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CURVELET TRANSFORM ON RAPIDLY DECREASING
FUNCTIONS
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ABSTRACT. In this paper, we prove the continuity of the curvelet trans-
form and adjoint curvelet transform between two suitable spaces of
rapidly decreasing functions. Then, we extend these transforms to the
context of distributions, in a natural manner, as continuous linear maps
having the desired properties.
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1. INTRODUCTION

A new multiscale integral transform, called the curvelet transform was
introduced by E. J. Candeés and D. L. Donoho [1, 2] which has been used
in time frequency analysis. It is a high-dimensional generalization of the
wavelet transform designed to represent images at different scales and dif-
ferent orientations. It differs from the wavelet transform in dilations, where
non-isotropic dilations are used instead of isotropic dilations. The curvelet
transform overcomes the limitations of wavelet transform, in directionality
and scaling.

The curvelet transform has wide range of applications in image denoising
[13], image decomposition[15], image deconvolution[17], astronomical imag-
ing [14], contrast, edge enhancement [16] and image fusion of satellites [3]
etc., The continuous curvelet transform allows to resolve the singularities of
an image together with their orientations[1]. Also some researchers used the
applications of curvelet transform in face and color recognition problems.

On the other hand, in pure mathematical point of view, various integral
transforms like, Fourier transform, Laplace transform, Hilbert transform,
Mellin transform, Stieltjes transform, Hankel transform etc. have been ex-
tended to suitable generalized functions spaces. See [6, 18]. Motivated by
those techniques, we have already extended the curvelet transform to a space
of square integrable Boehmians in [9], periodic distributions in [10] and tem-
pered distributions using “kernel method” in [11]. Adapting the technique
applied for wavelet transform and ridgelet transform in [7, 8], in this paper,
we prove the continuity of the curvelet transform and adjoint curvelet trans-
form on rapidly decreasing functions and extend the curvelet transform to
a space of tempered distributions using “adjoint method’.
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2. PRELIMINARIES

In addition to the usual Banach space .2 (R?) of integrable functions on
R?, the Hilbert space .#%(R?) of square integrable functions on R? and the
Fréchet space .7 (R?) of infinitely differentiable rapidly decreasing functions,
we also use the following function space

Z20®) = {fe22®): fire) =0

ao,

ifi<rorr<lor 7r<w<\/b—o},
2a0 bo
where f is the Fourier transform of f and 0 < 4ag < by < 2.

Let W(r) and V(t) be both smooth, non-negative and real valued func-
tions, with W taking positive real arguments and supported on r € (%,2)
and V taking real arguments and supported for ¢ € [—1, 1]. These functions
are assumed to satisfy the following admissibility conditions.

2

(1) Jovrs =
’ 1

(2) (V(t)*dt = 1.
/

At scale 0 < a < by, location b € R? and orientation @ € [0, 27), for every
re™ ¢ R?\ {0} with —7 < w < 7, Candés and Donoho defined

Y00 (re™) = W(a MV (w/va)a®*, 0<a<b.

They also defined the family of curvelets by <, ¢, which is generated by
translation and rotation of any element 7,0, such that

Yab.0(X) = 7a,00(Ro(x — b)), ¥x € R?,

where Ry(x — b) is simply the product of the two complex numbers e~*’ and
x — b.

Definition 2.1. The curvelet transform of f € £L*(R?) is defined by

(Tf)(a, b, 0) = / Tena () (x) dx, ¥(a, b, 0) € Sagn,
]RZ
where Sqq by = [ao, bo) x R? x [0,27] C R™.

According to [1, 2], in the definition of the curvelet transform (T f)(a, b, 8),
the scaling parameter a varies in (0, ap). In the above definition, we have
slightly modified the range of a as [ag, by] for the purpose of proving the
continuity of the curvelet transform and its adjoint in the context of rapidly
decreasing functions. One can note that this change does not make big dif-
ference in both theory and applications of the transform. Practically, even
the scaling parameter is very fine, it cannot be zero and hence this modifi-
cation with small ap may be considered in that case. In theoretical point of
view, all results proved in [1, 2] can be obtained even after this modification.
Indeed, the inversion formula and Parseval’s identity are modified as follows.
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Theorem 2.2. The inversion formula of the curvelet transform is obtained
by f = (T*D)(f), Vf € ,Sf(fo)bo(RQ), where the adjoint curvelet transform T'*F
s defined by

d
(T*F)(x) = / F(a.,b,e)%,bﬂ(x)a—‘;dbde, Vx € R?, VF € £2(Sag o)

Sag.bo

where £2(Sayp,) s the space of all functions F : Sgyp, — C satisfying
IIFI3= [ |F(a,b,0)> %‘édbd@ < 400. Under the same assumption, the

Sao,bo

Parseval’s identity, || fll2 = ITfll2 also holds.

By the above theorem, the curvelet transform is an isometric isomorphism
from £72 , (R?) into £2(Sy,p,). Already, the authors of this paper pointed
out a small mistake in the original version of this theorem presented in [2],
and corrected the condition “f(¢) = 0, if |¢] < %.” as “f(re™) = 0, if
0<r< % or —m < w < v/by.” For more details we refer the reader to [9].

We recall that .7 (R?) is a Fréchet space, equipped with the topology
induced by the following sequence of semi-norms,

7l s = sup (14 ™ [DRFG3)| 5 € 7 (B2), ¥im € Mo, 5 € NG,
xXE

We denote the subspace .7 (R?) N J(fo’bo (R?) of S (R?) by Sy, (R?). We

need another space .7(Sy, 4,) of all functions F' € C*(Sq, p,) such that

I Fakpmn = sup  |b*DEpyF (a,b,0)| < oo.

(a,b,0)€S

ag,bg

for all o, 8 € N(z) and k,n € Ng. Clearly, .7 (Sq,p,) is also a Fréchet space
with the topology given by the countable family of semi-norms {||| - |||a.x,8,n :
a, B € N%; k,n € No}. We now recall the multivariate Faa di Bruno formula
[4], which will be applied in the proofs of main results of this paper.

Drf(g) = > ApyfNgt) (Deg(t)™ - (DFg(t)™,
FDB(n)

where A()\j) = n! s, A= X + X+ -+ A\, and the sum

A2l AR 1A 21A2..plAn
>~ is over all non negative values of A1, Az, -+ Ay such that A; + 2Xa +
FDB(n)
e, = n.

3. CONTINUITY OF CURVELET TRANSFORMS ON RAPIDLY DECREASING
FUNCTIONS

First we recall the following lemma from [9].
Lemma 3.1. Fora € (0,by) and 6 € [0, 27],
A0,0,6(r€™) = Ya,0,0(re’ @), ¥re™ € R?\ {0}.

Lemma 3.2. For (a,b,0) € Sgy0: Yap,6(y) = e"'<b’y>’ya,070 (ye_w).
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Proof. Let y = re'. Using previous lemma, we get
Fabo (Y) = Aabo (re™)
- fe*%(pe"me“ﬁ%bﬂ(peiC)d(peiC)

= fe P o 0.0(e (peiS — b))d(pe)
= f e pe7<+bTe1w>’Ya70’0(e_i0(peic))d(pej()

= o710 [ e g g7 (pe))d(pe)
]RZ
e by [ e—i<*”el<”’ew>'ya’0,9(peic)d(peic) (by Lemma 3.1)
RZ
e i3, (re)
= e_%<b’y>’3/a,0,0 (rez(“ﬁ_e))
= e ii,00 (ye i)
Hence the lemma follows. O

Theorem 3.3. If f € #(R?), then T'f € #(Sapu,) and I : S (R?) —
L (Sqg p) 18 continuous.

Proof. Let o , B € N3, k,n € Ny, f € .#(R?). By applying the Parseval’s
identity for Fourier transform and Lemma 3.2, we first write

(Tf) (a.b,6) = (2r) / Tobe )/ (y)dy

A
= (2n)° / P35, 00 (ye ) f(y)dy
A
Since for every n € Ny,
%%,0,0 (e_”’)’)
= FD%(H) Ao ((Ba0.0)V (e y)) lj (D¥ (e ”%’))Ak
= 3 Ay m(—x)ﬂe—”y)kli[l (e ity (—i)k) ™
-2 )AW [(—3)ama(~x)] (e~ y)(~ i)™ (yei#),
we have
bDSYE () (a,b,6)
= (2m)? bO‘DMRL <’Y>FDzB:(n)A(AJ.> [xMao0(—x)]" (e “y)y* f(y)dy

S Ag, —Fb“fe P YFA (X Mao(—x)) (e y) f(y)dy
FDB(n)
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=@ 2 Ao [ €05 [y ) (¢ Tamn(-x) (e )] dy
FDB(n)
= @22 2 Ay [PV Y ()DE ()
FDB(n) R2 6<a
(3) D} [z 00(—x)] (ye™)dy]| .

Next we note that

Dy x*ap0(-—x) (e "y)
g s P Tamo ()T (€7 (yn + i)

= [(x"z00(—x)) ] (e~"y)(sinf + icos ) (cos § — isin )"

= (—i)ll(sin @ + i cos #)%2(cos  — isin §)* [x* A Fao0(—x)] (e ¥y).

Using this expression in (3), we get

b D} (If)(a.b,0)
< (2r)? % A(/\)Z()

FDB(n 6<a
J |pg Siyadiy) 2 Tag (-l )| dy
R2

= <27T)2 P )A(A)Z(g) > ()

6<a p<a—4
»/2 Da 6 pf H Dpy‘”’\{ X0+, 00— x)} e—zb’y)‘dy
R
= e S A I % (")
i<« p<min(a—§,8+A) .
/ D“ s "f HD"yﬂ+A 2 { MA"/a,O,O(*X)}A(e_MY)‘dy
R2

(BN B+A—p :
(using Dyt = {my /, Hp<Bt A)

0, otherwise
a—0 3+N)!
Cr)? S Aoz () v )

5<a p<min(a—4,8+N)
f |Y|Iﬂ+/\ p W'Yao(]( )‘dx

Da o— pf ‘dyj |X|\6+)\\
5\ _(B+M)!
(27T) Z A(An =, (5 )p<mm(azo . )(O‘p ) G
I 1+|y| \ﬁ\H/\J Jpl+2’Da = f(y)| —
2

(I+1yD)
j (1+ |x| |<)\+\)\|+2
R2

IN

IA

(1+\XD

-5 !
< @ % A(AnZ <§> > (s,

FDB(n) T 6<a p<min(a—4,6+N\)

2
8]+ A[+2,0 <Rf2 1+‘Y[ ) '
Then

I Sllokpn = sup  [b*DLLGC(a,b.6)
a” )

ok =
9ak 1a,0,0

1B+ =|p|+2,a—5—p

ag,bo
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< @0 ) Apy Y. (3) > (a , J) %

FDB(n) 0<a p<min(a—34,8+X\)

2
- / dy
0,0 — | -
sl+alr20 \J LY

ak

(4)

sup || 5—7"a,
|B]+|Al—|p|4+2,0—6—p a€lag,bo] Oak

Next we show that sup

(a;b,0)€Sq b,
Let N € Ny. Using the continuity of Fourier transform on Schwartz space,
we can find M € Ny, P € N2 and C > 0 such that

ok =
DaF /a’O’OHN,O < oo for all N € N.

ok =
sup 3aF Y ,0,0H
a€lag,bo) 9a* '@ N,0
< C > H c *3
< Sup || 4% 7a,0,0 = sup —E’Ya,o,oH
aE[a(),bo] da M,p a€[a0 bo] da M,p
ak
< € sup sup (1+ [x)M | DE 255, 00(x)] < +o0,

a€lag,bo] x€R2
since (a,x) + DY %CE'\T/G’O’()(X) is a smooth function with compact support.
Now using the continuity of Fourier transform on .#(R?) and (4), we get
that the curvelet transform I' : 7 (R?) — #(Sy,.,) is continuous. O

Theorem 3.4. If F € ./ (Sgp,) then T*F € S (R?) and I'* : S (Sag ) —
Z(R?) is continuous.

Proof. Let o, 8 € N3 and F € .%(Sqq 4, )-

‘xap,é (T*F) (x)’: X [ F(a,b,0)Diyepo(x)%dbdo

S

agq,b
< | IF@bo) \xiviffg,o(e-ie(x—b» 2 dbdy
aq,b,
< S:f: [F(a. b, 0)] (jx = b| + b))l |51 (e~ (x — b))| Zdbds
< 2'?4'318 J 1R (@b 0)] (b bl o) 53 (e (x — b)) bt
ag,b
< 2|a|—1S Ofo F(a,b,0)] (14 |e=(x — b)) /%) 4 (e~ (x — b))| “dbds
ag,b
+2'a'-1; [ 1P b o)+ |b|>"*' Yoo (x ~ b)) fhdbdf
ag,b,
< 2la|_ls fo 0 1+|bl)
ag,by
+2|al_ls fb £ [ll24a.,0,0,0 ||’Ya,0,0||0_g gsmfde
a(,bg
< (IF 2000 Iaoolls +IF 00 Ira00llos)

2lal-1 4 —db . df < +oo
inZ ”of a? (1+b|)

Thus, T*F € .7(R?) and T™* : 7 (Say.0,) — -7 (R?) is continuous. O



Curvelet transform on rapidly decreasing functions

In the next section, we shall prove that T'u € .%(Saqp,), Vu € 7(R?)
using the continuity of I'* : .7(Sz5,) — - (R?), and that [*A € .%/(R?),
VA € %" (Sag.,) using the continuity of T': . (R?) — .7 (Sag ., )-

4. CURVELET TRANSFORM ON .¥’(R?)

The dual spaces of .%(R?) and .%(Sy,p,) ave respectively, denoted by
S"'(R?) and .7 (Sqq b, )- Throughout this section, we use the weak*-topology
on A’. With respect to this topology, we can write

wy — w as n — oo in A” whenever wy,(h) — w(h) in C as n — oo, Vh € A,

where A € {(R?) , .7 (Sag,b,)}- We also say that a function  : A" — B’
is said to be continuous iff ®(w,) — ®(w) in B’ as n — oo whenever
wy, — w as n — oo in A/, where A, B € {Z(R?),.%(Sag.ho) }-

Definition 4.1. We define I' on ' (R?) by (Tw)(F) = u(l*F), F €
7 (Sag by )-

By using the linearity of I'* on .(Sy, 5,) and the linearity of u on .7 (R?),
it follows that T'u is linear on .7(Sg, 4,)- As a consequence of Theorem 3.4,
we have

[*F, — T*F in . (R?) whenever F,, — F in (S, 5,) s 1 — 00.
Therefore, (T'u)(Fy,) = w(I'*Fy,) = u(I*F) = (T'u)(F'), whenever F,, — F' in
Z(Sag,by) as n — co. Thus T'u € 7" (Sq; p,)-

Theorem 4.2. The curvelet transform T : 7' (R?) — %" (Sag.p,) 5 consis-
tent with the curvelet transform on & (IR?).

Proof. Let f € £?(R?) and F € . (S,,, bo) Then f can be considered in a
natural way, as a member of .#’(R?) by f(g f f(x)g(x)dx, Yg € 7 (R?).

By applying Fubini’s theorem, we get
CHE) = fIF)

= [f® ?ff/abg F(a,b,0)%dbdfdx
R2

0 R2 ao
27 bo
= ff ) [ [ [ Tama(x)F(a,b,6)%dbdbdx
0 R2ao
271'
= T P Yabo(X)dxF(a, b, 0) % dbdo
0 R2 ap R2
27 bo
= [ [ [(Tf)(a,b,0)F(a,b,0)%dbdo,

0 R2agp
which is the identification of T'f in .#’(S,,p,). Hence the distributional
curvelet transform on .#/(IR?) is consistent with the classical curvelet trans-
form on .7 (R?). O

Definition 4.3. We define T* on ' (Sgyp,) by (T*A)(f) = ATS), f €
S (R?).

One can easily observe that I'*A is linear. To verify that I'™*A is contin-
uous, let f, — f in .#(R?) as n — oo. Then, using Theorem 3.3, we get
that T'f, — T'f in 7 (Sgyp,) as n — o0o. Since A € #'(Sq,p,), We have
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AL fn) = ATf) in Z(Saqp,) @8 n — 00. In other words, we have obtained
that (I*A)(f,) — (I*A)(f) in C as n — oo. Therefore, I'*A € .7/ (R?).

Theorem 4.4. The curvelet transform T : ' (R?) — " (Sagp,) 4 linear.

Proof. Let uy,us € ' (R?) and ¢1, ¢y € C. Then, for F € < (Say bo)
(F(clul + CQUQ))(F) = (clul + CQUQ)(F*F)
crur (T*F) + coug(T*F)
cl(Ful)(F) + CQ(FUQ)(F)
= (c1lug + col'ug)(F).
Hence the theorem follows. O

Theorem 4.5. The curvelet transform T : ' (R?) — ' (Say.0,) is contin-
uous.

Proof. Let up, — u as n — oo in ./(R?). Then, using Theorem 3.4, we
have T*F € #(R?), VF € #(Sagp,) and hence (Tu,)(F) — (Tu)(F) =
(T(up — w))(F) = (up, — u)(T’*F) — 0 as n — co. Hence I is continuous on
P(R?). .
Theorem 4.6. The adjoint curvelet transform T'* : %" (Sgqp,) — - (R?) is
linear.

Proof. Let A1,A2 € #'(Sqyp,) and «, 8 € C be arbitrary. Then, for each
f € S (R?), we have (I'*(aA1 + A2))(f) = (aA1 + BA2)(Tf) = ahy(Tf) +
BA2(Tf) = (T A1) (f) + B(T*A2)(f) = (al* (A1) + BT (A2))(f). =

Theorem 4.7. The adjoint curvelet transform T'* : %" (Sgyp,) — - (R?) is
continuous.

Proof. Let Ay, — A in (Sqq ) @s n — oo. Then, we have
(5) Ap(F) = A(F) in C as n — 00, VF € 7(Sgyp0)-

Let f € .#(R?), then by Theorem 3.3, we have I'f € .%(Sg,4,). Using (5),
we get (I*An)(f) = An(Tf) = A(Cf) = (IT*A)(f) in C as n — oo. In other

words, we have proved that T* : .7/(Sg 4,) — -7 (R?) is continuous. 0
Theorem 4.8. The identity (I'" o I')u = u holds for allu € .7, (R?).

Proof. Let u € ! o.bo (R?) and f € Sy, 4, (R?) be arbitrary. By applying the

aj
inversion formula of the classical curvelet transform, we get ((I'* oT')u, f) =

(Cu,Tf) = (u,T*T'f) = (u, f). This completes the proof of this theorem. [
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