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STRONG CONVERGENCE THEOREMS OF ITERATIVE
ALGORITHMS FOR RELATIVELY NON-LIPSCHITZIAN
MAPPINGS

HYE JEONG CHA AND TAE-HWA KIM*

ABSTRACT. In this paper, we first review strong convergence theorems
of iterative algorithms due to Matsushita and Takahashi [20] for relati-
vely nonexpansive mappings and next extend their convergence results
to the wider class of uniformly Lipschitzian mappings which are relati-
vely asymptotically nonexpansive type. Finally we discuss some appli-
cations relating to our main result.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space X and
let T': C'— C be a mapping. Then T is said to be a Lipschitzian mapping
if, for each n > 1, there exists a constant k,, > 0 such that | 7"z — T"y|| <
knllz — y|| for all z,y € C. A Lipschitzian mapping T is called uniformly
k-Lipschitzian if k, = k for all n > 1, nonexpansive if k, = 1 for all n > 1,
and asymptotically nonexpansive [9] if lim,, o k, = 1, respectively.

On the other hand, as the classes of non-Lipschitzian mappings, there
appear in the literature two definitions, one is due to Kirk who says that T
is a mapping of asymptotically nonexpansive type [15] if for each z € C,
(1.1) lim sup sup([|7"z — T"y|| — [z — y||) <0

n—oo yeC
and TV is continuous for some N > 1. The other is the stronger concept
due to Bruck, Kuczumov and Reich [3]. They say that T is asymptotically
nonexpansive in the intermediate sense if T' is uniformly continuous and
(1.2) limsup sup (|[T"z —T"y|| — [z —y|)) <0

n—oo gyeC

Remark 1.1. In the case of (1.1), for each z € C, if we define

cn(@) :=sup(|[T"z — T"y| — ||z — y[|) VO,
yeC
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where a Vb := max{a, b}, then ¢, (x) > 0 for all n > 1, ¢, (x) = 0 as n — 0o
for each x € C, and thus (1.1) immediately reduces to

(1.3) [Tz = T"y|| < ||z -yl + ca(2)

for all y € C and n > 1. Observe that the converse always remains true,
namely, (1.3) also implies (1.1). Indeed, (1.3) implies

[T"2 = Ty — ||z -y < enl2), yeC,
i.e., cp(z) is an upper bound of {||T"z — T"y|| — || — y|| : y € C} and thus
sup([[T"z — T"y[| — [z — y|) < ea(2),
yel

which implies (1.1) since ¢, (z) — 0. Similarly, if we define

Cp i= sup cp(z)
xeC

for each n > 1, note that (1.2) is equivalent to the following (1.4)
(1.4) [Tz = T"y|| < ||z — yll + cn

for all z,y € C and n > 1, where {c,} is a sequence of nonnegative real
numbers such that ¢, — 0 as n — oo.

A point z € C'is a fized point of T provided Tx = z. Denote by F(T) the
set of fixed points of T'; that is, F(T) = {x € C : Tx = x}. A point p in C'is
said to be an asymptotic fized point of T [24] if C contains a sequence {x,}
which converges weakly to p such that the strong lim,, o (z, — Tx,) = 0.
The set of asymptotic fixed points of 7' will be denoted by F(T).

Let X be a smooth Banach space and let X* be the dual of X. The
function ¢ : X x X — R is defined by

oy, ) = llyll* — 2(y, Jz) + |||

for all z,y € X, where J is the normalized duality mapping from X to X*.
Recall that a mapping T : C' — C' is relatively asymptotically nonexpansive
(denoted simply by RAN) [14] if F(T) is nonempty, F'(T') = F(T) and, for
each n > 1 there exists a constant k,, > 0 such that

(1.5) o(p, T"z) < k2¢(p, x)

for x € C and p € F(T), where lim,_,c0 kn, = 1. In particular, T is called
relatively nonexpansive [19] if k, = 1 for all n; see also [3,4,5].

Motivated and initiated by (1.3) and (1.5), we say that T : C' — C'is a
mapping of relatively asymptotically nonexpansive type (denoted simply by
RANT) if F(T) is nonempty, F'(T) = F(T) and, for each € C there exists

a sequence {c,(x)} of nonnegative real numbers, ¢, (x) — 0, such that

(1.6) é(p, T"z) < ¢(p, ) + cn(2)
for all p e F(T) and n > 1.
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Remark 1.2. Observe that if T : C' — C'is RAN and F(T) is bounded, then
it is clearly a mapping of RANT by taking

en(@) = (k2 —1) sup ¢(p,x) =0
pEF(T)

as n — oo for each x € C.

Construction of approximating fixed points of nonexpansive mappings is
an important subject in the theory of nonexpansive mappings and its appli-
cations in a number of applied areas, in particular, in image recovery and
signal processing. However, the sequence {T"xz} of iterates of the mapping
T at a point x € C' may not converge even in the weak topology. Thus three
averaged iteration methods often prevail to approximate a fixed point of a
nonexpansive mapping T'. The first one is introduced by Halpern [10] and is
defined as follows: Take an initial guess o € C arbitrarily and define {z,}
recursively by

(1.7) Tl = thxo + (1 —tp)Txy, n >0,

where {t,,} is a sequence in the interval [0, 1].
The second iteration process is now known as Mann’s iteration process
[17] which is defined as

(1.8) Tnt1 = an®n + (1 — ap)Tx,, n >0,

where the initial guess xg is taken in C' arbitrarily and the sequence {a;,} is
in the interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration process
[11] which is defined recursively by

Yn = BnTn + (1 — Bn)Txy,
. >
(1.9) { Tpt1 = anZy + (1 — ap)Tyn, nz0,

where the initial guess zg is taken in C arbitrarily and {a,} and {3,} are
sequences in the interval [0,1]. By taking 3, = 1 for all n > 0 in (1.9),
Ishikawa’s iteration process reduces to the Mann’s iteration process (1.8).
It is known in [6] that the process (1.8) may fail to converge while the
process (1.9) can still converge for a Lipschitz pseudo-contractive mapping
in a Hilbert space.

In general, the iteration process (1.7) has been proved to be strongly
convergent in both Hilbert spaces [10, 16, 28] and uniformly smooth Banach
spaces [22, 25, 30], while Mann’s iteration (1.8) has only weak convergence
even in a Hilbert space [8].

Attempts to modify the Mann iteration method (1.8) or the Ishikawa
iteration method (1.9) so that strong convergence is guaranteed have been
made. In 2003, Nakajo and Takahashi [21] proposed the following modifica-
tion of Mann’s iteration process (1.8) for a single nonexpansive mapping T'
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with F(T) # 0 in a Hilbert space H:

xp € C chosen arbitrarily,
Yn = an®n + (1 — ap)Txy,
(1.10) Cn={2€C:|lyn — 2| < |lzn — 2|I},
n=1{2€C:(xy — 2,20 — zn) > O},
In+1 = PCanfEO,

where Px denotes the metric projection from H onto a nonempty closed
convex subset K of H. They proved that if the sequence {a,} is boun-
ded above from one, then the sequence {z,} generated by (1.10) converges
strongly to Pp(7)ro. As a special case, taking oy, = 0 for all n, the above
iteration scheme (1.10) reduces to the following:

xp € C chosen arbitrarily,
Cn={2€C:|Tx, — 2| < |2y — 2|},
Qn={z€C:(xy,— 2,20 — xyn) >0},
Tnt1 = Pe,n@,Zo-

(1.11)

On the other hand, Kamimura and Takahashi [12] considered the problem
of finding an element u of a Banach space X satisfying 0 € Au, where
A C X x X* is a maximal monotone operator and X* is the dual space of
X. They studied the following algorithm:

xp € X chosen arbitrarily,
_ 1
0="0vy + ;:-(Jyn — J2p), vn € Ayn,
(1.12) Hy,={z¢€ X :(y, — 2,0, > 0},
Wp,={2€C:(zy,— 2z Jxg— Ja,) > 0},
Tn+1 = Um,nw, %o,

where J is the duality mapping on X, {r,} is a sequence of positive real
numbers and ITx denotes the generalized projection from X onto a nonempty
closed convex subset K of X; see the section 2 for more details. They proved
that if A=10 # () and liminf,, 00 7, > 0, then the sequence {x,} generated
by (1.12) converges strongly to an element of A~'0. This generalizes the
result due to Solodov and Svaiter [26] in a Hilbert space.

In 2005, Matsushita and Takahashi [19] extended Nakajo and Takahashi’s
iteration process (1.10) to the following modification of Mann’s iteration
process (1.8) using the hybrid method in mathematical programming for
a relatively nonexpansive mapping 7' : C — C' in a uniformly convex and
uniformly smooth Banach space X:

xo € C chosen arbitrarily,

yn = J HanJr, + (1 — ap)JTzy),
(1.13) H,={2€C:¢(z,yn) < ¢(z,2n)},

Wn,={2€C:{(x, — 2z Jxg— Ja,) > 0},

Tn+1 = g, nw, o,
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where J is the normalized duality mapping. Then they proved that if the
sequence {ay} is a sequence in [0,1) and limsup,,_,,, an < 1, then the
sequence {z,} generated by (1.13) converges strongly to Ilp)wo, where
IIx denotes the generalized projection from X onto a closed convex subset
K of X. As a special case, taking a;, = 0 for all n in (1.13), the iteration
scheme reduces to the following:

xo € C chosen arbitrarily,

Hy, ={2€C:¢(2,Txy) < ¢(2,70)},
Wn,={z€C:{(x, — 2z Jaxg— Ja,) > 0},
Tn+1 = g, nw, o,

(1.14)

which generalizes the iteration scheme (1.11) in a Hilbert spaces. Very
recently, they also established that even though the condition of uniformly
smooth of X is only weakened by the smooth condition of X, the sequence
{xn} generated by (1.14) still converges strongly to Ilx(7)o.

The purpose of this paper is to employ the idea due to Matsushita and
Takahashi [20] to prove some strong convergence theorems for uniformly
Lipschitzian mappings which are RANT in uniformly convex and smooth
Banach spaces. The paper is organized as follows. In the next section we
introduce some lemmas and propositions studied recently in [12] and [13, 14]
which play crucial roles for our argument. In Section 3, motivated by [20],
we extend strong convergence theorems of iterative algorithm (1.14) due to
Matsushita and Takahashi to those for the wider class of uniformly Lipschit-
zian mappings which are RANT and discuss some applications relating to
our main result.

2. PRELIMINARIES

Let X be a real Banach space with norm || - || and let X* be the dual of
X. Denote by (-,-) the duality product. When {z,} is a sequence in X, we
denote the strong convergence of {z,} to x € X by x, — x and the weak
convergence by x, — x. We also denote the weak w-limit set of {z,} by
ww(rn) = {z : Jz,; — 2}. The normalized duality mapping J from X to
X* is defined by

Jo={a* € X"t (z,2") = ||z||* = [|l="||*}

for x € X.
A Banach space X is said to be strictly convez if ||(z + y)/2|| < 1 for all
x,y € X with ||z|| = ||ly|| = 1 and = # y. It is also said to be uniformly

convex if ||y, — yn|| — 0 for any two sequences {z,}, {yn} in X such that
[2nll = [lynll = 1 and || (zn + yn)/2|| = 1.

Let U = {x € X : ||z|| = 1} be the unit sphere of X. Then the Banach
space X is said to be smooth provided

' t—0 t
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exists for each x, y € U. It is also known that if X is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of X.
Some properties of the duality mapping have been given in [7, 23, 27]. A
Banach space X is said to have the Kadec-Klee property if a sequence {x, }
of X satisfying that =z, — = € X and |z,| — ||z|, then =, — z. It is
known that if X is uniformly convex, then X has the Kadec-Klee property;
see [7, 27] for more details.

Let X be a smooth Banach space. Recall that the function ¢ : X x X — R
is defined by

oy, x) = llyll* — 2y, Jz) + ||z

for all z,y € X. It is obvious from the definition of ¢ that

(2.2) Iyl = llz)? < d(y, 2) < (lyll + ll=[1)?
for all x,y € X. Further, we have that for any z,y,z € X,

o(x,y) = ¢(x,2) + d(2,y) + 2(z — 2, J(2) = J(y))-
In particular, it is easy to see that if X is strictly convex, for xz,y € X,
¢(y,x) =0 if and only if y = z (see, for example, Remark 2.1 of [19]).
Let X be a reflexive, strictly convex and smooth Banach space and let
C be a nonempty closed convex subset of X. Then, for any x € X, there
exists a unique element & € C' such that

6(@,2) = inf 6(2,2).

Then a mapping Il : X — C defined by Ilpx = ¥ is called the generalized
projection (see [1, 2, 12]). In Hilbert spaces, notice that the generalized
projection is clearly coincident with the metric projection.

The following result is well known (see, for example, [1, 2, 12]).

Proposition 2.1. ([1, 2, 12]) Let K be a nonempty closed convex subset of
a real Banach space X and let x € X.
(a) If X is smooth, then, & = ligx if and only if (z —y,Jz — JT) > 0
forye K.
(b) If X is reflexive, strictly convex and smooth, then
¢(Z/7 HKJ;) + QS(HKJ:? x) < ¢(y7 ‘r)
forally e K.

The following subsequent two lemmas are motivated by Lemmas 1.3 and
1.5 of Martinez-Yanes and Xu [18] in Hilbert spaces, respectively; for detailed
proofs, see [13].

Lemma 2.2. ([13]) Let C be a nonempty closed convex subset of a smooth
Banach space X, x,y,z € X and X € [0,1]. Given also a real number a € R,
the set

D:={veC: ¢z <Ap(v,z)+ (1 = N)p(v,y) + a}

is closed and convex.
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Lemma 2.3. ([13]) Let X be a reflexive, strictly convex and smooth Banach
space with the Kadec-Klee property, and let K be a nonempty closed convex
subset of X. Let xg € X and q := llgxo, where llx denotes the generalized
projection from X onto K. If {xzy,} is a sequence in X such that wy(zy,) C K
and satisfies the condition

¢(wn, 20) < P(q, T0)
for alln. Then x, — q (= xxo).

In 2003, Kamimura and Takahashi [12] proved the following result, which
plays a crucial role in our discussion.

Proposition 2.4. ([12]) Let X be a uniformly convex and smooth Banach
space and let {yn},{zn} be two sequences of X. If ¢(yn,2zn) — 0 and either
{yn} or {z,} is bounded, then y, — z, — 0.

Finally, concerning the set of fixed points of a mapping of RANT, we shall
prove the following result.

Proposition 2.5. Let X be a uniformly convex and smooth Banach space,
let C' be a nonempty closed convex subset of X, and let T : C — C be a
continuous mapping of RANT. Then F(T) is closed and convex.

Proof. First, we show that F(T) is closed. Let {x,} be a sequence of F(T)
such that z, —» ¢ € C. Since T is a mapping of RANT, we have that

P(xn, T"x) < G(xn,x) + cm(2)

for each n,m > 1. Fix m > 1. Firstly taking the limit on both sides as
n — 00, we have

o(x, Tz) = lm ¢(zp, T"z) < Um [p(zy, x) + ()]
n—oo n—o0
= ¢(z,x) + () = cm ().
As taking the limit on both sides as m — oo, since ¢, (z) — 0 as m — oco. It
follows from Proposition 2.4 that 7™z — z as m — oo and hence z € F(T)
by the continuity of T'. Next, we show that F(T") is convex. For z,y € F(T)
and A € (0,1), put z = Az + (1 — N)y. It suffices to show that z € F(T).
Indeed, as in [19], we have that for n > 1,
$(2,T"2) = ||2]|* = 2(z, JT"2) + | T"2||?
1217 = 2(\z + (1 = N)y, JT"2) + [|T"2||?
)
(

1217 = 2X (@, JT"2) = 2(1 = A){y, JT"2) + || T"2|?
I1211* + Ap(2, T"2) + (1 = N)p(y, T"=2) = All=[|* = (1 = \)lyl®
1% + (@, 2) + (1 = Ny, 2)] + 2¢a(2) = Mll2]|* = (1 = M)lyl*.

IN
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Since ¢, (z) — 0, the right hand side of the above inequality converges to 0
because

1217 + Ad(z, 2) + (1 = N(y, 2) — Allz[|* — (L = N)lyl>
= Jzl? =20z + (1= Ny, Jz) + ||2]
= [zl? = 2(2, J2) +||z* =0

By Proposition 2.4 again, we have T"z — z and hence z € F(T) by the
continuity of 7. O

3. STRONG CONVERGENCE THEOREMS

In this section we first propose an iteration process, motivated by the idea
due to [20], to have strong convergence for uniformly Lipschitzian mappings
which are relatively asymptotically nonexpansive in the intermediate sense
in uniformly convex and smooth Banach spaces.

Theorem 3.1. Let X be a uniformly convex and smooth Banach space, let
C be a nonempty closed convex subset of X and letT : C — C be a uniformly
k-Lipschitzian mapping of RANT. Assume that F(T) # (. Let a sequence
{zn} in C be defined by the following algorithm:

zg € C' chosen arbitrarily,

H,={vel:¢w,T z,) < d(v,x,) + cn(zn)},

W, ={vel:{(x,—v,Jr, — Jrg) <0},

Tpy1 = Um,nw, To.
Then the sequence {x,} converges in norm to Ilpp)zo.
Proof. First, observe that H,, is closed and convex by Lemma 2.2, and that
W, is obviously closed and convex for each m > 0. Next we show that

F(T) C H, for all n. Indeed, for all p € F(T), Since T is a mapping of
RANT, we get

o(p, T"xn) < B(p,zn) + cnln)
and so p € Hy; hence F(T) C Hy, for all n > 0. Moreover, we show that
(3.1) F(T) C H,\W,

for all n > 0. Tt suffices to show that F(T) C W, for all n > 0. We prove
this by induction. For n = 0, we have F(T) ¢ C = Wy. Assume that
F(T) c Wy, for some k > 1. Since zx.1 is the generalized projection of xg
onto Hy N Wy, by Proposition 2.1 (a) we have

(Trt1 — 2, Jxo — Jap41) > 0

for all z € Hy N Wy. As F(T) C Hi N Wy, the last inequality holds, in
particular, for all z € F(T). This together with the definition of Wy,
implies that F(T) C Wy+1. Hence (3.1) holds for all n > 0. So, {x,} is
well defined. Obviously, since z, = Iy, zo by the definition of W,, and
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Proposition 2.1 (a), and F(T) C W,, we have ¢(xn,x0) < ¢(p,zo) for all
p € F(T). In particular, we obtain, for all n > 0,

(3.2) ¢(zn,20) < (g, 0),  where q := Ilp(p)To.

Therefore, {¢(zy, zo)} is bounded; so is {z,} by (2.2).
Noticing that =, = Il ¢ again and the fact that z,+; € H,NW,, C W,
we get

¢($m$0) = ng‘}I%l ¢(Z,.'E0) S QS("ETH-IP'EO)?

which shows that the sequence {¢(xy, o)} is increasing and so the limy, o ¢(2n, o)
exists. Simultaneously, from Proposition 2.1 (b), we have

Cb(xn—i-h xn) = d) (xn+17 HanO) < ¢(xn+1-/ xO) - d)(HanOv .170)
(3.3) = ¢(Tn+1,0) — ¢(2n, 20) = 0.

By Proposition 2.4, we have
(3.4) |zns1 — znl| — 0.

Now since zp+1 € Hpy, it follows from the definition of H,, (3.3) and
cn(xn) — 0 by virtue of Cantor’s diagonal process that

A(@pi1, T"2n) < G(Tns1, Tn) + cn(Tn) — 0.
Using Proposition 2.4 again yields
|xner — T xy| — 0

and this combined with (3.4) gives

(3.5) |xrn — T"xy| — 0.
Since T is uniformly k-Lipschitzian, it follows from (3.4) and (3.5) that
20 = Tanll < |20 = 2psall + @1 = T 2|

+||Tn+1$n+1 - Tn_Hxn“ + “Tn_Hxn - Txn”
L+ B)llzn — zpaall + 2ns1 = T an |
(3.6) +E| Tz — xn|| — 0.

IN

By (3.6), wy(zn) € F(T) = F(T). This, combined with (3.2) and Lemma
2.3 (with K = F(T')), guarantees that z, — ¢ = Ilpzo. The proof is

)

complete. O

As a direct consequence of Remark 1.2 and Theorem 3.1 we have the
following

Corollary 3.2. Let X be a uniformly convex and smooth Banach space, let
C be a nonempty closed convex subset of X andletT : C — C be a uniformly



222

H. J. Cha and T-H Kim

k-Lipschitzian mapping of RAN. Assume that F(T) is a nonempty bounded
subset of C. Let a sequence {x,} in C be defined by the following algorithm:

xo € C chosen arbitrarily,
H,={velC:¢w,T x,) < ¢(v,x,) + cn(zn)},
Wp={velC:{(x,—v,Ja, — Jao) <0},

Tn+1 = g, w, To,

where ¢, (z,) = (k2 — 1) -sup{d(p, z,) : p € F(T)}. Then the sequence {x,}
converges in norm to llpr)zo.

Let C be a closed convex subset of a Hilbert space H and let T : C' — C
be an asymptotically nonexpansive mapping. Then, after noticing that
o(x,y) = ||z — y||? for all z,y € H, we see that ||[T"z — T"y|| < knllz — ||
is equivalent to ¢(T"z, T"y) < k2¢(z,y). It is therefore easy to show that
every asymptotically nonexpansive mapping is both uniformly k-Lipschitzian
and RAN. In fact, it suffices to show that F(T) ¢ F(T). The inclusion fol-
lows easily from the well-known demiclosedness at zero of I — T (c.f., [29]),
where I denotes the identity operator. Thus we have the following Hilbert
space’s version of Corollary 3.2.

Corollary 3.3. Let X be a Hilbert space, let C be a nonempty closed convex
subset of X and let T : C — C be an asymptotically nonexpansive mapping.
Assume that F(T) is a nonempty bounded subset of C. Let a sequence {x,}
in C be defined by the following algorithm.:

xo € C chosen arbitrarily,

Crh={velC:|v- TnanQ <|lv— mn||2 + 1}
Qn={vel:{(ry—v,z, — ) <0},

Tn+1 = Po,nQ, o,

where n, = (k2 — 1) -sup{|lp — x,||*> : p € F(T)}. Then the sequence {x,}
converges in norm to Ppyxo, where Pr(r) is the metric projection from X
onto F(T).

Finally, as a slight modification of Theorem 3.1, we propose another itera-
tion process to have strong convergence for uniformly Lipschitzian mappings
of RANT in uniformly convex and smooth Banach spaces.

Theorem 3.4. Let X be a uniformly convex and smooth Banach space, let
C be a nonempty closed convex subset of X andletT : C — C be a uniformly
k-Lipschitzian mapping of RANT. Assume that F(T) is nonempty. Let a
sequence {xp} in C be defined by the following algorithm:

xo € C chosen arbitrarily,

Hn = {'U € C : hm supi—)oo[¢(v7 Tzwn) - (b(U, wﬂ)] S 0}7
W,={veC: (x,—v,Jo, — Jay) <0},

Zn+1 = g, nw, zo.

Then {zn} converges in norm to Ilpyxo.
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Proof. We first show that H,, is closed and convex. In fact, the closedness of
H,, is obvious from the continuity of ¢(-,z) for = € X. Let us show that H,
is convex. As a matter of fact, the defining inequality in H,, is equivalent to
the inequality
limsup[2(v, Jz, — JT'z,) + || T2,||* — ||z ] < 0.
2—00

Thus, H, is clearly convex.

Next we show that F(T) C H, for all n. Indeed, for all p € F(T), Since
T is a mapping of RANT,

#(p, Timn) — ¢(p, zn) < ci(an)
and taking the lim sup on the both sides as i — oo, the right side converges
to 0 for each n > 1 and so p € Hy; hence F(T) C H, for all n > 0. Moreover,
using the same processes of the proof of Theorem 3.1, we can show that
(3.7) F(T)c H,NW,
for all n > 0, and furthermore (3.2)-(3.4). Now since zp4+1 € H,, from the
definition of H,,, we have

lim sup(o(2p41, Tixn) — ¢(Tpt1,7,)] <0,

i—00
and so

lim limsup ¢(z,41, T"2,) = 0.
n=00 300

Then it is not hard to see that there exists a j € NU {0} such that
nh_)nolo H(Tnir, TV z,) = 0.
Using Proposition 2.4 again yielding
2041 = Ty — 0
and this combined with (3.5) gives
(3.8) lzn — Tz, — 0.
Since T is uniformly k-Lipschitzian, it follows from (3.4) and (3.8) that
20 — Tanll < @0 — 2asall + [2as1 — T 20|
T gy — T || 4 T 2, — Tan|
(L+K)llzn — zpta || + lznsr — Tn+1+jxn+1||
(3.9) +k| T 2, — ]| — 0.

By (3.9), wy(x,) C F(T) = F(T). This, combined with (3.2) and Lemma
2.3 (with K = F(T)), guarantees that z, — ¢ = IIpq)2o. The proof is
complete. O
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