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DISTANCE MAJORIZATION INTEGRITY OF GRAPHS

SULTAN SENAN MAHDE AND VEENA MATHAD

ABSTRACT. The concept of distance majorization integrity is introduced
as a new measure of the stability of a graph G and it is defined as
DMI(G) = min{|S| + m(G — S)}, where S is a distance majorization
set and m(G — S) is the order of a maximum component of G — S.
The distance majorization integrity of some graphs is obtained. The
relations between distance majorization integrity and other parameters
are determined. Also a distance majorization integrity of corona of some
graphs are computed.
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1. INTRODUCTION

The integrity of a finite graph G is I(G) = min{|S| + m(G — S) :
S C V(G)}, where m(G — S) denotes the order of the largest compo-
nent. The integrity can be thought of as a measurement of connectiv-
ity of a graph. |S| measures the amount of work needed to damage or
disconnect a graph, while m(G — S) is a measure of how much of the
graph is still robust. The integrity is the sum of these two quantities and
was first introduced by Barefoot, Entringer, and Swart [1] inspired by the
idea to measure a computer networks vulnerability. Goddard and Swart
[3] investigated further the bounds and properties of the integrity of the
graphs. Sultan et al. [7] introduced the concept of the hub-integrity of
a graph. Hub-integrity is a useful measure of vulnerability and it is de-
fined as follows HI(G) = min{|S| + m(G — §5),S is a hub set of G},
where m(G — S) is the order of a maximum component of G — S. For
more details on the hub-integrity see [8, 9, 10, 11]. R. Sundareswaran and
V. Swaminathan [13] introduced the concept of the distance majorization
sets in graphs. A subset D of V(G) is said to be a distance majoriza-
tion set (or dm-set) if for every vertex u € V — D, there exists a ver-
tex v € D such that d(u,v) > deg(u) + deg(v). The minimum cardinal-
ity of a dm-set is called the distance majorization number of G (or dm-
number of G) and is denoted by dm(G). Therefore instead of consider-
ing the hub-integrity of a communication graph, depending on distance
and degree of vertices in a graph, we introduce a new concept. The dis-
tance majorization integrity of a graph G denoted by DMI(G) is defined as
DMI(G) = min{|S| + m(G — S), S is a distance majorization set of G},
where m(G — S) is the order of a maximum component of G — S. Clearly
DMI(G) > I(G) for any graph G.
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Throughout this paper, we consider only undirected graphs with no loops.
The basic definitions and concepts used in this study are adopted from [2, 4].
Given a graph G = (V(G), E(G)), the cardinality |V (G)| = p of the vertex
set V(@) is the order of G. The distance d(u,v) between two vertices u and
v of G is the length of the shortest path joining v and v. The degree of a
vertex v in a graph G denoted by degv is the number of edges of G incident
with v. For a vertex v of G, the eccentricity e(v) is the distance between v
and a vertex farthest from v. The minimum eccentricity among the vertices
of G is the radius, rad(G) and the maximum eccentricity is its diameter,
diam(G) of G. The maximum (minimum) degree among the vertices of G
is denoted by A(G)(d(G)). A vertex of degree one is called a pendant ver-
tex. The symbols a(G), and S(G) denote the vertex cover number, and the
independence number of G, respectively.

The complement G of a graph G has V(G) as its vertex set, two vertices
are adjacent in G if and only if they are not adjacent in G [4].

The line graph L(G) of G has the edges of G as its vertices which are
adjacent in L(G) if and only if the corresponding edges are adjacent in G
[4]. [z] denotes the smallest integer number that is greater than or equal
to x.

In the present work, the basic properties of distance majorization integrity
and of DM I—sets, are explored, and bounds as well as relationship between
distance majorization integrity and other graphical parameters are consid-
ered. Finally, the distance majorization integrity of corona of some graphs
are determined. The following results are needed to prove the main results.

Theorem 1.1. [13] If deg(u) + deg(v) > diam(G) for every u,v € V(G),
then dm(G) = p.

Theorem 1.2. [1] The integrity of the path P, is [2¢/p+ 1| — 2,

Theorem 1.3. [13] Let G be a self complementary graph. Then dm(G) =
porp—1.

Theorem 1.4. [13] For any spanning tree T of G, dm(T) < dm(G).

2. MAIN RESULTS

Definition 2.1. The distance magjorization integrity of a graph G denoted
by DMI(G) is defined by, DMI(G) = min{|S| + m(G — S)}, where S is a
distance magjorization set and m(G — S) is the order of a mazimum compo-

nent of G — S.

Definition 2.2. A DM1I-set of G is any subset S of V(G) for which DMI1(G) =
|S| +m(G —95).

Proposition 2.1.

(a) For any complete graph K, DMI(K),) = p.
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(b) For any path P, with p > 3,

3,ifp=3;
4, if p = 4, 5;
DMI(Fp) =4 5. if§:6,7,8;

[2yp+1]—2,ifp>09.
(c) For any cycle Cp,

p, ifp<T7;

5, if p=09;

6, if p=8,10,11,12;

[2/p] -1, if p>13.

(d) For the star Kl,p—17 DMI(KLp_l) = 3.

(e) For the double star Sy, m, DMI(Sym) = 4.

(f) For the complete bipartite graph Ky, DMI(Ky, ) = n+m.
(g) For the wheel graph Wi 1, DMI(Wip_1) = p.

The relation between the distance majorization integrity and the domina-
tion integrity [12] differ in showing the vulnerability of networks. This can be
shown as follows: the graphs GG; and G considered such that G; = K33 and
Gy = Py, we note that DI(G1) = DI(G2) = 4, while the distance majoriza-
tion integrity of G1 and Go are different, DM I(G1) = 6, and DM I(G2) = 5.
Thus, the distance majorization integrity is better parameter than the dom-
ination integrity.

DMI(C,) =

Observation 2.1.

e 1 < DMI(G) < p. The lower bound is sharp for G = K, and the
upper bound is sharp for G = K,.

e DMI(G) =2 if and only if G = K3 or G = K».

e DHI(G) =3 ifand only if G = Ky ,_1, G = 2Ky, G = P3, G =
KiUP;, G ks, or G=pK|UKos.

Remark 2.1. In general, the inequality DMI(G') < DMI(G) is not true
for a subgraph G' of G, For example, for the graph G = Cy and a subgraph
G' = C7, DMI(Cy) =5, while DMI(C7) = 1.

Lemma 2.2. Let G be a connected graph. If DMI(G) = 3, then the diam-
eter of G is < 2.

Proof. Consider diam(G) > 3, then G contains a path Py, and |S| > 3 and
m(G — S) > 1. Thus DMI(G) > 4, a contradiction. This complete the
proof. O

Corollary 2.3. Let T be a tree of order p. Then DMI(G) = 3 if and only
if T is a star Ky p_1.

Proof. If T' is a tree of order p and DMI(G) = 3. Then by Lemma 2.2,
diam(T) < 2, hence T is a star Kj p_1. O

Lemma 2.4. Let G be a connected graph with A(G) < 2. Then DMI(G) =
|E(G)| if and only if G = Cp,3 <p <T.

Proposition 2.5. If G be a (p,q) graph with «(G) = 1, then DMI(G) = p.
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Proof. Since a(G) =1, L(G) = K, hence DMI(G) = p. O
Proposition 2.6. If diam(L(G)) =1, then DM I(G) = 3.

Proof. diam(L(G)) =1 if and only if G is either K3 or K; p,_1. By proposi-
tion 2.1, DMI(G) = 3. O

Observation 2.2. (i) If G is connected, then DMI(G) < m(G).

(i) If G is disconnected, then we may have, DMI(G) > m(G). For ex-
ample, if G = 3Cy, then m(G) =4, and DMI(G) = 6. There are examples
where G is disconnected and DMI1(G) < m(G), for example, G = PyUK] 5,
m(G)=6>DMI(G)=4. If G=P;UCs, m(G) =5=DMI(G).

Proposition 2.7. If G is a graph with empty set as the only I — set, then
DMI(G) > I(G).

Proof. Suppose DMI(G) = I(G). Then DM — set of G which is not an
empty set is also an [ —set of G, a contradiction. Then DMI1(G) > I(G). O

Lemma 2.8. If DMI(G) = I(G), which G # K, then every DMI — set
of G must be an independent in G.

Proof. Let S be a DMI — set of G such that DMI(G) = |S| + m(G — S),
and assume that S is not independent vertex set of GG, then there exist at
least two vertices u,v € S such that u is adjacent to v and hence the value
of DMI(G) increases. Then DMI(G) > I(G), a contradiction. O

Remark 2.2. There exists a graph G with empty set as an I — set and
DMI(G) = I(G) for exzample G = C4U K1 3. There also exists a graph G
with empty set as an I —set and DMI(G) > I(G) for example G = 2Cy and
there exists a graph G = C3 U Cy with only non-empty sets as the I — sets
and DMI(G) > I(G).

Observation 2.3. If G = K,,G = B5,G
KiUKy,,G 2 K1 UP;,G =2 K1 UCs,G
DMI(G) = HI(G).

Proposition 2.9. If G or G has isolates, then p+2 < DMI(G)+DMI(G) <
2p.
Proof. Since G or G has isolates, then I(G) < DMI(G) or I(G) < DMI(G).

P, G =2 Cs,G =2 2K1,G =
K1 U Py, or K1 UCy, then

o~
o)

Therefore, p + 1 < I(G) + I(G) < DMI(G) + DMI(G), and so p+ 2 <
DMI(G)+ DMI(G). O
Theorem 2.10. If G is self-complementary, then DMI(G) = p.

Proof. By Theorem 1.3, the result follows. O

Theorem 2.11. For any spanning tree T of G, DMI(T) < DMI(G).

Proof. Let T be a spanning tree of G, and S be a DM I-set of T" such that
|S| +m(T —S) = DMI(T). Since degr(u) < degg(u) for any u € V(G),
diam(T) > diam(G) and by Theorem 1.4, this leads to result. O

Theorem 2.12. If deg(u)+deg(v) > diam(Q) for every u,v € V(G). Then
DMI(G) = p.
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Proof. By Theorem 1.1, the result is achieved. O

Remark 2.3. The distance majorization integrity of a graph G and distance
magorization integrity of line graph L(G) are not comparable. To illustrate
this consider the graphs in the following cases:

e DMI(P,) > DMI(L(F,)).

¢ DMI(Kyp-1) < DMI(L(Kip-1)).

e DMI(Cp,) = DMI(L(Cp)).

Proposition 2.13. If a connected graph G is isomorphic to its line graph,
then DMI(G) = DMI(L(Q)), the converse is not true, for example the
graph G is given below in Figure 1.

o o o
a L(G)

Figure 1: G and L(G)
DMI(G)=5=DMI(L(G)), but G and L(G) are not isomorphic.

Proposition 2.14. For any graph G, DMI(G) > x(G), where x(G) is the
chromatic number of G.

Definition 2.3. [5] A firefly graph Fsp_o2s—2t—1(s > 0,£ >0 and p — 2s —
2t —1 > 0) is a graph of order p that consists of s triangles, t pendant paths
of length 2 and n — 2s — 2t — 1 pendant edges sharing a common vertez.

Theorem 2.15.

if s=0,t=0,p—2s—2t—1>0;
ifs=0t=1p—2s—2t—1>0;
if s=0,t>3,p—2s—2t—1>0;
if s>0,t=0,p—2s—1>0;

if s>0,t>0,p—2s—2t—1>0;
p, ifs>0,t=0,p—2s—2t—1=0.

DMI(F‘S,t,p72372t71) =

G Ot W

Proof. Let ¢y be the set of all firefly graphs Fi ; p_2s—2¢—1(s > 0,t > 0 and p—
2s—2t—1 > 0) which shown in Figure 2 below. Let u be the common vertex
of Fytp_2s—2t—1, we have the following cases:

Case 1: For s = 0,t = 0. Then Fyg,_1 = Kj -1, so by Proposition 2.1,
DMI(Fypp1) =3

Case 2: For s = 0,t > 0. Then {, = Fysp_ot—1. If t = 1, consider S =
{u, 71,711}, a distance majorization set of Fp 1 p—3, then m((Fo1,p-3) —95) =
1. This leads to DMI(Fy1p_3) = |S| + m((Fo1ps) — S) = 4. If t = 2,
consider S = {u,r11,7m22}, a distance majorization set of Fpo,_5, then
m((F0,27p,5) —8)=1. Then DMI(FO’Q,Z,,E,) =S|+ m((Fo’gm,g,) - 8)=4.
If t > 3, then we consider S = {u,r11,722}, a distance majorization set of
Fotp—2t—1, m((Fotp-20—1) —S) = 2. This implies that DMI(Fo¢p-2t—1) <
|S|+m((Fotp—2t—1)—S) = 5. For show that the number |.S|+m((Fop—2e—1)—
S) is minimum, we have to take into consideration the minimality of both |.S|
and m((Fop—2t—1)—S5). Since deg(u) = p—t—1, we can not remove it from
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S, also if we remove u from S, then ri1, 792 can not dm- set. Hence S is a
minimum. If m((Fotp—2t—1)—S1) = 1, where S} is any distance majorization
set other than S, then |S1]| > 4, so |S1|+m((Fotp-2t—1) —S1) > 5. If we con-
sider m((F()’t,p_Qt_l) —Sl) > 2, then trivially |Sll+m((F()’t,p_2t_1)—Sl) > 5.
Hence for any distance majorization set S, |S1| + m((Fotp—26—1) — S1) >
|S| + m((F()’t,p,zt,l) — S) Then DMI(F07t7p,2t,1) = 5.

Case 3: For ¢t = 0,s > 0,p —2s — 1 > 0. Since d(n;,z1x) = 2 and
dng,zer) =2,1<i<p-—2s—1,1 <k <s, then the distance majorization
set of Fs0p—2s—1 consists of all vertices. Therefore, DMI(Fs 0 p-2s—1) = p.
Case 4: For s > 0,t > 0,p — 2s — 2t — 1 > 0. We have the following cases:
Subcase 1: For s = 1,t = 1. Then ¢, = F1 1,5, consider S = {u,r1,711},
a distance majorization set of F1,-5 and m((Fi,1p-5) — S) = 2. Then
DMI(F1p-5) < |S|+m((F11p-5) = S5) =5.

Subcase 2: For s = 1,t > 2. Then ¢, = F' 4 _2—3, consider S = {u, r11,722},
a distance majorization set of Fi;p o3 and m((Fip-2e—3) — S) = 2.
Then DMI(Fitp-ot—3) < |S| + m((Fip-20—3) — S) = 5. In general, if
§>2,t>2p—2s—2t—1>0, consider S = {u,ri1,r2}, a distance ma-
jorization set of Fyy,_0s_2¢—1 and m((Fysp—2s—2¢t—1) —S) = 2. This implies
that DMI((Fstp-2s—2t—1) —S) < |S|+m((Fstp-2s—2t—1) — S) = 5. Clearly,
there does not exist any distance majorization set Sy of Fs ¢, 25 2¢—1 such
that |Sl| + m((F&t_’p,QS,Qt,l) — S]) < |S| + m((Fs)t)p,2572t71) — S) Hence,
DMI(Fstp-2s—2t-1) = 5.

Case 5: Fort = 0,p —25s -2t —1 = 0,5 > 0. Then (, = Fj,0, since
the distance between any two vertices of Fsg0 is < 2, then dm — set = p.
Hence, DMI(Fs0,0) = p.

ni

21s  *2s

n2

L]
o Nlp—25—2t—1
L]
212

r
291 ® 711

Ttt

Figure 3: Fs7t7p72372t71

O

Definition 2.4. [6] A broom graph By, 4 consists of a path Py, together with
(p — d) end vertices all adjacent to the same end vertex of Py.

Theorem 2.16.

d+1, ifd=3,4;

DMI(B,4) = { vad—1]+1, ifd>>5.
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Proof. Let V(B q) = {u1, u2, ..., uq, V1, V2, ..., Vp_q} such that ui, ug, ..., uq is
a path on d vertices and vy, v2, ..., vp_q are end vertices that are adjacent to
uq. Let S be a DMI— set of B, 4, the following cases are considered:
Case 1: d = 3. Consider S = {uj,u2,us}, a distance majorization set of
B, 4, s0 |S| =3 and m(B, 4 — S) = 1, this implies that DM I (B, q) = 4.
Case 2: d = 4. Consider S = {uy, u3, u4, v1 }, a distance majorization set of
B4, s0 |S| =4 and m(B, 4 — S) = 1, this implies that DM I (B, q) < 5.
Case 3: d > 5. Consider S; = {u1,v1,uq}, a distance majorization set
of By 4, so |S1] = 3 and Bpq — S1 = Py_o, m(Bp’d —S51) =d—2. Let
Sy =A{up:2<k<d-1andu, € I—set of Py_o}. Take Vi = {up/uy €
I —set of Py_s}, so |S2| = |Vi]. Consider S = S; USy. Then S is distance
majorazation set of By, 4, hence |S| = |S1|+|S2| = |S1|+|Vi| and By q— S =
Py_o — Vi. Therefore, m(B, g — S) = m(Py—2 — V1). By Theorem 1.2, |S| +
m(Bya—S) = [S1]+[Vi|+m(Py_2—V1) = [S1|+1(Py_2) = [2v/d — 1+1 O
Definition 2.5. The corona G1 o Gy of two graphs Gy and G4 is the graph
G obtained by taking one copy of G1 (which has p1 vertices) and py copies
of G, and then joining the i'" vertex of Gy to every vertex in the i copy

Of Gg.
Theorem 2.17.

6, ifp=2;
DMI(PPOKQ):{ 8, ¢§§:3,4.

Proof. The graph P, o K is shown in Figure 3. We have the following cases:
Case 1: p = 2. Since d(vs, v5) < deg(v;)+deg(v;), and deg(u1) = deg(uz) =
3, the distance majorization set consists of all vertices of P» o Ko. Then
|S| = 6 and m((P2 o K3) — S) =0, this implies that DM I(P, o K3) = 6.
Case 2: p = 3. The proof is similar to that of Case 1.

Uap-3  V2p-2 U2p-1

ww

Figure 3: P, o Ko

Case 3: p = 4. Consider S = {u1, u2, us, u4,v1,vs}, a distance majorization
set of Pyo Ky, |S| =6, and m((Py o K2) — S) = 2, this implies that

(1) DMI(P4OK2) < |S|+m((P4OK2)7S):8.

To show that |S| + m((Py o K2) — S) is minimum, consider S, a distance
majorization set of Py o K» other than S with m((Py o K3) — S1) = 1, then
|S1| > 2p > 6, thus

(2) |S1] +m((Pyo Ka) —S1) >2p+ 1> |S|+m((Pro K2) — 5).

In case, if m((Pgo Ka) — S1) > 2, then it is easy to show that

(3) |S1] 4+ m((Pyo K2) — S1) > |S|+ m((Pyo Ka) — 5).

From (1), (2) and (3), DMI(Pyo K3) = 8. O
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Theorem 2.18. DMI(P, 0 K2) =p+2,if p=75,6,7.

Proof. Consider S = {ug,us,...,up_1} U {v1,v2,}, a distance majorization
set of P, o K,|S| = p, and m((P, o K3) — S) = 2, this implies that |S| +
m((PyoK2)—S) = p+2. Consider m((PpoK2)—S) =1, then |S| > 2p. Thus
|S|+m((PyoKa2)—S)>2p+1>p+2 Hence DMI(PyoKy)=p+2. O

Theorem 2.19. DMI(Pso K3) =9.

Proof. Consider S = {v1,u2, u4, us, u7,vi6}, a distance majorization set of
Pso K5 such that |S| = 6, m((PsoK2)—S) = 3. This implies that DMI(Pso
Ky) <|S|+m((PsoKa)—S =9.If m((PsoK2)—S) =2, then |S| > p, thus
|S|+m((PsoK3)—S) > p+1. Consider m((PsoK3)—S) =1, then |S| > 2p,
so |S|+m((Pso K2) — S) > 2p+ 1. Finally consider m((Ps o K3) — S) > 3,
then it is easy to see that |S| + m((Pg o K2) — S) > p + 1. This completes
the proof. O

Theorem 2.20.
10, if p=19,10,11,12 ;
11, if p = 14.

Proof. The following cases are discussed:

Case 1: p = 9,10. Consider S = {u;,1 < i <9 and i is odd} U {vi,va},
a distance majorization set of P, o Ky, |S| =7, and m((P, o K3) — S) = 3,
this implies that DMI(P, o Ky) < |S| + m((Py o Ky) — S) = p+ L. If
m((Pp o K2) — S) = 2, then |S| > p. Thus |S| + m((P, c K2) — 5) >
2p +1 > p+ 1. Consider m((P, o K3) — S) = 1, then |S| > 2p, thus
IS| +m((Ppo Ka) —S) >2p+ 1. Hence DMI(P, o K) =p+ 1.

Case 2: p = 11. Consider S = {v1,u1,us, us, uz, ug, u11}, a distance ma-
jorization set of Py o Ky such that |S| =7, m((Pi10K2)—S) = 3. Therefore
DMI(Pyy0Ks) <|S|+m((P110K2)—S) = 10. The remain Proof is similar
to Case 1.

Case 3: p = 12,14. Consider S = {u;,1 <i < p—1and i is odd} U {vyp},
a distance majorization set of P, o Ky such that |S| = 7,8, respectively,
m((P, o K2) — S) = 3. This implies that DMI(P, o K3) < |S| +m((P, o
K»>) — S) =10,11. The remain proof is similar to Case 1. O

DMI(P, o0 Ky) = {

Theorem 2.21.

£+3, ifpiseven and p > 16 ;

DMI(F, oKz)—{ [51+3, ifpis odd and p > 13.

Proof. Two cases are considered:

Case 1: p is even,p > 16. Consider S = {u1,us, us, uz, ..., up—1}, a distance
majorization set of P, o Ky such that |S| = &, m((P, o K3) — S) = 3. This
implies that

(4) DMI(P, o K3) < |S| +m((PyoKy) —8) =% +3.

wlﬁ

+
PoK3)—-S) =2,

—

(

To show that |S|+m(P,oK3)—S) is minimum, consider m
then |S| > p, so

(5) 1]+ m((Py 0 Kz) — ) > p+2.
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In case, m((P, o K2) — S) =1, |S| > 2p, then
(6) |S| +m((PpoKa)—S)>2p+1.
Finally, consider m((P, o K2) — S) > 3, then
(7) 1]+ m((Py o Ks) — S) z§+3.

From (4), (5), (6) and (7), the result follows.

Case 2: p is odd,p > 13. Consider S = {u1,us,us, ur, ..., up}, a distance
majorization set of P, o Ko such that |S| = [£],m((P, o K2) — S) = 3. This
implies that

(8) DMI(Py o K2) < |S|+m((Py o Kz) = §) = [£] +3.

We will show that the number |S| +m((P, o K2) — S) is minimum, for that
consider m((P, o K3) — S) = 2. Then |S| > p, so

(9) IS| +m((Pyo K2) — S)>p+2.
If m((P, 0 K3) — S) =1, |S| > 2p. Then

(10) |S| +m((PpoKa)—S)>2p+ 1.
Finally, consider m((P, o K2) — S) > 3, then

(11) 15|+ m((Py o K3) — S) z§+3.

From (8), (9), (10) and (11), DMI(P, o K3) = [§] + 3. O
Theorem 2.22. DMI(Ko0 Py) =2p+ 2.

Proof. Since distance between any two vertices of Ky o P, is < 3, and §(Kzo0
P,) = 2, the distance between any two vertices is always less than summation
of degree of two vertices. Then dm(Kz o Pp,) = 2p+2. Therefore, DMI(Kso
P,)=2p+2. O

Theorem 2.23.

12, ifp=3;
DMI(C,oP,) ={ 17, ifp=14;
22, ifp = 5.

Proof. Let S be a DMI-set of Cp o P, such that DMI(C, o P,) = |S| +
m((Cpo Pp) — ), and |V(Cy o B,)| = p* + p, the graph C,, o P, is shown in
Figure 4. The following cases are discussed;
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Figure 4: Cp 0 B,

Case 1: p = 3. Consider S consisting of all vertices of C3 o P3 such that
m((C3 o P3) — S) = 0. This implies that DMI(C3 o P3) = 12. The set
S is minimum, since if any vertex of C3 o P53 is removed, then the distance
between it and another vertex is less than summation of their degree. Hence,
DMI(C50 P3) =12.

Case 2: p= 4. Consider S = {ul, U711, U21, U31, U2, U2, U2, U2, U3, U3, U23,

u33, Ug, U4, U4, Us4 }, a distance majorization set of Cy o Py, |S| = 16, and
m((Cyo Py) —S) =1. Then, DMI(Cyo Py) < |S|+m((CyoPy)—S5)=17.
The number |S|+ m((Cy o Py) — S) is minimum, because if S is a distance
majorization set of Cy o Py other than S and m((Cy o Py) — S1) = 0, then
|S1| = 5p which implies that |Si| + m((Cy o Py) — S1) = 20. Therefore,
DMI(Cyo Py) = 17.

Case 3: p=05.

Consider S = {uy, w11, u21, U1, Ua1, Uz, U2, U2, Ug2, U3, U3, U3, U43, Ud, U4,

U34, Udd, Us, U25, U35, Uds }, & distance majorization set of C5 o Ps, |S| = 21,
and m((Cs o P;) — S) = 1. Therefore, DMI(C5 o P;) = 22. The number
|S|+m((C50P5)—S) is minimum, since if S is a distance majorization set of
(50 Ps other than S and m((Cs0P5) —S1) = 0, then |S1| = 6p which implies
that |S1]| + m((Cs o P5) — S1) = 30. Therefore, DM I(Cs o Ps5) = 22. O

Theorem 2.24.
19, ifp=6;

DMI(CPOPP):{ 20, if p="1.

Proof. We have two cases:

Case 1: p = 6. Consider S = {uy, u11, u2, u12, u3, U13, U3, U4, U14, U4, Us, U15,
ug, U16}, a distance majorization set of Cg o Pg, |S| = 14, and m((Cs o Ps) —
S) = 5. Then,

(12) DMI(Cgo Ps) < |S|+m((Cs o Ps) —S) = 19.

We will show that the number |S|+m((Cs0Ps)—S) is minimum. For that we
have to take into account the minimality of both |S| and m((Cso Ps) —S). If

vertices u; or u1;, 1 < i < 6 are removed from set S, then S is not a distance
majorization set. So S is minimum set. It remains to show that if S is
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any distance majorization set other than S and m((Cg o Ps) — S1) = 4, then
|S1| > 18, hence |S1| +m((Cgo Ps) — S1) = 22 > 19. Consider m((Cgo Ps) —
S1) = 3, then |S1]| > 20, consequently, |S1| + m((Cs o Ps) — S1) > 23, also if
m((Ce o Ps) — S1) < 2. Then |S1| + m((Cs o Ps) — S1) > 19. Hence for any
distance majorzation set St

(13) |Sl| +’I7’L((C6 o P6) — Sl) > 19.

From (12) and (13), DM I(Cs o Ps) = 19.

Case 2: p = 7. Consider S = {uj,u1;,1 < i < 7}, a distance majorization
set of C7 o P, |S| = 14, and m((C7 o P;) — S) = 6. This implies that
DMI(Cr o Pr) < |S|+ m((C7 o P;) — S) = 20. The proof of minimality of
|S| + m((C7 o Pr) — S) is similar to that of Case 1. O

Theorem 2.25. DMI(C, o Py) = 2p,p > 8.

Proof. Consider S = {u1,ug,...,up_1,up}, a distance majorization set of
Cpo Py, |S| = p, and m((Cp o By) — S) = p. Therefore,

(14) DMI(Cyo P,) < |S|+m((Cypo Py) — S) = 2p.

For showing that the number |S| +m((Cp o Pp) — ) is minimum, the min-
imality of both |S| and m((Cp o P,) — S) is taken into consideration. We
claim that set S is a minimum distance majorization set. Since deg(u;) =
p+2,1 < i < p,if up is removed from set S, then there does not exist a vertex
u;,2 < i < p such that d(ui,u;) > deg(u) + deg(u;). Hence the number |S]|
is minimum. It remains to show that if S; is any distance majorization set
other than S, |S1|+m((CpoPp)—S1) > 2p. Consider m((CpoP,)—51) < p—1.
Then |Si| > 2p, hence |S1| + m((Cp o P,) — S1) > 3p — 1. Hence for any
distance majorization set 57,

(15) [S1] +m((Cp o Bp) = 51) > 2p + 4.
From (14) and (15), DMI(Cy, 0 P,) = 2p. O

3. CONCLUSION

In this research work, we introduced the concept of distance majorization
integrity of graphs, we have obtained the distance majorization integrity of
some graphs. Relations between distance majorization integrity and some
parameters are established. The following are some open problems for fur-
ther investigation:

(1) Characterize the graphs G for which DMI(G) = p.
(2) Characterize the graphs G for which DMI(G) = HI(G) = I(G).
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