= — =S e,
(14) Fe () = 157 ;8 V)
where |t +log A| < 7 (cf. [19], [38]; see also the references cited in each of
these earlier works).
The Daehee numbers are defined by

log(1+t) = . t"
(15) ¢ - ZDnm

(¢f. [15], [20], [22]; see also the references cited in each of these earlier
works).

By using (15), one has the explicit formula for the Daechee numbers given
by

16 D Py

(16) n=(=1) n+1

(cf. [25, p. 45], [20], [29]; see also the references cited in each of these earlier
works).

The remainder of the present paper is summarized as follows:

In Section 1, we derive some finite series representations including the
Apostol-Bernoulli numbers, the Apostol-Euler numbers, the combinatorial
numbers y; (n, k; A), the Daehee numbers, the Changhee numbers and the
Stirling numbers of the second kind. We also give some remarks and corol-
laries.

In Section 2, we present an interpolation function of the combinatorial
numbers y1 (n, k; \). Furthermore, we give some remarks and applications
including complex valued functions associated with these interpolation func-
tions and some special functions.
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In Section 3, we present integral representations for the combinatorial
numbers y; (n, k; A) including not only Riemann integral, but also Cauchy
integral representations.

In Section 4, we provide computation algorithms for the newly defined
complex valued functions and their interpolation functions. We also provide
some plots of these functions.

2. FINITE SERIES REPRESENTATIONS INCLUDING THE COMBINATORIAL
NUMBERS %1 (n, k; ), THE DAEHEE NUMBERS AND THE CHANGHEE
NUMBERS

In this section, we give finite series representations including the Apostol-
Bernoulli numbers, the Apostol-Euler numbers, the combinatorial numbers
y1 (n,k; ), the Daehee numbers, the Changhee numbers and the Stirling
numbers of the second kind. We also give some remarks and corollaries.

From (1) and (14), we have

2
EFyl (t,k—1;0) = Fyi (¢, k; A) Fe ()

which is the special case when v = 1 of a functional equation given by
Yuluklu et al. [39, p. 4842].
It follows from the above functional equation that

2 o "o e tn
Z Zoyl(n,k - 1;)\)5 = Z{)yl(n,k;)\)ﬁ Zoé'n()\)m
n= n= n=

Comparing the coefficients of ;—n, on both sides of the above equation yields
the special case when v = 1 of Theorem 2.8 in the work of Yuluklu et al.
[39, p. 4842] as follows:

k n .
(17) yl(nak—1§>\):§jzo( ; >6nj(A)y1 (. ks A)
Substituting A = 1 into (17) and combining (3) and (8) with final equation
yields the following corollary:

Corollary 2.1.

n Jj
(18)  B(nk—1)= %ZZ < j ) ( ﬁ ) 012F7vE, (1) Sy (5, v) .
From (13) and (14), we have

> "= Bagi(\) "
> ey =23
n=—

— n+tl nl’
By using the above equation, one can easily get the following well-known
relation between the Apostol-Bernoulli numbers and the Apostol-Euler num-
bers
(19) En(-X) =2 Bui(); (£1).
Substituting the above equation into (17) yields the following theorem:
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Theorem 2.2.
n
n\ Bnoji1(=A)
20 E—1:)\) = —k i i A SN O H
(20) (k-1 Za<1> =it E )

Substituting A = 1 into (20) and combining (3) and (8) with final equation
yields the following corollary:

Corollary 2.3.

(21) Bk 1) Zi( )(*" )v!?’”t’ﬁ’n:fj(+1l>sg(j,v)_

J= 0 v=

From the work of Simsek [34, Corollary 2], we know that
m—1 (71)'[]«'»1

m
22 = —

@ Bn=F Y
where Chy, (A, 1) denotes the Changhee type numbers which, for A =

yields the Changhee numbers with

Chy (=X, 1) So (m — 1,v)

—_1)Y !
Chy = Chy (1,1) = 12) o

(cf. [21)).
Substituting (22) into (20) yields the following theorem:

Theorem 2.4.

@) nmkE-LY = “Z( >y1 J,k)\g

v=

XChy (A, 1) 82 (n— j,v).

v+1

Substituting A = 1 into (24) and using (3) yields the following corollary:
Corollary 2.5.

1 n n n— J 'U+1
(24) B(nk—1) = §;<j> G, k Z Ch,

v=

xSy (n—j,v).
Combining (16) and (19), we have
2(-1)"*"' D,
(25) £ (- =2 Pg o0 .

Combining the above relation with (17) yields the following theorem:
Theorem 2.6.

(26) y1 (n,k—1;) = kz(_l)nﬂdrl ( n ) Dn_?-
=0

J ) (n—3j)!
*By i1 (=) y1 (G, k3 V)

Substituting A = —\ into (26) and using (10) yields the following corol-
lary:



Observations on identities and relations for interpolation functions and special numbers 47

Corollary 2.7.
n . D74
(27) 2 ( ) ;( ) i) (n—j)
XBo_ji1 (\) S (G, ki \)

3. INTERPOLATION FUNCTION OF THE COMBINATORIAL NUMBERS
y1 (n, ki X)

In this section, we give an interpolation function of the numbers y1 (n, k; \).
This function interpolates the numbers y; (n, k; A) at negative integers. Also,
we investigate some properties of complex valued functions associated with
these interpolation functions. Moreover, we give remarks, observations and
applications on these functions.

Let s € C. By applying the Mellin transformation to (1), we get

1 o0
(28) g (5, ki 2) = —/ LB (ks A) i,
I'(s) Jo Y
where I'(s) denotes the Euler gamma function and Re (s) > 0.
Theorem 3.1. Let n € Z*. Then we have
g(=n,k; A) = y1(n, k3 A) .
Proof. The proof of this theorem is similar to that of Theorem 8 in [37, p.
254]. We give sketch of proof as follows: Substituting s = —n, n € Z* into

(28) and by using Cauchy Residue Theorem in (28), we arrive at desired
result. (]

We modify integral equation in (28) as follows:
Let min {Re (s), Re (z)} > 0. Then,
1 [ 1o
29) —— | Fu(-tkNe ™t =~
@) w ) Ea ke DD

j=

(3) 7w

where the additional constraint Re (x) > 0 is required for the convergence
of the infinite integral occurring on the left-hand side at its upper terminal.

By using the integral transform in (29), we define the following complex
valued functions:

Definition 3.2. Let k € N and s € C. We define

1o~/ & X
(30) h(s,w;k;)\)zﬁz<j)m,

J=0

Note that there is one complex valued function for each value of k.
Setting s = —n (n € Z™) into the above equation, we have

1 " n k k .
nemmi) = 30 ()t ()0
" 1=0 §=0

By using (2) in the above equation, we arrive at the following theorem:
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Theorem 3.3. Let n,k € N and A € C. Then we have

n

(31) h(=n,z;k;\) = Z ( T; > 2"y (1, ks A).

=0

The right-hand side of the equation (31) is related to very famous com-
binatorial sums and special numbers. Therefore, we give some important
applications for the formula in (31) as follows:

Substituting A = —1 into (31) and using (5) and (9), we get a relation
between the function h (—n,z; k; \) and the classical array polynomials by
the following corollary:

Corollary 3.4. Let n,k € N. Then we have
(32) h(=n,z;k; 1) = (=1)* S} (2)

Remark 3.5. In the special case when x = 1, equation (32) is reduced to

h(=n,1;k;—1) = (—1)kzn: < ’l’ ) So (L, k).

=0
Moreover, substituting A = 1 into (31) and using (3), we also get the
following corollary:

Corollary 3.6. Let n,k € N. Then we have
1 - n n—l
(33) h(—n,ﬂc;k;l)—m;<l )x B(l,k).

Note that the right-hand side of the equation (30) is related to very fa-
mous special functions, combinatorial sums and special numbers. For this
reason, in addition to the above applications, we also give some important
applications for the formula in (30) as follows:

Remark 3.7. Substituting \ = —1 and s = 1 into the equation (30), we get
1
z(x+1)...(x+k)

which is deduced from the partial fraction decomposition given in [17, p.188]
for k € Ny as follows:

! :zk:(_l)z(k) L @01 ),

z(x+1)...(x+k) = J )i+

(34) h(1,x;k;—1) =

By letting x — —1 in the above equation, we have

k
Z(—l)j<§>j%1_1—k+ka_1 (keN)

where
k1
Hp=) -
=17

(cf. 8, Bq. (2.1)], [17, p-188] , [28] and [36]).
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Remark 3.8. In [28], Simsek proved the following combinatorial sum:
= n—j [ N 1 _ n—k [ T 1
S (5 ) =t (1)
Taking into account the above formula for k = 0 and substituting s = x =1
and A = —1 into (30), then we also have
1
n+1
Remark 3.9. If we substitute s = x = A\ = 1 into the equation (30), we

have i
k 1 2k+1 _ 1
Kh(1.1:k;1 :E Y- _ - -
H(1 1ik; 1) jZO(J)j+1 E+1

which was given in [36, Identity 13].

Remark 3.10. From the work of Connon [13, Eq-(4.4.99d)], we have
7(_1)1% /1 1 (1 — t)* log® ! tat.
El(s—1)!

Remark 3.11. Also, from the work of Connon [11, p.62, Eq-(4.3.70a)], we
have

k'h(1,1;k;-1) =

h(s,z;k;—1) =

= klh (s, ks —1) (D'
,;0 T _(371)!1/1 (x)

where )% (z) denotes s-th derivative of the digamma function, also called
polygammea function defined by

¥ (2) = - flogT (2)}
(cf. 38, p. 24]).

Remark 3.12. Observe that the function h (s, z;k; M) is related to the sum
Sk(A, &) which was defined by Connon in [12, p.132, Eq-(4.4.43b)] and [14,
p.12, Eq-(4)]. That is,

Sk(A\ x) = klh (s, k3 A) .
We set

(35) (s,z30) = Zakh (s,z3 k3 A).

!

Substituting a, = (—1)F D), = kk and A = —« into (35) reduces to the
following identity, which was given by Connon [14, p. 15, Eq. (11)], we have

Z( D¥h (s, 25k —a) Dy = s® (a, s + 1,2) — @ (o, 5, 2) log ()

Where P (oc, s,x) denotes the Hurwitz-Lerch zeta function which is defined
by (cf. [38, p. 194 et seq.]):

n

o0
asx E
n—i-bL

n=0

49
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where 2€C\Zj; s € C when |a] < 1; Re(s) > 1 when |a] = 1. Some
special cases of parameter « give us the following well-known interpolation
functions for the Bernoulli numbers and polynomials such as the Riemann
zeta function and the Hurwitz zeta function respectively as follows (see, for
details, [38, Chapter 2]):

=1
®(1,51)=¢(s) =D —,(Re(s) >1)
—n
and
1
D(1,5.a) = (s,0) = 23m+ (e () > 1),
Substituting ay = 21&1 = %, A= —1and z = 1 into (35) reduces

to the following identity, which was given by Connon [10, p. 28, Eq. (3.11)],

we have
oo

> (=1 h(s, 1k —1) Chy = (1= 217%) ¢ (s).
k=0
The above equation is also known as Hasse’s formula(may be also called
Hasse-Sondow identity) proved and investigated before by Hasse and Sondow
n [18] and [35].

Remark 3.13. The sum in (35) is related to many known functions and also
other unknown functions for the special values of the sequences (ay) ; (k € N).
That is, the special cases of the sequences (ay) with different values of the
parameters A and x in (35), one has more identities for some infinite series
related to the Hasse identity, the polylogarithm function, the digamma func-
tion, the Riemann zeta functions, the alternating Riemann zeta function, the
Hurwitz zeta function, the alternating Hurwitz zeta function, the Hurwitz-
Lerch zeta function and the other functions. For examples, the reader can
consult the following references: [1], [10], [11], [12], [13], [14, p. 12, Eq. (4)]
and [38]; (see also the related references cited therein).

Now, we give a hypergeometric function representation of the function
h (s, z;k; \) by the following theorem:

Theorem 3.14.

k
1 ‘ .
hs,z;k;\) = o E < I; ))\]IS 1Fy (—s;—;%)
=

where 1Fy denotes hypergeometric function defined by

B (i —32) = 3 (@),
n=0

where (a),, denotes the falling factorial polynomials, which defined by
(a),=a(a—1)(a—2)...(a—n+1) (a€CneN)

and
(a)g=1 (a€C).



Observations on identities and relations for interpolation functions and special numbers 51

Proof. By using negative binomial series expansion in (30), we get

=35 () (7))

Thus, we get

B (s, 21 ks A) = ka< > Z( 9, (%>n

n=0

By using definition of 1 Fp in the above equation, we arrive at the desired
result. O
4. INTEGRAL REPRESENTATION FOR THE NUMBERS 41 (n, k; \)

In this section, we give two type integral representations for the numbers
y1 (n, k; ) including Riemann integral and Cauchy integral representations.
Firstly, we give the Riemann integral representation for the numbers
y1 (n, k; A) with respect to A. Integrating both sides of the equation (2),

we get
/Oyl(n/c/\ mZ( ) /)Jd/\

From the above equation, we arrive at the following lemma:

Lemma 4.1.

k: .
r 1 k it
Lk A) dA = — S g .
(36) [nmna= gy (4) s
7=0
Substituting z = —1 into (36), we arrive at the following corollary:

Corollary 4.2.

0 1 k 'n
_ = J
(37) /fmmmu kz%( )(1)J+1
Theorem 4.3.

k
k ' J

Proof. By combining (7) and (11), we have

L k . ) n :
@ ()0 =300 1 B @

=0

where B;-“ (z) denotes the Bernstein basis functions. Integrating both sides
of equation (39) from 0 to 1 and using equation (12), we get the desired
result. O

Combining (37) with (38), we get the following corollary:
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Corollary 4.4.

0 1
(40) /_1y1(n,k;)\)d/\: G

n
> S5 (n.g) it (~1).
Jj=0
By using same method that of [32], secondly we give a Cauchy integral
representation for the numbers y; (n, k; A). By applying the Cauchy Residue
Theorem to the generating function for the numbers 1 (n, k; A), we derive a
Cauchy integral representation for these numbers by the following theorem:

Theorem 4.5.
n! dz
(a1) ki) = g | R o) 57

where C is a circle around the origin and the integration is in positive direc-
tion, \,z € C andn € Z*.

Proof. By using Cauchy Residue Theorem with generating functions for the
numbers 11 (n, k; A), we have

n! _ dz n! , Fp(z,k N)
(42) i . Fy1 (2, k5 \) pres el v <2chs (T, o)),

where Res(f(z),a) denotes the residue of f(z) function at z = a. By using
the following Laurent series expansion,

Fp (2, k5 0) > Zm ol
sz = Zoyl (m, k3 X) -
1 1 y1(n—1,k\) 1
_ .. v (L kA — + ... il
y1 (0, k5 X) s, +y1 (1, k5 0) o7 + 4t 1 2

y1 (n, ks )1 yi(n+ 1,k N
+ —
n! z (n+1)!

we compute residue of the function zﬂ—,lJrrFyl (z,k; A) at z = 0 as follows:

Res (Fyl (z,k; N) 0) _n (n,k; N\

Zntl n! '
Thus, by combining the above equation with (42), we arrive at the desired
result. ]

5. COMPUTATIONS AND NUMERICAL EVALUATIONS

In this section, in order to compute numerical values of the functions
h(s,z;k; \) given in (30) and interpolation functions h(—n,z;k; \) given
in (31) related to the combinatorial numbers y; (n, k; \), we present two
algorithms. Furthermore, by using these algorithms, we provide some plots
of the function h (s,z;k;\) for some special values of its parameters. By
means of the drawn plots, the effects of s, z, kK and A are demonstrated.
Also, we present some observations and evaluations related to effects of the
parameters.
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Algorithm 1 Let k£ € N and s € C. This algorithm will return numerical values
of the function h (s,z; k; \) given in (30).

procedure H_FUNC(s, z, k, \)
Begin
Lobal variables:
70,50
for all j in {0,1,2,...,k} do
S < S + Binomial Coef (k, j) x (Power (), j) /Power (j + x, s))
end for
return (1/Factorial (k)) % S
end procedure

By using Algorithm 1, we draw a few graphs of the function h (s, z; k; \)
for some special cases of its parameters and Figure 1 shows these graphs.

-
s

P
oW W
G BN e

Xy o x x
W W
RS

2 a4 6 8 2 a4 6 8 10
s s

(a) The function h (s, z;k; A) for 2 =1, (b) The function h (s, z;k; \) for z = 1,
A=2ke{l1,2,3,45  and s € [0,10. k=2, A {1,2,3,4,5} and s € [0, 10].

R
G a W e

>y ox n
R
o R W N e

W1, 2k 2)

0.05 0.10 0.15 0.20 10 20 30 40 50 60

(c) The function h(s,x;k;A) for s =1, (d) The function h (s, z; k; A) for s =1,
A=2,ke{1,2,3,4,5} and z € [O, %} k=2, xe{1,2,3,4,5} and z € [0,60].

Figure 1. Some plots of the function h (s, z;k; A) for some
special values of its parameters.
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Algorithm 2 Let n,k € N and A\ € C. This algorithm will return numerical
values of the interpolation functions h(—n,z;k;\) given in (31) related to the
combinatorial numbers y; (n, k; \) whose computation algorithm was given in [33,
Algorithm 1] by Simsek.

procedure H_INT_FUNC(—n, z, k, \)
Begin
Lobal variables:
1+0,5+0
for all [ in {0,1,2,...,n} do
S + S + Binomial _Coef (n, 1) * Power (z,n — 1) x y1 (I, k; \)
end for
return S
end procedure

By the help of Algorithm 1 and Algorithm 2, we draw the functions
h(s,z;k; \) and the interpolation functions h (—n,z;k; A) for s = —n; n €
Z% in the case of x = 1, k = 1,2,3,4,5 and A\ = 2, and these graphs are
given by Figure 2.

- h(s,1,1,2)
5000+ |
[ }L(,S, 1, 27 2)
h(,s, 1,3, 2)
4000 o5
—  h(s,1,5,2)
&\3000* X % h(—-n,1,1,2)
=0 B~ 1,2,2)
o * % h(=n,1,3,2)
= 2000 i
h(—n,1,5,2)
1000
s,
| ‘ ;
1 1 2 >t 5

Figure 2. Combined graphs of the functions h (s, z;k; \)
and the interpolation functions h(—n,z;k; \) for s = —n;
n€Z",inthecaseof x =1, k=1,2,3,4,5 and A\ = 2.
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