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A GLOBAL BIFURCATION FOR NONLINEAR ELLIPTIC
EQUATIONS INVOLVING NONHOMOGENEOUS
OPERATORS OF p(z)-LAPLACE TYPE
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ABSTRACT. We are concerned with the following nonlinear problem
—div(y(x, V) = plul/ D 2u+ f(A 2,4, Vu)  in Q

subject to Dirichlet boundary condition, provided that p is not an eigen-
value of the p(z)-Laplacian. The aim of this paper is to study the struc-
ture of the set of weak solutions of nonlinear equations of p(x)-Laplace
type, by applying a bifurcation result for nonlinear operator equations.
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1. INTRODUCTION

Bifurcation theory for nonlinear eigenvalue problems was originated by
Krasnoselskii [20]. Using the topological approach of Krasnoselskii, Rabi-
nowitz [24] investigated that the bifurcation occurring in the Krasnoselskii
theorem is actually a global phenomenon. Based on the paper [24], many
researchers have studied bifurcation problems about p-Laplacian and gener-
alized operators; see [2, 5, 6, 11, 22, 26, 27]. They mainly used Ljusternik-
Schnirelman theory to obtain eigenvalues of nonlinear operators and yielded
global bifurcation from the first eigenvalue of the p-Laplacian. While most of
them considered global branches in this way, under suitable conditions, Véth
[28] suggested the inventive approach to establish the existence of a global
branch of solutions for the p-Laplacian with Dirichlet boundary condition
by applying nonlinear spectral theory for homogeneous operators. Recently
Kim and Vé&th [17] established the existence of an unbounded branch of so-
lutions for equations involving nonhomogeneous operators of p-Laplace type
(see [15] for generalizations to unbounded domains with weighted functions).

In this paper, we are concerned with the existence of an unbounded branch
of the set of solutions of nonlinear elliptic equations of p(x)-Laplace type
subject to Dirichlet boundary condition

—div(¢(z, Vu)) = plulP®2u + f(\, z,u, Vu) in Q
(B) _ .
u=20 on 0,

when p is not an eigenvalue of

—Apgyu = plulP®) =24 in Q
u=20

E
(E) on 0,
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where © is a bounded domain in RY with Lipschitz boundary 09, ¢ (z,-) :
RN — R is not necessarily positively homogeneous or odd, p : Q — (1,00)
is continuous and f : R x Q x R x RNV — R satisfies a Carathéodory con-
dition. Here the operator —A,,)u = —div(|Vu[P®)~2Vy) is called the
p(z)-Laplacian. Recently, the study about the differential equations and
variational problems involving p(x)-growth conditions has been extensively
investigated because they explain a various physical phenomena, for ex-
ample, elastic mechanics, electro-rheological fluid dynamics and image pro-
cessing, etc. We refer the readers to [1, 4, 23, 25, 30] and the references
therein. However the bifurcation result on nonlinear elliptic equations with
variable exponents is rare with the exception of the papers [13, 16, 18]. It
is well known that the positivity of the isolated principal eigenvalue for the
p-Laplacian plays a key role in obtaining the bifurcation result for elliptic
equations involving p-Laplacian. But unlike the p-Laplacian, the infimum of
all eigenvalues for the p(z)-Laplacian might be zero (see [9]). Based on the
work of Vith [28], the global behavior of solutions for degenerated elliptic
equations involving the p(z)-Laplacian has been considered in [18]; see [13]
for Neumann problems with variable exponents. Concerning nonlinear el-
liptic equations involving nonhomogeneous operators of the p-Laplace type,
the key ideas for obtaining the global bifurcation results are to observe the
asymptotic behavior of integral operator corresponding to the nonhomoge-
neous principal part at infinity and to apply an abstract bifurcation result
for nonlinear operator equations in terms of the Leray-Schauder degree, in
order to include nonodd case of the principal part. The authors in [15, 17]
gave the following condition for the divergence part 1):

(H) There exist positive constants ci, ¢ such that

(1/)(37,11) - ¢($a ,U)v u— U>

S Ja min{1, (Ju| + [v])P~2}|u — v|? if 1<p<2and (u,v)#(0,0)
calu — v|P if 2<p<o0o

holds for almost all z € RY and for all u,v € RV,

Hypothesis (H) means that ¢ (z,-) is uniformly monotone on bounded sets
and coercive. In particular, this condition plays a decisive role in obtaining
the topological properties that the integral operator related to the principal
part ¢ is bounded homeomorphism and an inverse map of a convex com-
bination of two integral operators which are specified later is continuous.
The aim of this paper is that, as considering these topological properties
from the strict convexity of ¢(xz,-) which is a weaker condition than (H),
we obtain the existence of an unbounded branch of the set of solutions for
nonlinear elliptic equations of p(z)-Laplace type.

This paper is organized as follows: In Section 2, we state some basic
results on the variable exponent Lebesgue-Sobolev spaces. In Section 3,
some properties of the corresponding integral operators are presented. We
will prove the main result on a global bifurcation for the problem (B) in
Section 4.
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2. PRELIMINARIES

In this section, we state some elementary properties for the variable expo-
nent Lebesgue-Sobolev spaces which will be used in the next sections. The
basic properties of the variable exponent Lebesgue-Sobolev spaces can be
taken from [4, 10, 19].

To make a self-contained paper, we first recall some definitions and basic
properties of the variable exponent Lebesgue space LP()(Q) and the variable
exponent Lebesgue-Sobolev space WP (Q).

Set

Ci(Q) = {h € C(Q) : min h(z) > 1} .

€N
For any h € C4(Q) we define

hy =suph(z) and h_ = inf h(x).
z€Q Sy

For any p € C+(Q), we introduce the variable exponent Lebesgue space
LPO(Q) = {u : u is a measurable real-valued function, / lu(z)P®) dx < oo} ,
Q

endowed with the Luxemburg norm

lul o ) = mf{)\ >0: / ’ dr < 1}

The dual space of LP()(Q) is LF'()(Q), where 1 /p(m)+1/p’(x) = 1. The vari-
able exponent Lebesgue spaces are a special case of Orlicz-Musielak spaces
treated by Musielak in [23].
The variable exponent Sobolev space W1P()(Q) is defined by
Wwirt)(Q) = {u e LPO(Q) : |Vul € LPt (Q)} ,
where the norm is

(2.1) lulweer @) = lul oo ) + VUl oo g

Lemma 2.1. ([10, 19]) The space LP1)(Q) is a separable and uniformly
conver Banach space, and its conjugate space is LP')(Q) where 1/p(x) +
1/p/(x) = 1. For any u € Lp(')(Q) and v € LV 0)(Q), we have

| [ da] < (o= + ) Wliso@ulolusoe < 2o il
Lemma 2.2. ([10]) Denote
/ u|P@ dz,  for all u € LPO(9Q).

Then
(1) plw) > 1 (= 15 < 1) if and only if Jul oy > 1 (= 15 < 1),
respectively;
(2) If ul 1oty (q) > 1. then Hu”,;pu < plu) < ||U\|Lp<> ©)
(3) If H“”LP() <1, then HUHLM) Q) < plu) < ”uHLP(') Q)
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Lemma 2.3. ([7]) Let ¢ € L*®(Q) be such that 1 < p(z)q(x) < oo for almost
all z € Q. If u € LI1)(Q) with u # 0, then

(1) [f““”LP(~>q(~>(Q) > 1, then ”u”i;(-)q(-)(g) < |“|q(x) HLI’('>(Q) < HUH(,{JZ«)qc)(m"
(2) If lul potratr @) < L then Jul o gy < Tl ™ Loy < el fn gy

Lemma 2.4. ([3, 4]) Let p € C(Q) with 1 < p_ < py < oo is globally
log-Hélder continuous on Q. Then, for u € Wol’p(‘)(ﬂ), the p(-)-Poincaré
inequality

lul vy @y < ClIVUl Lo (@)
holds, where a positive constant C' depends on p and €.

Lemma 2.5. ([8]) Let & C RN be an open, bounded set with Lipschitz
boundary and p € C(Q) with 1 < p_ < py < oo . If g € L®(Q) with
q— > 1 satisfies
Np(z) ;
Ty <N
q(z) < p*(x) := { NP@) Zf p(z) for all z € Q,
o0 if px) =N
then we have a continuous embedding

whrh)(Q) — £10(Q)
and the imbedding is compact if 1gg(p*(x) —q(x)) > 0.
x

3. PROPERTIES OF THE INTEGRAL OPERATORS

In this section, we give some properties of the integral operators corre-
sponding to the problem (B), by applying the basic properties of the spaces
LPO)(Q) and WP0)(Q) which were given in the previous section.

Here and in the sequel, we assume that p € C(Q) with 1 < p_ <py <
is globally log-Holder continuous on € (see Definition 4.11 and Remark 4.1.5

of [4]). Let X := Wol’p(‘)(ﬂ) with the norm
p(z)
de <15,

|u|x = inf {/\ >0: / Vu(z)
Q

A
which is equivalent to the norm (2.1) due to Lemma 2.4.

We assume that ¢ : @ x RY — RY is a continuous function with the
continuous derivative with respect to v of the mapping ¥o : Q x RY —
R, ¥y = Yo(z,v), that is, (z,v) = %\Ilo(w./u). Suppose that ¢ and ¥
satisfy the following assumptions:

(H1) The equalities

Uo(z,0) =0 and Po(x,v) = Po(z,—v)
hold for almost all 2 € © and for all v € RY.

(H2) There are a function a € LP ()(Q) and a nonnegative constant b such

that
[z, v)| < a(@) + blofP™) !
holds for almost all z € Q and for all v € RV,
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(H3) There exists a constant d such that
d|v\p(x) < ¢(z,v)-v and d\v\p(x) < p+¥p(z,v)

hold for all z € Q and v € RV,
(H4) Wy(z,-) is strictly convex for almost all z € Q.

Let (-,-) denote the usual of X and its dual X*. Let us define the func-
tional ¥ : X — R by

\I/(u):/Q\IJo(;E,Vu)dx.

Under assumptions (H1)-(H3), it follows from [14, Lemma 3.2] that the
functional ¥ is well defined on X, ¥ € C'(X,R) and its Fréchet derivative
is given by

(3.1) (V' (u),v) = /Qlj)(JL, Vu) - Vudz.

The main idea in obtaining our bifurcation result is to study the asymp-
totic behavior of the integral operator ¥’ and then to deduce a spectral
result for operators that are not necessarily homogeneous. To do this, we
consider a function ¢,y : €2 X RN — RY defined by

wp(x)(xyv) = \v\p(m)*%

and an operator \Il;(.) : X — X* defined by

Wiy 0.0} = [yt V(@) - V(o) do

for all v € RY.

The property (2) of the following assertions can be found in [21]. But for
reader’s convenience, we give the proof because it is slightly different from
that of [21].

Lemma 3.1. Assume that (H1)-(H4) hold. Then we have

(1) ¥ : X — X* is bounded, continuous, strictly monotone, coercive
and hemicontinuous on X.

(2) W is convexr and weakly lower semicontinuous on X. Moreover, V' is a
mapping of type (S4) i.e. if up, — u in X and limsup,,_, (V' (u,) —
U (1), uy — u) <0, then u, — u in X asn — 0o.

(3) ¥’ is a bounded homeomorphism onto X*.

Proof. (1) From the same reasoning made in the proof of Lemma 3.4 in [14],
we can show that ¥’ is bounded and continuous on X. The coercivity and
strict monotonicity of ¥’ are achieved by (H3) and (H4) respectively. It only
remains to prove that U’ is hemicontinuous on X. Since 9(z, -) is continuous
on R¥ for almost all 2 € ,

L/)(L, V(ul + tu2)) — l/)(.L, V’LL1) as t— 0

for almost all z € Q and for all u1,us € X. So

(W' (u1 + tug),v) = /Q (U(z, V(w1 + tug), v) dx
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— /S; <¢($7 VU1)7U> dx = <\Il/(’u,1)7’U>

as t — 0 for all v € X. Hence ¥ is hemicontinuous on X.
(2) Let {uy} be any sequence in X which converges to « in X and

(3.2) limsup (' (uy,) — ¥ (u), up — u) < 0.
n— o0
Since ¥’ is strictly monotone on X, it follows from the relation (3.2) that

lim [ (¢(z,Vuy) —¢¥(x,Vu)) - (Vu, — Vu)dz

n—oo QO

= lim (V' (up) — 9'(u), u, — u) = 0.

n—oo

Since | (¢(x, Vun) — ¢(x, Vu)) - (Vun — Vu)| 1) — 0 as n — oo, there
exists a subsequence {uy, } C {un} satisfying

(3-3) (Y (2, Vun, (2)) — ¢(2, Vu(z))) - (Vg @) — Vu(z)) =0
for almost all x € 2. This implies that there is a constant C' satisfying
(@, Vi (1)) - Vit (&) < C + [6(z, Vi, (2))] [ Vu()
+ [ (@, Vu(@) | [Vun, (2)] + [¢(z, Vu(z)) | [Vu(z)]
for all k£ € N and for almost all z € 2. By (H2) and (H3) we have
d|Vn, (2)[") < (@, Vi, () - Vin ()
< C+ [Y(@, Vun, ()] [Vu(z)]

(3-4) + (@, Vu(@))| [V, (2)] + [ (2, Vu(z))] [Vu(z)]
(3.5) <O+ (a(z) +b |vun,c(x)|P<w)*1) IVu(z)]

[, V(@) [Vitn, (2)] + [z, V()] [Vu(z)|
for almost all z € ). By Young’s inequality, we have

B d d 1-p(z)
b Vi, () (V)] < § Fus 0P+ () [Vl

lim
n—oo

and

e V)] [V @) < ()7 ot Tula) ' + § (D, ()

for almost all z € Q. These together with the relation (3.5) imply that

d p() d \'" p(z)
glvunk(wﬂ <M + ao(x) [Vu(z)| + @ [Vu(z)]|

+ <§> T e, Val@)P @ + [0, Vu(@) [ Va(a)

for almost all x € Q. This implies that {Vu,, (z)} is bounded in RV for
almost all z € ). Without loss of generality we suppose that Vu,, () —
&(z) as k — oo for almost all z € Q. It follows from (3.3) that

0= lim (4(z, Vitn, (2)) ~ (z, Vu(x))) - (Vitn, (2) ~ Tu())
— (Y, £(=)) = ¥, Vu(2))) - (§(2) - Vu(x))
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for almost all x € Q. Since ¢ is strictly monotone, £(z) = Vu(z), ie.,
Viup, () = Vu(z) as k — oo for almost all z € Q. Since these arguments
hold for any subsequence of the sequence {u, }, we get that Vu, (z) = Vu(z)
as n — oo for almost all x € Q. Taking (3.2) into account, we infer

lim / U(x, Vuy) - (Vu, — Vu)dz = 0.
Q

n—oo

Owing to the convexity of W, one has
U(u) +/ (x, Vuy) - (Vup, — Vu)dz > U(uy,),
Q

so that ¥(u) > limsup,,_, o ¥(uy,). Since VU is strictly convex, we ensure that
U is weakly lower semicontinuous on X and thus ¥(u) < liminf, 0o ¥(uy).
In conclusion,

(3.6) U(u) = lim U(uy,).

n—o0

Consider the sequence {g,} in L'(Q) defined by
1 1
gn(x) = 5(\110(:c, Vup) + ¥o(z, Vu)) — Uo(z, §(Vu" — Vu)).
Then gn(z) = Vo(z, Vu) as n — oo for almost all z €  and g, > 0 by the
convexity and continuity of ¥y. Using Fatou lemma and (3.6), we have

1
U(u) < liminf/ gn(x)de = ¥(u) — limsup/ ) (a:, §(Vun - Vu)) dz.
Q Q

n—00 n—00

Hence,

n— 00

1
lim sup/ Ty (;L', §(Vun — Vu)) dx <0,
Q
that is )
lim [ Wo(z, §(Vun — Vu)) dz = 0.

n—oo
It follows from (H3) that limy, o0 [V — V| 1o() () = 0. Since [uy, —ufx <
c||Vun7VuHLp<.)(Q) for some constant ¢, we conclude lim,,_, |u, — u|x = 0.

(3) Since U’ satisfies all conditions of the Browder-Minty theorem in [29],
the inverse operator (¥/)~! : X* — X exists and is bounded on X*. To
show that (U')~! is continuous on X*, consider a sequence {h,} in X*
which converges to h in X* for each h € X*. Set u, = (V') 1(h,) and
u = (¥)"Y(h). Then ¥'(u,) = hy, and ¥'(u) = h. Since {u,} is bounded
in X, there exists a subsequence {uy, } C {u,} such that u,, — up in X as
k — oo for some ug € X. Since hy, — h as k — oo, we have

lim (W' (up, ) — ¥ (ug), un, — uo) = lim (hy, , tn, —ug) = 0.

k—o00 k—o0
Since U’ is a mapping of type (S1), un, — uo in X as k — oo. Since ¥’ is
strictly monotone on X, it follows from the relation

U (up) = lim W'(up,) = lim hy,, =h =V (u)
k—o0 k—o0

that ug = u. Without loss of generality we may replace up to a subsequence,
still denoted by w,, and thus u, — up in X as n — oo, namely, (¥’ )’1 is

continuous at each h € X*. Hence ¥’ is bounded homeomorphism onto X*.
The proof is complete. (]

33
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Now we consider an operator ¥} := t¥’ + (1 — t)\IJ;)(‘) defined as a convex
combination of ¥ and W}, for ¢ € [0,1].

Lemma 3.2. Assume that (H1)—(H4) hold. Then VU, : X — X* is a map-
ping of type (S4) for t € [0,1].

Proof. We know that the operator \II;7 0 have all properties in Lemma 3.1
since 1, satisfies conditions (H1)—(H4). Hence \IJ;(') is a mapping of type
(S4+) and so it is clear for ¢ = 0. Let {u,} be any sequence in X such that
uy = win X and limsup,, , o (¥} (un), un —u) < 0 for ¢ € (0,1]. Since ¥},
is strictly monotone on X, for ¢t € (0, 1]

lim sup(t®’ (uy,), un — u)
n—oo

< limsup(t W' (uy,), un — u) + lim inf((1 — ) (un), upn — u)

n—oo

< limsup (W' (uy,) + (1 — t)\I/;(,)(un), Uy, — u)

n—oo

= lim sup(W} (uy,), un — u)
n—oo

<0.

Since ¥’ is a mapping of type (S4), we obtain that u, — u in X as n — oo.
Thus the operator W} is also a mapping of type (S) for ¢ € [0,1]. O

Theorem 3.3. Assume that (H1)—(H4) hold. Then the operator ¥} : X —
X* is bounded homeomorphism. Moreover, the map h : [0,1] x X* —
X, (t, f) = (V) "Yf) is continuous on [0,1] x X*.

Proof. For all t € [0, 1] and for all u,v € X, we have
(W) — W(0),u — v)

> min{(¥'(u) — ¥ (v),u —v), <\Il;(,)('u,) - \I/;(,)(v), u—uv)}.

This implies that ¥} is strictly monotone and coercive on X because ¥’ and
\I/; () are strictly monotone and coercive on X. With the aid of Lemma 3.2,
it is clear that ¥} is bounded homeomorphism onto X*. It remains to show
that h is continuous on [0, 1] x X*. To do this, let {(¢,, fr)} be any sequence
in [0,1] x X* such that ¢, — ¢ in [0,1] and f, — f in X* as n — oo. By
the same argument as in Lemma 3.1, the inverse operator (¥})~!: X* — X
exists and is bounded on X*. Set w, = (¥} ) '(fn) and u = (¥}) (/).
Then Wy (up) = fn and Wi(u) = f. Since {u,} is bounded in X, there is
a subsequence {up, } C {un} such that u,, — ug in X as k — oo for some
up € X. Since \Ilgnk is a mapping of type (S1) and f,, — fin X* as k — oo,

kll)rf)lo(qj;nk (uny) — \I/;nk (w), un,, —u) = kli_>n;o<fnkﬂ Uny, —u) =0
and thus wy, — ug in X as k& — oo. Hence we have

W) (up) = kh—{go \Ilénk (Uun,) = klggo b, = h = W} (u).

Since \Ilénk is strictly monotone on X, we obtain that ug = u. Without loss
of generality we may replace u,, by u, and thus

un, — u and equivalently h(t,, fn) — h(t, f) as n — oc.
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Therefore h is continuous on [0, 1] x X*. O

To discuss the asymptotic behavior of ¥/, we require the following hy-
pothesis:
(H5) For each £ > 0 there is a function ¢ € LP(") (2) such that for almost
all z € Q0 the following holds:

‘¢($,U) - ¢p(m)(‘r7v)’ <

o= -

for all v € RN with [v] > |¢(2)].
Now we can give that the operators ¥ and \Il;(‘) are asymptotic at infinity
in the following sense.
Lemma 3.4. Assume that (H1)~(H5) are fulfilled. Then we have
() = W, ()

im 3
Julx—+o0 %

X+

Proof. The proof is absolutely the same as that of Proposition 3.4 in [16]. O

Next we deal with the properties for the superposition operator induced
by the function f in (B). In particular, we give the compactness of this
operator and the behavior of this operator at infinity, respectively. The
ideas of the proof about these properties are completely the same as in
[18]. We assume that the variable exponents are subject to the following

restrictions
* N N .
p*(x) == N_p—zgg), q(z) € (W&%,m) if N > p(z),
p*(x),q(x) € (1,00) arbitrary if N < p(x)

for almost all z € Q. Assume that

(F1) f:Rx QxR xRY — R satisfies the Carathéodory condition in the
sense that f(\,-,u,v) is measurable for all (\,u,v) € R x R x RY
and f(-,x,-,-) is continuous for almost all = € (2.

(F2) For each bounded interval I C R, there are a function a; € L) (Q)
and a nonnegative constant by such that

PO, 0)] < ar(@) + by (Jul T + o] 1)

for almost all z € ) and all (A, u,v) € [ x R x RV,
(F3) There exist a function a € L' ()(Q) and a locally bounded function
b:[0,00) = R with lim,_,o b(r)/r = 0 such that

1£(0,2,u,0)| < a(x) + [b(|ul + [v)]"

for almost all z € 2 and all (u,v) € R x RV,

Under assumptions (F1) and (F2), we can define an operator F': Rx X —
X* by

(3.7 (F()Hu),v):/Qf(AﬁU,u(m),Vu(as))U(m)dm

35
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and an operator G : X — X* by

(3. (Gu),0) = [ @)l 2u(a)o(a) da
Q
for all v € X.
The following consequence is given in [16].

Lemma 3.5. If (F1)~(F3) hold, then the operators ' : R x X — X*
and G : X — X* are continuous and compact. Moreover, the operator
F(0,): X — X* satisfies the following property:

|FO, w)|x- _

lulx—o0  [u|f

Recall that a real number p is called an eigenvalue of (E) if the equation
W (u) = pG(u)
has a solution ug in X that is different from the origin.

Now we consider the following result in the sense of nonlinear spectral
theory; see [18]. If p(z) is a constant, we can obtain the following assertion
by using the Furi-Martelli-Vignoli spectrum; see Theorem 4 of [28] or Lemma
27 of [12].

Lemma 3.6. If u is not an eigenvalue of (E), then we have
(1) nGl)

1 1
Ju] x —o0 Jul%

-
(3.9)

With the aids of Lemmas 3.4 and 3.6, we give the following spectral result
for nonhomogeneous operators which will be used to get our main theorem.
For the case of a constant function p(z) = p, the analogy of this assertion
can be found in [15, 17].

Lemma 3.7. Suppose that conditions (H1)-(H3), (H5), and (F1)~(F3) are
satisfied. If p is not an eigenvalue of (E), we have
U (u) — .
i 1500) — 4Gl

|u] x —o0 te[0,1] HUHZ;(—

b

where W} is a convex combination of W' and ¥}, ,.

Proof. Applying Lemma 3.6, we deduce that

(3.10) a := liminf ”\P;’(')(u) — nG(u)| x-

Jul x 00 Jul%

Let € be an arbitrary positive number. By Lemma 3.4 and the relation
(3.10), we choose a positive constant R such that |u|x > R implies

|9y (u) = uG(u)lx- > (o —e)|ulf
and
12! (u) — ' (u)]

(0% —
x < Sl
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For all w € X with |u|x > R, we get

min [} (u) — pG(u)|x = [V} (u) — pG(u)|x- — max [W ) (u) — Wi(u)|x-

te[0,1] te[0,1]

= W0 () = pGu)|x+ = ¥ (w) = Wy (u) | x-

« p_—1

> (5 —¢) ™
Since € was arbitrary, the conclusion is achieved. This completes the proof.
O

4. MAIN RESuULT

In this section, we give the existence of an unbounded branch of solutions
for our problem (B).

Definition 4.1. A weak solution of (B) is a pair (\,u) in R x X such that
V' (u) — uGu) = F(\u) in X*,
where U', F, and G are defined by (3.1), (3.7) and (3.8), respectively.

The following result is taken from Theorem 2.2 of [17] (see also [28]), as
a key tool in obtaining our bifurcation result.

Lemma 4.2. Let X be a Banach space and Y a normed space. Suppose
that ¥/ : X —'Y is a homeomorphism and G : X —'Y is a continuous and
compact operator such that the Leray-Schauder degree in X satisfies

degx (Ix — ((¥') " 0 (=G)), B;,0) # 0

for all sufficiently large r > 0, where Ix 1is the identity operator on X
and B, is the open ball in X centered at 0 of radius r, respectively. Let
F:Rx X —Y be a continuous and compact operator. If the set

Si= |J {veX: V() +Gu) =tF(0,u)}
te[0,1]
is bounded, then the solution set
{Mu) ERx X : U(u)+G(u) = F(\u)}

contains an unbounded connected set C C (R\{0}) x X such that its closure
intersects {0} x X.

Based on the above lemma, we now can prove the main result on bifurca-
tion result for problem (B) with the helps of nonlinear spectral theory and
degree theory. The proof is similar to that of Theorem 3.2. in [15]; see also
[17].

Theorem 4.3. Suppose that conditions (H1)~(H5) and (F1)~(F3) are satis-
fied. If p is not an eigenvalue of (E), then there is an unbounded connected
set C' C (R\ {0}) x X such that every point (A\,u) in C is a weak solution
of problem (B) and C intersects {0} x X.
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Proof. Apply Lemma 4.2 with X = Wol’p(')(ﬂ) and Y = X*. From Lemmas
3.1 and 3.5 we obtain that ¥’ : X — X* is a homeomorphism and the
operators F' and G are continuous and compact. Since yu is not an eigenvalue
of (E), Lemmas 3.5 and 3.7 imply that for some 8 > 0, there is a positive
constant R > 1 such that

-1
|9 (u) = pG(u)|x= > Blul’y ™ > [F (0, u)[x+ > [tF (0, u)]x-
for all w € X with |u|x > R and for all ¢ € [0,1]. Therefore, the set

S= |J {ueX: V() - uGu) =tF(O0,u)}
te[0,1]

is bounded. To apply Lemma 4.2, it remains to prove that
(4.1) degy (Ix — (V) " o (4G), B,) # 0

holds for sufficiently large r > R. Consider the homotopy H : [0,1]x X — X
defined by
H<t7 u) = (‘Ilg)_l(,u'G(u))?

where U} = t0' + (1 —t)\I/;(_). Let us take maps hy and hg where hq : [0, 1] X
X — [0,1] x X* is defined by hq(t,u) := (¢, pG(u)) and hg : [0,1] x X* — X
is defined by ho(t,v) := (¥})"!(v). Since h; is compact continuous map
and hg is continuous map by Theorem 3.3 and Lemma 3.5, the composition
of ho with hi, that is, H is compact and continuous. Moreover it follows
from Lemma 3.7 that for large sufficiently » > R, H(t,u) # u for all (t,u) €
[0,1] x &B,. Thus the homotopy invariance property of the Leray-Schauder
degree implies that

degy (Ix — (¥') "o (uG), B;,0) = degy (Ix — H(1,-), B;,0)
= degx (Ix — H(0,-), B, 0)
= degx(Ix — (¥)y) " o (uG), By, 0).
Since \IJ;(‘) and G are odd, Borsuk’s theorem implies that the last degree is
odd and so (4.1) holds. This completes the proof. O
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