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STRONGLY REGULAR GRAPHS OVER WEAK METRIC
SCHEMES AND CHEEGER CONSTANTS OF HAMMING
GRAPHS

GIL CHUN KIM

ABSTRACT. Weak metric schemes are a generalized notion of metric
schemes. We are interested in the characterization of the strongly regu-
lar graphs constructed from weak metric schemes with 2 classes. In this
paper we show that the connected strongly regular graphs constructed
from the weak metric schemes with 2 classes are complete multipartite
graphs, and in fact that the weak metric schemes with 2 classes are
equivalent to the complete multipartite graphs. By using our construc-
tion, we find the entire list of complete multipartite graphs up to 100
vertices. Additionally, we determine the Cheeger constants of Hamming
graphs completely.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 05C12, 05C60, 68R10.

KEYWORDS AND PHRASES. weak metric scheme, complete multipartite
graph, strongly regular graph, Hamming graph, Cheeger constant.

1. INTRODUCTION

Weak metric schemes [9] are introduced as a generalization of metric
schemes [3, 5, 7, 8]. They are defined as the wreath product of a finite num-
ber of symmetric association schemes satisfying certain conditions. It turns
out that the weak metric schemes are the symmetric association schemes. It
is known that the symmetric association schemes with 2 classes are equiv-
alent to the strongly regular graphs. In this paper, we study the relation
graphs constructed from weak metric schemes with 2 classes. There are two
relation graphs constructed from weak metric schemes with 2 classes, and
one of them is disconnected and the other is connected.

The strongly regular graph (abbreviated SRG) [1, 2, 8, 10, 12] is one of
the most important family of regular graphs with many good properties.
One of those well-known properties is the fact that the eigenvalues k,r, s of
all SRGs with vertices v depend only on the parameters (v, k, A, u) of these
graphs as follows [1, 12]:

r+s=A—pu, rs=pu—=k,

where A (resp. p) is the number of common neighbors of any two adjacent
(resp. nonadjacent) vertices. In particular, if k = p then the SRGs are called
the complete multipartite graphs (abbreviated CMG). The CMGs have the
eigenvalues k,0, —m, where m is the size of the classes of the CMGs.

In this paper, we find a complete characterization of all the SRGs con-
structed from weak metric schemes with 2 classes. We find that the con-
nected regular graphs from the weak metric schemes with 2 classes are the
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CMGs. We show that any weak metric scheme with 2 classes gives rise to
a CMG (Theorem 12) and conversely, any CMG can be constructed from a
weak metric scheme with 2 classes (Theorem 20). Therefore, we conclude
that the weak metric schemes with 2 classes are equivalent to the CMGs.
By using our construction, we find the entire list of complete multipartite
graphs up to 100 vertices.

We explain our construction very briefly as follows. We consider the weak
metric schemes X = X1 X2 = (X7 x Xo, {Rj}?:o) with 2 classes as the
wreath product of two metric schemes X (i = 1,2) with 1 class. Then
we show the parameters (v, k, A, 1) of the CMGs constructed from the weak
metric schemes X are given as follows (Theorem 12) :

(v, k, A\, 1) = (mlmQ,mlk@),mlk@) A 1,m1k(2)),

where for i = 1,2, | X;| = m; and k() is a valency of the X().

In graph theory, the Cheeger constant has an important geometric mean-
ing. Cheeger constants are closely connected to the problem of separating
the graph into two large components by making a small edge-cut. The
Cheeger constant of a connected graph is strictly positive. If the Cheeger
constant is “small” but positive, then there are two large sets of vertices with
“few” edges between them. On the other hand, if the Cheeger constant is
“large”, then there are two sets of vertices with “many” edges between those
two subsets. Therefore, we are interested in finding bounds of Cheeger con-
stants of graphs simply called the Cheeger bound. The Cheeger bound hr
of a graph I with respect to A; is known as follows [6, 11] :

hr < V2A1, hr < /A2 - Ap).

The Hamming graph is a special class of graphs used in several branches of
Mathematics and Computer Science. The Hamming graphs are interested
in connection with error-correcting codes and association schemes. The
Hamming graph I'(n,q) is the graph that describes the distance-1 relation
R; in the Hamming scheme H (n, q) [1, 3, 7]. Let S be a set of ¢ elements and
n a positive integer. The Hamming graph I'(n, ¢) has ¢" vertices and the set
of ordered n-tuples of elements of S. Two vertices are adjacent if they differ
in precisely one coordinate. The Hamming graph I'(n,q) is, equivalently,
the Cartesian product of n complete graphs K,. The complete graph K,
the lattice graph and hypercube graph are all Hamming graphs.

This paper is organized as follows. In Section 2, we introduce the defini-
tions of the weak metric scheme and some basic facts about the weak metric
scheme with 2 classes. In Section 3, we show how the weak metric schemes
with 2 classes give rise to the CMGs. Section 4 shows that any CMG can
be constructed from a weak metric scheme with 2 classes. In Section 5, we
obtain the Cheeger constants of Hamming graphs. In Section 6, we show
the entire list of the CMGs for 4 < v < 100 in Table 1.

2. PRELIMINARIES AND THE WEAK METRIC SCHEMES WITH 2 CLASSES

In this section, we introduce the definitions of a metric scheme and a weak
metric scheme.
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Definition 1. (3,7, 8] Let X be a nonempty finite set and R = {Rg, R1,--- , Rp}
be a family of relations defined on X. We say that the pair (X, R) is a
symmetric association scheme with n classes if it satisfies the following con-
ditions.

(1) Ro ={(z,) | v € X}
(2) For every z,y € X, (z,y) € R; for exactly one j.
(3) For any triple of intgers i,j,k € {0,1,--- ,n}, the number of z € X

such that (z,z) € R; and (z,y) € R; is constant pfj whenever (z,y) € Rg.
4) (z,y) € R; & (y,7) € Rj.

(5)p; = phi.

Definition 2. [3, 7, 8] A symmetric association scheme X = (X, {R;}]_)
is called a metric scheme(P-polynomial scheme) with respect to the ordering
Ro,R1,- -+ , Ry, if there exists some complex coefficient polynomial () of
degree j (0 < j < n) such that D; = v;(D1), where D; is the adjacency
matriz with respect to R;.

Example 3. The Hamming scheme H(n, q) and the Johnson scheme J (v, d)
are the metric schemes.

Definition 4. [4, 9] Let ny,--- ,ny be positive integers with n = ni +
v+ ng. For each i = 1,2,--- ,t, let ¥ = (Xi,{Rg-i)}?;O) be a met-
ric scheme. Here we will always assume that the relations of X are
ordered as Ré"),Rﬁ"),--- , SI) Then ¥ = XM ... 20 = (X = X x

- x Xy, {Rj}?zo) is the wreath product of XM 2@ ... x® 5o that, for
(@1, me), (Y1 m) € X,

(T, Y) € Bny_y4io € Tit1 = Yir1, Tt =y and (x4, ;) € REZ),
fori=1,---t, 1 <ig < ny, ori=1lig =0, where nj_1 = n1 +---+
nj_1. Here we will always assume that the relations of X are ordered as
Ro,Ry, - ,Ry,. For eachi=1,---,t, let]; = (Xi,Rgl)) be the graph with
the distance function 8;. Then, for x = (z1,--- ,x¢), ¥y = (y1, - ,yt) € X,
we define

0, ifx=y,
d(z,y) =1 ni-1+ 0i(wi,yi), if xi # yi, and,
Tit1 = Yi+1, " Tt = Yt-

Then d is a distance function and we obtain a symmetric association scheme
x=x0 .. 30 =(X=X;x--- XXt,{Rj}}Lg)-

Definition 5. Let £ = X1 X0 = (X = X x- - x X4, {R;}7_) be the
symmetric association scheme which is given as the wreath product of the
metric schemes X = (X;, {Rgi)};io). Then X will be called a weak metric
scheme. If X9 is a Hamming scheme for every i, then X is called the weak
Hamming scheme [9].
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Example 6. Let H(4,2), H(3,2) and H(5,2) be the Hamming schemes,
then we obtain a weak Hamming scheme X = H (4, 3,5;2) = H(4,2)1H (3,2)
H(5,2) with | X| = 4096.

As shown above, the weak metric schemes are defined as the wreath prod-
uct of a finite number of symmetric association schemes satisfying certain
conditions. It turns out that the weak metric schemes are the symmetric as-
sociation schemes. Since the symmetric association schemes with 2 classes
are equivalent to the SRGs, we consider the weak metric schemes with 2
classes for the construction of the SRGs.

Let X = X1 X = (X = X x Xy, {R; ?:0) be the weak metric scheme
with 2 classes which is given as the wreath product of the metric schemes
20 = (X, {Rgz) jl-:o). And let I“;-Z) (1 =0,1,2) (resp. I'j) be a graph with
respect to R;.Z) (resp. Rj) then ng) (resp. I';) is called a j-relation graph of
X0 (resp. X).

Proposition 7. Let X = X1 1 2®) = (X = X| x Xo, {Rj}fzo) be a weak
metric scheme with 2 classes, and let | X1| = m1 , | X2| = ma. Then we have
(1) The metric schemes XY and X? have 1 class.
(2) Fgl) = (X1, Rgl)) and F?) = (Xo, REQ)) are distance regular graphs.
(3) Intersection matrices Lo, L1, Lo of X are given as follows :
Lo = I3,

0o k@ 0 0 0 mik®
Li=1 -1 0 |, La=|0 0 m1k? ,
0o 0 kO 1B mk® - g 1

where k% (i =1,2) is a valency of Rgi)‘
4) EY =mq — 1 and k@ =mq — 1.
Example 8. Let X = (X x X27{Rj}?:0) be a weak metric scheme as

the wreath product of two Hamming schemes H(1,2) and H(1,3). Then,
|X1| =2, | Xa| =3 and kM = 1,k® = 2. Also, we have

010 00 4
Lo=I3 Li=| 100 ), Lo={00 4
00 1 11 2

Now, we introduce some definitions in graph theory.

Definition 9. Let S be a subset of set of vertices in a graph T' = (V, E),
where V' is a set of vertices of I and E is a set of edges of T.
(a) The edge boundary of S, denoted by 0S is defined as follows :

IS ={{z,y} € E(') |z € SandyeV - S},
where E(I') is a edge set of I.
(b) If S # @, then the volume of S, denoted by vol(S) is defined as follows :

vol(S) = > ku,

uesS
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where ky is a valency of u in T'. The volume of T is denoted by
vol(I") = Zdu.
u

(c) The Cheeger ratio of S, denoted by hg is defined as
_ 0S|
min{vol(S), vol(T') — vol(S)}’
(d) The Cheeger constant of T, denoted by hr is defined as

min

hl«: ng

hs

Let I" be a distance k-regular graph, then we have £ =1 — %A, where A
is the adjacency matrix of I'. The eigenvalues of the Laplacian £ of ' are
denoted by 0 = g < A1 < -+ < A\g.

The Hamming graph I'(n,¢) is the graph that describes the distance-1
relation R; in the Hamming scheme H (n, q). The Hamming graph I'(n, q) is
the graph Cartesian product of n copies of the complete graph K, . There-
fore, I'(n, q) has vertices ¢". Also, I'(n, q) is distance n(q — 1)-regular graph
with diameter n.

Let E(A ~ B) be the numbers of the edges from A to B.

Lemma 10. Let I'(n,q) be a graph with respect to Ry over H(n,q). Then
['(n) can be partitioned into q isomorphic copies S; of T'(n — 1) with ¢"~1
edges joining every pair of I'(n—1)’s. And, for s € S;, E(s ~S;) =1, (i #
J)-

3. CONSTRUCTION OF A CMG FROM A WEAK METRIC SCHEME WITH 2
CLASSES

In this section, we explain how the weak metric schemes X with 2 classes
give rise to CMGs. There exist the graphs I'g, I'1 and I's with respect to
the relations Ry, R1 and Ry of X respectively, where I'j is a graph with only
vertices. In the following lemma, we explain the graphs I'y and [s.

Lemma 11. Let T; (j = 1,2) be a j-relation graph of X = X1 X2 =

(X =X x XQ,{R]‘}?:O), Then

(1) Ty is a disconnected regular graph with myms vertices and kW valency.

(2) Ty is a connected regular graph with myms vertices and mlk(2) valency,
where k% (i =1,2) is a valency of Rgi)and | X1] = ma, | X2| = ma.

Proof. Let Ly = (p{),) and Ly = (pj,) be the intersection matrices of I'y
and T’y respectively. Since p); = kM) and pgoz) = m1k®, I'; and T'y are
the regular graphs with valency k) and m k® respectively. Since a entry
p3, = 0. That is, every nonadjacent pair of vertices on I'y; have 0 common
neighbors. Thus, I'y is a disconnected graph. Since pl, = mi1k® and
piy = m1k® — kM) — 1, a graph T'5 is a connected regular graph. O
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The following Theorem is the first main result of this paper, which shows
that any weak metric scheme with 2 classes produces a CMG.

Theorem 12. Any weak metric scheme with 2 classes gives rise to a CMG.
In detail, let X = (X1 x X2, {R; }?:0) be a weak metric scheme with 2 classes
deifned as in Proposition 7. Then a 2-relation graph Ty of X is a CMG with
parameters (v, k, A\, p) = (mima, mik® mik@ — kO — 1 mk@).

Proof. Let ¥; = (X1, RM) and X, = (X2, R®) be the metric schemes
with | X;| = my, |Xa| = ma. And let k) (i = 1,2) be a valency of X;.
Let X = X711 X2 be a weak metric scheme withe 2 classes. Then the size
of the intersection matrices L; with (g, h)-entry pf, (i = 0,1,2) of X is
3 x 3 and Ly, L1 and Ly are the same as in (3) of Proposition 7. Let
I; be a graph with respect to L; ( = 1,2). Then T'; have | X;||X2| =
mimgy vertices. Also I'y is a regular graph with valency k(1) and I'; is a
regular graph with valency m1k®. Every adjacent pair of vertices of I'y
have p%2 =mk® — k() — 1 common neighbors, and every nonadjacent pair
of vertices of I'y have p%Q = 77L1k‘(2) common neighbors. Therefore T’y is
a connected graph with diameter 2. Thus I's is a CMG with parameters
(v, k, N, p) =(mama, mik® mi k@ — kO — 1, m k@), O
Example 13. Let X = (X; x X2, {R; }5:0) be a weak metric scheme with
2 classes which is given as the wreath product of the Hamming schemes
H(1,m1) and H(1,mz). Then we have

(1) m1 =2, mo=3:%=H(L2) 1 H(L3)
Ty:(6,1,0,0), Ty :(6,4,2,4) (Octahedral graph).
(2) m;y =3, my=2:%X=H(1,3) H(1,2)

T :(6,2,1,0), Ty : (6,3.0,3) (Utility graph).

4. EQUIVALENCE OF THE CMGS WITH THE WEAK METRIC SCHEMES
WITH 2 CLASSES

In this section, we show the converse of Theorem 12, equivalently, any
CMG can be constructed from a weak metric scheme with 2 classes.
The following lemma shows the properties of CMGs.

Lemma 14. Let G be a CMG with parameters (v, k, A\, u). Then we have
(D k=n
2 v=2k—-X(A=2k—v)
3) (b, A ) = 2k — N\ K, 2k — v, k)
(4) 2k > v.
Proof. Since the CMGs are the SRGs, G satisfies k(k—A—1) = u(v—k—1).

Since k = u, we have k — A —1=v—k — 1, and so v = 2k — A. Therefore G
is a graph with parameters (2k — A, k, 2k — v, k) and we have 2k —v > 0. [

Remark 15. If G is a SRG with parameters (v, k, A, u). Then a complement
graph G of G is SRG with parameters (v,v—k—1,v—2—2k+pu,v—2k+\).
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Lemma 16. Let G be a CMG with parameters (2k — A\, k,2k — v, k). Then
we have

(1) G is a SRG with parameters (2k — X\, k — X — 1,k — XA —2,0).

(2) k— X is a divisor of 2k — \.

(3) If k — X is not divisor of 2k — X, then (2k — X\, k, 2k — v, k) is not a SRG.

Proof. (1) It follows from Remark 15.

(2) Since x4 = 0, G is a disjoint union of (k — A)-cliques. Thus, there is a
positive integer b such that 2k — A = (k — A\)b.

(3) It directly follows from (1) and (2). O

Corollary 17. Let G be a CMG with parameters (v, k,\,u). Then v is a
composite number.

Proof. By Lemma 14, G is a graph with parameters (2k — A, k, 2k — v, k).
By Lemma 16, G is a SRG with parameters (2k — A,k — A — 1,k — XA —2,0)
and k — A is a divisor of 2k — A. Assuming 2k — X is a prime number, we
have that k — Aislor 2k —A\. fk—A=2k— A\ then k=0. T k—-)A=1
then £k — A — 2 = —1 < 0. Therefore v is a composite number. O

Remark 18. Let () = (Xi,{Rgl) }:0) be a metric scheme with 1 class.
Then, there exist the metric schemes with |X;| = m; for any positive integer
m;. For instance, the Hamming schemes H(1,m;) with | X;| = m; and the
Johnson schemes J(v,1) with |X;| = ("}') = m; are metric schemes with 1
class.

Lemma 19. Assume that G and H are the CMGs with the same parameters
(v, k, N\, ;). Then we have the following:

(7) G and H have the same intersection matriz L :

0 0 k
L= 0 0 k
1 v—k—-1 2k—w
(#) G is isomorphic to H.

Proof. (i) Let K be a CMG with parameters (v, k, A\, ). Then since by
Lemma 14 (v, k, A\, u) = (2k — N\, k,2k — v, k) and K is a SRG, there exist
eigenvalues k,7,s(k > r > s) such that r + s =\ — p, rs = —k + p. Since
r+s=2k—-v—-—k=k—v, rs=—-k+pu=—-k+k=0, we have r =0 and
s=k—w.
Define the distance d on K as follows :
de { 1, if (x,y) nonadjacent
T 1 2, if (x,y) adjacent.
Since K is a SRG, an intersection matrix of K is defined on symmetric
association schemes with 2 classes. Thus we obtain an intersection matrix
L of K as follows :
0 o0 k
L=|10 0 k ,
1 a-—1 k-—a
where k is a valency of K. Since the eigenvalues of L are k,0 and —a, we
have a = v — k.

233
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(i4) By Lemma 16, g and H are the SRGs with parameters (v, k — A — 1,k —
A —2,0). Thus G and H are the disjoint unions of (k — A)-cliques, and the
classes of G and ‘H are the complete graphs with vertices k — A. Therefore G
and H have the same adjacency matrix which is the (k — A)-block diagonal
matrix :
Jix — T
A = e . )
| Jk—x — Lk

where Jj_) is all one matrix and Ij_) is an identity matrix. Since a matrix

Jy — I, — A is an adjacency matrix of both G and H, G is isomorphic to
H. O

The following Theorem is the second main result of this paper which is the
converse of Theorem 12, and it shows that any CMG can be constructed from
a weak metric scheme with 2 classes. Therefore, we obtain the following.

Theorem 20. The weak metric schemes with 2 classes are equivalent to the
CMGs.

Proof. By Theorem 12, a graph I's constructed from the weak metric schemes
with 2 classes is a CMG. It is thus enough to show that any CMG can be
constructed from a weak metric scheme with 2 classes.

Let G be a CMG with parameters (v, k, A, 1) and let k() be a valency
of a complement graph G of G, then v = 1 + k) 4+ k. By Lemma 19, an
intersection matrix L of G is

0 0 k
0 0 k
1KY kM -1

By (2) of Lemma 14 and (2) of Lemma 16, v — k = k(1) 41 is a divisor
of 2k — X\. Thus v = 2k — A = (k) 4 1)b for some integer b. Combining
v—Fk=kY+1and v= (kO + 1)b yields &k = (kW +1)(b—1) (b > 1).
Let k2 =b—1. Then v = (kW +1)(k® +1) and k = (kO + 1)k® (Then
v>4, k>2).

Let the weak metric scheme X = (X1 x Xo, {Rj}?zo) with 2 classes have
1Xi| = kW +1 =v—Fkand |Xo| = k@ +1 = -2 and let 'y be a 2-
relation graph over the weak metric scheme X. Then by Proposition 7, the
intersection matrix Lo of X is the same as Lg. Therefore, the graph G is
isomorphic to I's, which shows our result. O

The following corollary is obtained from the proof of Theorem 20.
Corollary 21. Let G be a CMG with parameters (v, k, X\, u). Then we have
(1) Figenvlaues of G are k, 0 and k — v.

(2) G is a complete t — partite graph, where t = Lk
v —

Proof. In proof of Theorem 20, G have the eigenvalues k,0 and & — v. Thus
the size of the classes of G is v—k and G is a complete ;“ — partite graph. [
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The following corollary is obtained directly from Remark 18 and Theorem
20.

Corollary 22. Let X (i = 1,2) be a Hamming scheme or a Johnson
scheme with 1 class, and X = X1 1 X?) = (X x Xy, {R;}3_) be a weak
metric scheme with 2 classes and | X;| = m; (i =1,2). Let S be a collection
of all weak metric scheme with 2 classes X made by a Hamming scheme or
a Johnson scheme with 1 class as above, and let € be a set of all the CMGs.
Then any CMG in € is equivalent to a weak metric scheme X in S.

Corollary 23. Let v be any composite number and let r be the number of
divisors of v. Then, there exist exactly r — 2 CMGs with vertices v.

Proof. Let X = XM %® be a weak Hamming scheme with 2 classes and
parameters defined as in Proposition 7. Then the graphs I's is the CMG with
parameters (mime, mime —mi, mims — 2m1, mime —my1). Since v = mime
is a composite integer and m; > 2 (i = 1,2), the number of the pairs
(m1,ma) is 7 — 2. Since (mymse, mims — m1, mimg — 2my, mims — my) =
(v,v — m1,v — 2my,v — m1), if v = mima = mim, and m; # m) then
v—my # v—m). Thus there exist exactly r — 2 distinct CMGs with vertices
. O

5. CHEEGER CONSTANTS OF HAMMING GRAPHS

In this section, we obtain the actual Cheeger constants of Hamming
graphs.

Let I'(n, q) be a graph with respect to Ry over H(n,q). Then I'(n,q) be
a distance regular graph with order ¢". Let V be a set of vertices and F
be a set of edges of I'(n,q). There exist ¢ distinct subgraphs of I'(n, ¢) as
the isomorphic copies of I'(n — 1,q). Let S; ( = 0,1,--- ;¢ — 1) be a set
of vertices with first position value i. Then |S;| = ¢"~! and V = |JS;. We
choose a subset S of V' by

=50US1U---US;0_1, q s even,
1) S=5US Sq/ )
(2) S=SoUSTU---US;_1US/2, t=1q/2], q is odd,

where S;/2 is a subset od S; and |S;/2| = an;j. Then, by Lemma 10,

E(Si ~ S;) = ¢" ! (i # j) and E(Si ~ S,/2) = [£5] (¢ is odd and
i=01,,t—1).

In Hamming graphs, for obtaining their Cheeger constants, we need to
compute the number of boundary edges which connect a vertex set S and
its complement set in Hamming graphs.

In the following theorem, we determine the actual Cheeger constant of
Hamming graphs I'(n, ¢) explicitly.

235
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Theorem 24. Let I'(n,q) be a Hamming graph over H(n,q) and hp(,q) be
a Cheeger constant of I'(n,q). Then we have as follows :

g
hre) = D=1

That is, we have

L _ %7 q 18 even,
T(n.g) = % + 2”(;7*1)’ q 1s odd.

where A1 is the smallest positive eigenvalue of the Laplacian of I'(n, q).

Proof. We consider the two cases : (i) ¢ is even and (ii) ¢ is odd.

(i) ¢ is even : Let I'(n — 1,q) be a distance regular graph over H(n — 1, q).
Then, a valency of I'(n—1, q) is (n—1)(¢—1) and vol(S;) = |S [(n—1)(¢g— 1)
qn- 1(IL —1)(g — 1). Let S be a subset of V" as So U S; U---US;/5_1. Then
S| = |V|/2. Since E(S; ~ S;j) = q"" (i # j),

q q _
051 = vol(8) ~ 24" (n — 1)(g ~ 1) - £(L g
-1 = - (g — 1) = Lyt
5a—1) =5 -1—-1)-35(5 -1
ﬁ 4,9 qn+1
- -2 et =
Thus, we have
0S| _ ¢"*')2 q

< _ — .
hr(ng) < vol(S)  ¢"n(qg—1) 2n(qg—1)

Since, I'(n, ¢) has n(q — 1) valency and A\ =1 — (q(lz) where p1(1) is an

eigenvalue of an adjacency matrix of I'(n, ¢). Since p1(1) = ng—n — ¢, and

A = ﬁ. Thus, we have
A1 q
frm.g) < 9 2n(q—1)
Since, for any graph I', hr > 71
A1
hr(n,g) = 9

(ii) ¢ is odd : Let S be a subset of V as SoyUS1U---US;_1US/2 (t = [¢/2]).
Let SM =SyUS U---US_q and @ =S,y U---US,. Then

B ~ 5®) = 1]
55O ~ (50— 5,/2) = | 4] (L5,

n—1 _
B(si/2~ (52) = 3] (t5—).
Thus, E(SM ~ S@) + E(SMW ~ (S; — S;/2)) + E(S;/2 ~ (S@) is

n—1

g g - L




Strongly regular graphs over weak metric schemes

Since S;/2 is a subset of S; and S; is isomorphic to ]Fg_l. Thus, we obtain
|0S| by repeating the above course.

q’” (¢ —1)= ¢ —1¢" -1 _ (¢+1)(" 1)
(g 4 g-1 4 '
Thus, we have
|as| B (qul)Elqn_l) B q+1

< = = .
e < Sors) n(g— LT T~ 2n(g - 1)

Let S~ be a set as S; in Lemma 10, and let hrn-1,4) be a Cheeger

constant on S~V of I'(n — 1,q). Then we can choose a vertex v; in .S;
with v; = (i, 22, - ,xn). Let T; = {v; : v; = ({,x2, -+ ,xn) € 5; ,i =
0,1,«“(1—;3} and T; = {v; : vj=(j,@2, - ,xp) €S ,j= %, ,q— 1}
Then, we have E(T; ~ Tj) = W Thus, by Lemma 10, we have

108" | = g hpg,— 1q)v01(s< DY+ B(T; ~ Ty)
qg+1
=4q hF(n—l,q)VOI( (n 2 ) %
=q |8S(n71)| + ( 1{4&1‘*‘ 1)
Since T'(1,q) is a graph with valency ¢ — 1, hpg ) = 2(%_11) and |9SW)|
is %. Thus, [9S@)| = er)iﬁ. Since, there exists S with
0S| = % and maximum volume. Thus, we have
2_
|8S(2)| ((1+1)Elq 1 q+1

hrea = Sos®) T 2 (@ D2 A1)
By induction on n,

|aS(n+1)| _ ((] + 1)(qn+1 — 1)
4 .
Thus, we have
5 g+l
T'(n,q) = 2,n(q . 1)'

O

Corollary 25. LetI'(n, q) be a Hamming graph over H(n,q), and let hp(, ) =

9L Then

2n(q—1)
. )\1 . )\1
(1) nh_g)lo(hl na) T o —)=0, (2) qgrgo(hl‘(n,q) _ ?) -0
)\1 _

Proof. Since % = Thus, it is clear. [

1
<Z_1) and Ap(n,g) — In(g—1)
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6. LIST OF COMPLETE MULIPARTITIE GRAPHS

By Theorem 12, Theorem 20, Corollary 21 and Corollary 23, Table 1 in
Appendix shows the complete list of the CMGs for 4 < v < 100.



Strongly regular graphs over weak metric schemes

Appendix.
TABLE 1. The complete list of the CMGs for 4 < v < 100

v | [ Xa] | [Xe] (v, k, A, 1) eigenvalues graph
4 2 2 (4,2,0,2) 2,0, -2 square graph
6 2 3 (6,4,2,4) 4,0, -2 octahedral graph
3 2 (6,3,0,3) 3,0, -3 utility graph
8 2 4 (8,6,4,6) 6,0, —2 16 — cell graph
4 2 (8,4,0,4) 4,0, -4 complete bipartite graph
9 3 3 (9,6,3,6) 6,0, —3 complete tripartite graph
10 2 5 (10, 8,6, 8) 8,0, -2 5 — cocktail party graph
5 2 (10, 5,0, 5) 5,0, —5 complete bipartite graph
12 2 6 (12,10,8,10) 10,0, -2 6 — cocktail party graph
3 4 (12,9,6,9) 9,0, -3 complete 4 — partite graph
4 3 (12,8,4,8) 8,0, —4 complete tripartite graph
6 2 (12,6,0,6) 6,0, —6 complete bipartite graph
14 2 7 (14,12,10,12) 12,0, -2 7 — cocktail party graph
7 2 (14,7,0,7) 7,0, -7 complete bipartite graph
15 3 5 (15,12,9,12) 12,0, -3 complete 5 — partite graph
5 3 (15,10, 5, 10) 10,0, -5 complete tripartite graph
16 2 8 (16,14,12,14) 14,0, -2 8 — cocktail party graph
4 4 (16,12,8,12) 12,0, -4 complete 4 — partite graph
8 2 (16, 8,0, 8) 8,0, -8 complete bipartite graph
18 2 9 (18,16, 14, 16) 16,0, -2 9 — cocktail party graph
3 6 (18,15,12,15) 15,0, -3 complete 6 — partite graph
6 3 (18,12,6,12) 12,0, -6 complete tripartite graph
9 2 (18,9,0,9) 9,0, -9 complete bipartite graph
20 2 10 (20, 18, 16, 18) 18,0, -2 10 — cocktail party graph
4 5 (20, 16,12, 16) 16,0, —4 complete 5 — partite graph
5 4 (20, 15,10, 15) 15,0, -5 complete 4 — partite graph
10 2 (20, 10,0, 10) 10,0, —10 complete bipartite graph
21 3 7 (21, 18,15,18) 18,0, -3 complete 7T — partite graph
7 3 (21,14,7,14) 14,0, -7 complete tripartite graph
22 2 11 (22, 20, 18, 20) 20,0, -2 11 — cocktail party graph
11 2 (22,11,0,11) 11,0, —11 complete bipartite graph
24 2 12 (24,22,20,22) 22,0, -2 12 — cocktail party graph
3 8 (24, 21,18,21) 21,0,-3 complete 8 — partite graph
4 6 (24, 20, 16, 20) 20,0, —4 complete 6 — partite graph
6 4 (24,18,12,18) 18,0, -6 complete 4 — partite graph
8 3 (24, 16, 8,16) 16,0, -8 complete tripartite graph
12 2 (24,12,0,12) 12,0, —-12 complete bipartite graph
25 5 5 (25, 20, 15, 20) 20,0, -5 complete 5 — partite graph
26 2 13 (26,24,22,24) 24,0, -2 13 — cocktail party graph
13 2 (26,13,0,13) 13,0, —13 complete bipartite graph
27 3 9 (27,24,21,24) 24,0, -3 complete 9 — partite graph
9 3 (27,18,9,18) 18,0, -9 complete tripartite graph
28 2 14 (28, 26,24, 26) 26,0, -2 14 — cocktail party graph
4 7 (28,24,20,24) 24,0, -4 complete T — partite graph
7 4 (28,21, 14,21) 21,0, -7 complete 4 — partite graph
14 2 (28,14,0,14) 14,0, —14 complete bipartite graph
30 2 15 (30, 28,24, 28) 28,0, -2 15 — cocktail party graph
3 10 (30,27,21,27) 27,0, -3 complete 10 — partite graph
5 6 (30, 25,20, 25) 25,0, -5 complete 6 — partite graph
6 5 (30,24, 18,24) 24,0, —6 complete 5 — partite graph
10 3 (30, 20, 10, 20) 20,0, -10 complete tripartite graph
15 2 (30,15,0,15) 15,0, —15 complete bipartite graph
32 2 16 (32, 30, 28, 30) 30,0, -2 16 — cocktail party graph
4 8 (32, 28, 24, 28) 28,0, —4 complete 8 — partite graph
8 4 (32,24,16,24) 24,0, -8 complete 4 — partite graph
16 2 (32,16,0,16) 16,0, —16 complete bipartite graph
34 2 17 (34, 32,30, 32) 32,0,-2 17 — cocktail party graph
17 2 (34,17,0,17) 17,0, —-17 complete bipartite graph
35 5 7 (35, 30, 25, 30) 30,0, -5 complete 7 — partite graph
7 5 (35, 28,21, 28) 28,0, -7 complete 5 — partite graph
36 2 18 (36,34, 32,34) 34,0, -2 18 — cocktail party graph
3 12 (36,33, 30, 33) 33,0,-3 complete 12 — partite graph
4 9 (36, 32,28, 32) 32,0, -4 complete 9 — partite graph
[§ 6 (36, 30, 24, 30) 30,0, —6 complete 6 — partite graph
9 4 (36,27,18,27) 27,0,-9 complete 4 — partite graph
12 3 (36,24,12,24) 24,0, -12 complete tripartite graph
18 2 (36,18,0,18) 18,0, —18 complete bipartite graph
38 2 19 (38, 36, 34, 36) 36,0, —2 19 — cocktail party graph
19 2 (38,19,0,19) 19,0, —19 complete bipartite graph
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v [ X1 ] [X2] (v, k, A\, 1) eigenvalues graph
40 2 20 (40, 38, 36, 38) 38,0, -2 20 — cocktail party graph
4 10 (40, 36, 32, 36) 36,0, —4 complete 10 — partite graph
5 8 (40, 35, 30, 35) 35,0, -5 complete 8 — partite graph
8 5 (40, 32, 24, 32) 32,0,-8 complete 5 — partite graph
10 4 (40, 30, 20, 30) 30,0, —-10 complete 4 — partite graph
20 2 (40, 20, 0, 20) 20,0, —20 complete bipartite graph
42 2 21 (42, 40, 38, 40) 40,0, -2 21 — cocktail party graph
3 14 (42, 39, 36, 39) 39,0, -3 complete 14 — partite graph
6 7 (42, 36, 30, 36) 36,0, —6 complete 7 — partite graph
7 6 (42, 35,28, 35) 35,0, -7 complete 6 — partite graph
14 3 (42, 28, 14, 28) 28,0, —14 complete tripartite graph
21 2 (42,21,0,21) 21,0, —21 complete bipartite graph
44 2 22 (44, 42, 40, 42) 42,0, -2 22 — cocktail party graph
4 11 (44, 40, 36, 40) 40,0, —4 complete 11 — partite graph
11 4 (44, 33,22, 33) 33,0, —11 complete 4 — partite graph
22 2 (44,22,0,22) 22,0, —22 complete bipartite graph
45 3 15 (45,42, 39, 42) 42,0, -3 complete 15 — partite graph
5 9 (45, 40, 35, 40) 40,0, -5 complete 9 — partite graph
9 5 (45, 36,27, 36) 36,0, -9 complete 5 — partite graph
15 3 (45, 30, 15, 30) 30,0, —15 complete tripartite graph
46 2 23 (46, 44,42, 44) 44,0, -2 23 — cocktail party graph
23 2 (46,23, 0,23) 23,0, —23 complete bipartite graph
48 2 24 (48,46, 44, 46) 46,0, —2 24 — cocktail party graph
3 16 (48, 45,42, 45) 45,0, -3 complete 16 — partite graph
4 12 (48,44, 40, 44) 44,0, -4 complete 12 — partite graph
6 8 (48,42, 36, 42) 42,0, —6 complete 8 — partite graph
8 6 (48, 40, 32, 40) 40,0, -8 complete 6 — partite graph
12 4 (48, 36, 24, 36) 36,0, —12 complete 4 — partite graph
16 3 (48, 32,16, 32) 32,0, —-16 complete 3 — partite graph
24 2 (48,24,0,24) 24,0, —24 complete bipartite graph
49 7 7 (49, 42, 35, 42) 42,0, -7 complete 7 — partite graph
50 2 25 (50, 48, 46, 48) 48,0, -2 25 — cocktail party graph
5 10 (50, 45, 40, 45) 45,0, -5 complete 10 — partite graph
10 5 (50, 40, 30, 40) 40,0, —10 complete 5 — partite graph
25 2 (50, 25,0, 25) 25,0, —25 complete bipartite graph
52 2 26 (52, 50, 48, 50) 50,0, —2 26 — cocktail party graph
4 13 (52,48, 44, 48) 48,0, -4 complete 13 — partite graph
13 4 (52, 39, 26, 39) 39,0, -13 complete 4 — partite graph
26 3 (52,26,0,26) 26,0, —26 complete bipartite graph
54 2 27 (54, 52,50, 52) 52,0, -2 27 — cocktail party graph
3 18 (54,51,48,51) 51,0, -3 complete 18 — partite graph
6 9 (54, 48,42, 48) 48,0, —6 complete 9 — partite graph
9 6 (54, 45, 36, 45) 45,0, -9 complete 6 — partite graph
18 3 (54, 36, 18, 36) 36,0, —18 complete tripartite graph
27 2 (54,27,0,27) 27,0, =27 complete bipartite graph
55 5 11 (55,50, 45, 50) 50,0, -5 complete 11 — partite graph
11 5 (55, 44, 33, 44) 44,0, —11 complete 5 — partite graph
56 2 28 (56, 54,53, 54) 54,0, —1 28 — cocktail party graph
4 14 (56, 52,48, 52) 52,0, —4 complete 14 — partite graph
7 8 (56,49, 42, 49) 49,0, -7 complete 8 — partite graph
8 7 (56, 48, 40, 48) 48,0, —8 complete 7 — partite graph
14 4 (56, 42,28, 42) 42,0, —-14 complete 4 — partite graph
28 2 (56,28, 0, 28) 28,0, —28 complete bipartite graph
57 3 19 (57,54,51,54) 54,0, -3 complete 19 — partite graph
19 3 (57, 38,19, 38) 38,0, —19 complete tripartite graph
58 2 29 (58,56, 54, 56) 56,0, —2 29 — cocktail party graph
29 2 (58,29,0,29) 29,0, —29 complete bipartite graph
60 2 30 (60, 58, 56, 58) 58,0, —2 30 — cocktail party graph
3 20 (60, 57,54, 57) 57,0, -3 complete 20 — partite graph
4 15 (60, 56, 52, 56) 56,0, —4 complete 15 — partite graph
5 12 (60, 55, 50, 55) 55,0, —5 complete 12 — partite graph
6 10 (60, 54,48, 54) 54,0, -6 complete 10 — partite graph
10 6 (60, 50, 40, 50) 50,0, —10 complete 6 — partite graph
12 5 (60, 48, 36, 48) 48,0, —12 complete 5 — partite graph
15 4 (60, 45, 30, 45) 45,0, —15 complete 4 — partite graph
20 3 (60, 40, 20, 40) 40,0, —20 complete tripartite graph
30 2 (60, 30, 0, 30) 30,0, —30 complete bipartite graph
62 2 31 (62, 60, 58, 60) 60,0, —2 31 — cocktail party graph
31 2 (62,31,0,31) 31,0, —31 complete bipartite graph
63 3 21 (63,60, 57, 60) 60,0, -3 complete 21 — partite graph
7 9 (63, 56, 49, 56) 56,0, -7 complete 9 — tripartite graph
9 7 (63, 54,45, 54) 54,0, —9 complete 7 — partite graph
21 3 (63,42,21,42) 42,0, —21 complete tripartite graph
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v | X1 | Xo| (v, k, A, 1) eigenvalues graph
64 2 32 (64, 62,60, 62) 62,0, -2 32 — cocktail party graph
4 16 (64, 60, 56, 60) 60,0, —4 complete 16 — partite graph
8 8 (64, 56, 48, 56) 56,0, -8 complete 8 — partite graph
16 4 (64, 48, 32, 48) 48,0, —16 complete 4 — partite graph
32 2 (64, 32,0, 32) 32,0, —32 complete bipartite graph
65 5 13 (65,60, 55, 60) 60,0, —5 complete 13 — partite graph
13 5 (65, 52, 39, 52) 52,0, —-13 complete 5 — partite graph
66 2 33 (66, 64,62, 64) 64,0, —2 33 — cocktail party graph
3 22 (66, 63, 60, 63) 63,0, -3 complete 22 — partite graph
22 3 (66, 44,22, 44) 44,0, —22 complete tripartite graph
33 2 (66, 33,0, 33) 33,0, —33 complete bipartite graph
68 2 34 (68, 66,64, 66) 66,0, —2 34 — cocktail party graph
4 17 (68,64, 60, 64) 64,0, —4 complete 17 — partite graph
17 4 (68,51, 34, 51) 51,0, —17 complete 4 — partite graph
34 2 (68, 34,0, 34) 34,0, —34 complete bipartite graph
69 3 23 (69, 66,63, 66) 66,0, —3 complete 23 — partite graph
23 3 (69, 46, 23, 46) 46,0, —23 complete tripartite graph
70 2 35 (70, 68, 66, 683) 68,0, —2 35 — cocktail party graph
5 14 (70, 65, 60, 65) 65,0, =5 complete 14 — partite graph
7 10 (70,63, 56, 63) 63,0, -7 complete 10 — partite graph
10 7 (70, 60, 50, 60) 60,0, —10 complete 7 — partite graph
14 5 (70, 56,42, 56) 56,0, —14 complete 5 — partite graph
35 2 (70, 35,0, 35) 35,0, —35 complete bipartite graph
72 2 36 (72,70, 68, 70) 70,0, -2 36 — cocktail party graph
3 24 (72,69, 66, 69) 69,0, —3 complete 24 — partite graph
4 18 (72,68, 64, 68) 68,0, —4 complete 18 — partite graph
6 12 (72, 66, 60, 66) 66,0, —6 complete 12 — partite graph
8 9 (72,64, 56, 64) 64,0, -8 complete 9 — partite graph
9 8 (72,63, 54, 63) 63,0, -9 complete 8 — partite graph
12 6 (72,60, 48, 60) 60,0, —12 complete 6 — partite graph
18 4 (72,54, 36, 54) 54,0, —18 complete 4 — partite graph
24 3 (72,48, 24, 48) 48,0, —24 complete tripartite graph
36 2 (72, 36,0, 36) 36,0, —36 complete bipartite graph
74 2 37 (74,52,50,52) 52,0, —22 37 — cocktail party graph
37 2 (74,37,0,37) 37,0, —37 complete bipartite graph
75 3 25 (75,72,69,72) 72,0, -3 complete 25 — partite graph
5 15 (75,70, 65, 70) 70,0, -5 complete 15 — partite graph
15 5 (75,60, 45, 60) 60,0, —15 complete 5 — partite graph
25 3 (75, 50, 25, 50) 50,0, —25 complete bipartite graph
76 2 38 (76,74,72,74) 74,0, -2 38 — cocktail party graph
4 19 (76,72,68,72) 72,0, -4 complete 19 — partite graph
19 4 (76,57, 38,57) 57,0, —-19 complete 4 — partite graph
38 2 (76, 38,0, 38) 38,0, —38 complete bipartite graph
77 7 11 (77,70,63,70) 70,0, =7 complete 11 — partite graph
11 7 (77,66, 55, 66) 66,0, —11 complete 7 — partite graph
78 2 39 (78,76,74,76) 76,0, -2 39 — cocktail party graph
3 26 (78,75,72,75) 75,0, -3 complete 26 — partite graph
26 3 (78, 52,26, 52) 52,0, —26 complete 3 — partite graph
39 2 (78, 39,0, 39) 39,0, —39 complete bipartite graph
80 2 40 (80, 78,76, 78) 78,0, -2 40 — cocktail party graph
4 20 (80, 76,72, 76) 76,0, —4 complete 20 — partite graph
5 16 (80, 75,70, 75) 75,0, =5 complete 16 — partite graph
8 10 (80, 72,64, 72) 72,0 — 8 complete 10 — partite graph
10 8 (80, 70, 60, 70) 70,0, —10 complete 8 — partite graph
16 5 (80, 64,48, 64) 64,0, —16 complete 5 — partite graph
20 4 (80, 60, 40, 60) 60, 0, —20 complete 4 — partite graph
40 2 (80, 40, 0, 40) 40,0, —40 complete bipartite graph
81 3 27 (81,78,75,78) 78,0, -3 complete 27 — partite graph
9 9 (81,72,63,72) 72,0, -9 complete 9 — partite graph
27 3 (81, 54,27,54) 54,0, —27 complete tripartite graph
82 2 41 (82,80, 78,70) 80,0, —2 41 — cocktail party graph
41 2 (82,41,0,41) 41,0, —41 complete bipartite graph
84 2 42 (84, 82, 80, 82) 82,0, -2 42 — cocktail party graph
3 28 (84,81,78,81) 81,0, -3 complete 28 — partite graph
4 21 (84, 80, 76, 80) 80,0, —4 complete 21 — partite graph
6 14 (84,78,72,78) 78,0, —6 complete 14 — partite graph
14 6 (84,70, 56, 70) 70,0, —14 complete 6 — partite graph
21 4 (84,63,42,63) 63,0, —21 complete 4 — partite graph
28 3 (84, 56,28, 56) 56,0, —28 complete tripartite graph
42 2 (84,42,0,42) 42,0, —42 complete bipartite graph
85 5 17 (85,80, 75, 80) 80,0, -5 complete 17 — partite graph
17 5 (85, 68,51, 68) 68,0, —17 complete 5 — partite graph
86 2 43 (86, 84,82,84) 84,0, —2 43 — cocktail party graph
43 2 (86,43,0,43) 43,0, —43 complete bipartite graph
87 3 29 (87,84,81,84) 84,0, -3 complete 29 — partite graph
29 3 (87,58, 29, 58) 58,0, —29 complete tripartite graph
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v [ Xq] | [ X2] (v, k, A\, 1) eigenvalues graph
88 2 44 (88,86, 84, 86) 86,0, —2 44 — cocktail party graph
4 22 (88,84, 80, 84) 84,0, -4 complete 22 — partite graph
8 11 (88,80, 72, 80) 80,0, —8 complete 11 — partite graph
11 8 (88,77,66,77) 77,0, -11 complete 8 — partite graph
22 4 (88,66, 44, 66) 66,0, —22 complete 4 — partite graph
44 2 (88,44,0,44) 44,0, —44 complete bipartite graph
90 2 45 (90, 88, 86, 83) 88,0, -2 45 — cocktail party graph
3 30 (90, 87, 84, 87) 87,0, -3 complete 30 — partite graph
5 18 (90, 85, 80, 85) 85,0, -5 complete 18 — partite graph
6 15 (90, 84,78, 84) 84,0, —6 complete 15 — partite graph
9 10 (90, 81,72, 81) 81,0, -9 complete 10 — partite graph
10 9 (90, 80, 70, 80) 80,0, —10 complete 9 — partite graph
15 6 (90,75, 60, 75) 75,0, —15 complete 6 — partite graph
18 5 (90, 72,54, 72) 72,0, —18 complete 5 — partite graph
30 3 (90, 60, 30, 60) 60,0, —30 complete tripartite graph
45 2 (90, 45,0,45) 45,0, —45 complete bipartite graph
91 7 13 (91,84,77,84) 84,0, -7 complete 13 — partite graph
13 7 (91,78, 65, 78) 78,0, —13 complete 7 — partite graph
92 2 46 (92,90, 88, 90) 90,0, —2 46 — cocktail party graph
4 23 (92, 88, 84, 88) 88,0, -4 complete 23 — partite graph
23 4 (92, 69, 46, 69) 69,0, —23 complete 4 — partite graph
46 2 (92,46, 0, 46) 46,0, —46 complete bipartite graph
93 3 31 (93,90, 87, 90) 90,0, —3 complete 31 — partite graph
31 3 (93,62, 31, 62) 62,0, —31 complete tripartite graph
94 2 47 (94, 92,90, 92) 92,0, —2 47 — cocktail party graph
47 2 (94,47,0,47) 47,0, —47 complete bipartite graph
95 5 19 (95,90, 85, 90) 90,0, -5 complete 19 — partite graph
19 5 (95,76, 57, 76) 76,0, —19 complete 5 — partite graph
96 2 48 (96,94,92,94) 94,0, -2 48 — cocktail party graph
3 32 (96, 93, 90, 93) 93,0, -3 complete 32 — partite graph
4 42 (96,92, 88, 92) 92,0, -4 complete 24 — partite graph
6 16 (96,90, 84, 90) 90,0, —6 complete 16 — partite graph
8 12 (96, 88, 80, 88) 88,0, —8 complete 12 — partite graph
12 8 (96,84,72,84) 84,0, —-12 complete 8 — partite graph
16 6 (96, 80, 64, 80) 80,0, —16 complete 6 — partite graph
24 4 (96, 72,48, 72) 72,0, —24 complete 4 — partite graph
32 3 (96,64, 32, 64) 64,0, —32 complete tripartite graph
48 2 (96, 48, 0, 48) 48,0, —48 complete bipartite graph
98 2 49 (98,96, 94, 96) 96,0, —2 49 — cocktail party graph
7 14 (98,91, 84,91) 91,0, -7 complete 14 — partite graph
14 7 (98, 84,70, 84) 84,0, —14 complete 7 — partite graph
49 2 (98,49, 0,49) 49,0, —49 complete bipartite graph
99 3 33 (99, 96, 93, 96) 96,0, —3 complete 33 — partite graph
9 11 (99,90, 81, 90) 90,0, -9 complete 11 — partite graph
11 9 (99, 88,77, 88) 88,0, —11 complete 9 — partite graph
33 3 (99, 66, 33, 66) 66,0, —33 complete tripartite graph
100 2 50 (100, 98, 96, 98) 98,0, -2 50 — cocktail party graph
4 25 (100, 96, 92, 96) 96,0, —4 complete 25 — partite graph
5 20 (100, 95, 90, 95) 95,0, =5 complete 20 — partite graph
10 10 (100, 90, 80, 90) 90,0, —-10 complete 10 — partite graph
20 5 (100, 80, 60, 80) 80,0, —20 complete 5 — partite graph
25 4 (100, 75, 50, 75) 75,0, —25 complete 4 — partite graph
50 2 (100, 50, 0, 50) 50,0 — 50 complete bipartite graph
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