5 REGULAR PARTITIONS WITH DISTINCT ODD PARTS

VEENA V. S. AND FATHIMA S. N.

Abstract

In this article, we prove infinite families of congruences for $\operatorname{pod}_{5}(n)$ (the number of 5 -regular partitions of n with distinct odd parts (and even parts are unrestricted)) using the theory of Hecke eigenforms. We also study the divisibility properties of $\operatorname{pod}_{5}(n)$ using the arithmetic properties of modular forms.

2000 Mathematics Subject Classification. 05A17, 11P83.
Keywords and phrases. Partitions, Modular forms, Eta quotients

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive integers whose sum is n. Let $\operatorname{pod}(n)$ denote the number of partitions of n in which odd parts are distinct (and even parts are unrestricted). It is significant to note that Hirschhorn and Sellers [5] appear to be the first to consider $\operatorname{pod}(n)$ from an arithmetic viewpoint. The generating function of $\operatorname{pod}(n)$ is given by [5],

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}(n) q^{n}=\frac{1}{\psi(-q)} \tag{1.1}
\end{equation*}
$$

where $\psi(q)$ is defined in (2.4) and for any positive integer l, we denote f_{l} as

$$
f_{l}:=\prod_{n=1}^{\infty}\left(1-q^{l n}\right), \quad|q|<1
$$

Using modular forms, Radu and Sellers [9] established several congruence properties for $\operatorname{pod}(n)$. For more details, see $[2,5]$.
In this article, we consider a restricted version of $\operatorname{pod}(n)$ in which none of the parts is divisible by 5 . Let $\operatorname{pod}_{5}(n)$ denote the number of 5 -regular partitions with distinct odd parts of n (and even parts are unrestricted). For example $\operatorname{pod}_{5}(5)=3$, where the relevant partitions being $4+1,3+2,2+2+1$. The generating function of $\operatorname{pod}_{5}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n}=\frac{\psi\left(-q^{5}\right)}{\psi(-q)} \tag{1.2}
\end{equation*}
$$

In this article, we establish several infinite families of congruences as a consequence of our main results, such as

$$
\begin{equation*}
\operatorname{pod}_{5}(49 n+7 j+24) \equiv 0 \quad(\bmod 5) \quad \text { where } \quad j \not \equiv 0 \quad(\bmod 7) \tag{1.3}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& \operatorname{pod}_{5}(500 n+25 j+62) \equiv 0 \quad(\bmod 2) \text { where } j \not \equiv 0 \quad(\bmod 5) \tag{1.4}\\
& \operatorname{pod}_{5}(100 n+20 j+12) \equiv 0 \quad(\bmod 2) \text { where } j \not \equiv 0 \quad(\bmod 5) \tag{1.5}
\end{align*}
$$
\]

The following are our main results.
Theorem 1.1. Let k, n be non negative integers and $i \in\{1,2, \cdots, k+1\}$. Then for every odd prime and any integer $j \not \equiv 0\left(\bmod p_{k+1}\right)$, we have

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p_{1}^{2} \ldots p_{k+1}^{2} n+\frac{p_{1}^{2} \ldots p_{k}^{2} p_{k+1}\left(p_{k+1}+2 j\right)-1}{2}\right) \equiv 0 \quad(\bmod 5) \tag{1.6}
\end{equation*}
$$

Theorem 1.2. Let k, n be non negative integers and $i \in\{1,2, \cdots, k+1\}$. Then for every prime $p_{i} \geq 3$ such that $p_{i} \not \equiv 1(\bmod 8)$ and any integer $j \not \equiv 0\left(\bmod p_{k+1}\right)$, we have

$$
\begin{equation*}
\operatorname{pod}_{5}\left(20 p_{1}^{2} \ldots p_{k+1}^{2} n+\frac{5 p_{1}^{2} \ldots p_{k}^{2} p_{k+1}\left(p_{k+1}+2 j\right)-1}{2}\right) \equiv 0 \quad(\bmod 2) \tag{1.7}
\end{equation*}
$$

Theorem 1.3. Let k, n be non negative integers and $i \in\{1,2, \cdots, k+1\}$. Then for every prime $p_{i} \geq 3$ such that $p_{i} \not \equiv 1(\bmod 8)$ and any integer $j \not \equiv 0\left(\bmod p_{k+1}\right)$, we have

$$
\begin{equation*}
\operatorname{pod}_{5}\left(4 p_{1}^{2} \ldots p_{k+1}^{2} n+\frac{p_{1}^{2} \ldots p_{k}^{2} p_{k+1}\left(p_{k+1}+8 j\right)-1}{2}\right) \equiv 0 \quad(\bmod 2) \tag{1.8}
\end{equation*}
$$

This article is organized as follows. In Section 2, we recall some basic definitions related to modular forms and some properties of Ramanujan general theta function. We also found a new dissection identity, which aids the proofs of the main theorems. Section 3 is devoted to the proofs of the Theorem 1.1-1.3 using the theory of Hecke eigenforms. In Section 4, we introduce an internal congruence by the technique of manipulating q-series. We conclude the paper by characterizing the divisibility properties of $\operatorname{pod}_{5}(n)$ using the arithmetic properties of modular forms.

2. Preliminaries

In this section, we recollect some definitions, theorems, and identities to prove our main results.

Definition 2.1. [8, Definition 1.15] If χ is a Dirichlet character modulo N, then a form $f(z) \in M_{k}\left(\Gamma_{1}(N)\right)$ (resp. $S_{k}\left(\Gamma_{1}(N)\right)$ has Nebentypus character χ if

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{k} f(z)
$$

for all $z \in \mathbb{H}$ and all $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}(N)$. The space of such modular forms (resp. cusps forms) is denoted by $M_{k}\left(\Gamma_{0}(N), \chi\right)$ (resp. $S_{k}\left(\Gamma_{0}(N), \chi\right)$). If χ is trivial character then we write $M_{k}\left(\Gamma_{0}(N)\right)$ and $S_{k}\left(\Gamma_{0}(N)\right)$ for short.
For $z \in \mathbb{H}$, the Dedekind eta function $\eta: \mathbb{H} \rightarrow \mathbb{C}$ is defined by

$$
\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \text { where } q:=e^{2 \pi i z}
$$

A function $f(z)$ is called an eta-quotient if it is of the form

$$
f(z)=\prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}}
$$

where N is a positive integer and $r_{\delta} \in \mathbb{Z}$.
Theorem 2.1. [8, Theorem 1.64 and Theorem 1.65] If $f(z)=\prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}}$ is an eta-quotient with $k=\frac{1}{2} \sum_{\delta \mid N} r_{\delta} \in \mathbb{Z}$,

$$
\sum_{\delta \mid N} \delta r_{\delta} \equiv 0 \quad(\bmod 24)
$$

and

$$
\sum_{\delta \mid N} \frac{N}{\delta} r_{\delta} \equiv 0 \quad(\bmod 24),
$$

then $f(z)$ satisfies

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{k} f(z)
$$

for every $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}(N)$. Here the character χ is defined by $\chi(d):=\left(\frac{(-1)^{k} \prod_{\delta \mid N} \delta^{r \delta}}{d}\right)$. In addition if c, d and N are positive integers with $d \mid N$ and $\operatorname{gcd}(c, d)=1$, then the order of vanishing of $f(z)$ at the cusp $\frac{c}{d}$ is $\frac{N}{24} \sum_{\delta \mid N} \frac{g c d(d, \delta)^{2} r_{\delta}}{g c d\left(d, \frac{N}{d}\right) d \delta}$.

Suppose that $f(z)$ is an eta-quotient satisfying conditions of the above theorem. If $f(z)$ is holomorphic at all cusps of $\Gamma_{0}(N)$, then $f(z) \in M_{k}\left(\Gamma_{0}(N), \chi\right)$.
Next, we recall the definition of Hecke operators.
If $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ and let m be a positive integer, then the action of Hecke operator T_{m} on $f(z)$ is defined by

$$
f(z) \mid T_{m}:=\sum_{n=0}^{\infty}\left(\sum_{d \mid g c d(n, m)} \chi(d) d^{k-1} a\left(\frac{n m}{d^{2}}\right)\right) q^{n} .
$$

In particular, if $m=p$ is a prime, we have

$$
\begin{equation*}
f(z) \mid T_{p}:=\sum_{n=0}^{\infty}\left(a(p n)+\chi(p) p^{k-1} a\left(\frac{n}{p}\right)\right) q^{n} . \tag{2.1}
\end{equation*}
$$

We follow the convention that $a(n)=0$ unless n is a nonnegative integer.
Definition 2.2. A modular form $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ is called a Hecke eigenform if for every $m \geq 2$ there exist a complex number $\lambda(m)$ for which

$$
\begin{equation*}
f(z) \mid T_{m}=\lambda(m) f(z) \tag{2.2}
\end{equation*}
$$

Recall Ramanujan general theta function $f(a, b)$ is defined by [1, Eqn. 18.1]

$$
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \quad|a b|<1 .
$$

Some special cases of $f(a, b)$ are [1, Entry 22],

$$
\begin{gather*}
\varphi(q):=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} \tag{2.3}\\
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{f_{2}^{2}}{f_{1}}
\end{gather*}
$$

where the product representations arise from the famous Jacobi triple product identity [1, p.36, Entry 19].

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty} \tag{2.5}
\end{equation*}
$$

We denote

$$
\begin{equation*}
\chi(q):=\left(-q ; q^{2}\right)_{\infty}=\frac{f_{2}^{2}}{f_{1} f_{4}} \tag{2.6}
\end{equation*}
$$

Furthermore, from [1, p.51, Example (v)] we have

$$
\begin{equation*}
f\left(q, q^{5}\right)=\psi\left(-q^{3}\right) \chi(q) \tag{2.7}
\end{equation*}
$$

By q-series manipulation, we can see

$$
\begin{equation*}
\psi(-q)=\frac{f_{1} f_{4}}{f_{2}} \tag{2.8}
\end{equation*}
$$

Lemma 2.1. [1, p.49, Entry 31] The following 5-dissection holds.

$$
\begin{equation*}
\psi(q)=f\left(q^{10} ; q^{15}\right)+q f\left(q^{5} ; q^{20}\right)+q^{3} \psi\left(q^{25}\right) \tag{2.9}
\end{equation*}
$$

Lemma 2.2. [1, p.262, Entry 10] The following identity holds.

$$
\begin{equation*}
\psi^{2}(q)-q \psi^{2}\left(q^{5}\right)=f\left(q, q^{4}\right) f\left(q^{2}, q^{3}\right) \tag{2.10}
\end{equation*}
$$

Lemma 2.3. The following 2-dissection holds.

$$
\begin{gather*}
\varphi\left(q^{15}\right)=\varphi\left(q^{60}\right)+2 q^{15} \psi\left(q^{120}\right) \tag{2.11}\\
\frac{f_{15}}{f_{5}}=\frac{f_{20} f_{30} f_{80} f_{120}^{2}}{f_{10}^{2} f_{40} f_{60} f_{240}}+q^{5} \frac{f_{30} f_{40}^{2} f_{240}}{f_{10}^{2} f_{80} f_{120}} \tag{2.12}
\end{gather*}
$$

Proof. We have the following 2-dissection of $\varphi(q)$ from [4, 1.9.4],

$$
\varphi(q)=\varphi\left(q^{4}\right)+2 q \psi\left(q^{8}\right)
$$

Replacing $q \rightarrow q^{15}$ from the above identity, we arrive at (2.11).
Again from [11], we have

$$
\frac{f_{3}}{f_{1}}=\frac{f_{4} f_{6} f_{16} f_{24}^{2}}{f_{2}^{2} f_{8} f_{12} f_{48}}+q \frac{f_{6} f_{8}^{2} f_{48}}{f_{2}^{2} f_{16} f_{24}}
$$

Changing $q \rightarrow q^{5}$ from the above identity, we obtain (2.12).
Lemma 2.4. The following 4 dissections holds.

$$
\begin{align*}
& \frac{f_{5}}{f_{1}}=\frac{f_{8} f_{16}^{5} f_{20}^{2}}{f_{4}^{5} f_{32}^{2} f_{40}}+2 q^{2} \frac{f_{8}^{3} f_{20}^{2} f_{32}^{2}}{f_{4}^{5} f_{16} f_{40}}+q \frac{f_{16}^{6} f_{40}^{3}}{f_{4}^{4} f_{8} f_{20} f_{32}^{2} f_{80}}+2 q^{5} \frac{f_{8}^{4} f_{32}^{2} f_{80}}{f_{4}^{5} f_{16}^{2}}+ \tag{2.13}\\
& q^{3} \frac{f_{8}^{2} f_{16}^{4} f_{80}}{f_{4}^{5} f_{32}^{2}}+2 q^{3} \frac{f_{8} f_{32}^{2} f_{40}^{3}}{f_{4}^{4} f_{20} f_{80}}
\end{align*}
$$

$$
\begin{equation*}
\frac{f_{2}}{f_{10}}=\frac{f_{4} f_{16} f_{40}^{3}}{f_{8} f_{20}^{3} f_{80}}-q^{2} \frac{f_{8}^{2} f_{80}}{f_{16} f_{20}^{2}} . \tag{2.14}
\end{equation*}
$$

Proof. Recall the 2-dissection of $\frac{f_{5}}{f_{1}}$ due to Hirschorrn [6]

$$
\begin{equation*}
\frac{f_{5}}{f_{1}}=\frac{f_{8} f_{20}^{2}}{f_{2}^{2} f_{40}}+q \frac{f_{4}^{3} f_{10} f_{40}}{f_{2}^{3} f_{8} f_{20}} \tag{2.15}
\end{equation*}
$$

From [1], we have

$$
\begin{equation*}
\frac{1}{f_{1}^{2}}=\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}} \tag{2.16}
\end{equation*}
$$

Multiplying (2.15) and (2.16), we obtain

$$
\begin{equation*}
\frac{f_{5}}{f_{1}^{3}}=\frac{f_{8}^{6} f_{20}^{2}}{f_{2}^{7} f_{16}^{2} f_{40}}+q \frac{f_{4}^{3} f_{8}^{4} f_{10} f_{40}}{f_{2}^{8} f_{16}^{2} f_{20}}+2 q \frac{f_{4}^{2} f_{16}^{2} f_{20}^{2}}{f_{2}^{7} f_{40}}+2 q^{2} \frac{f_{4}^{5} f_{10} f_{16}^{2} f_{40}}{f_{2}^{8} f_{8}^{2} f_{20}} \tag{2.17}
\end{equation*}
$$

Changing $q \rightarrow q^{2}$ in (2.16) and (2.17) respectively, then employing the resulting identity in (2.15), we complete the proof of (2.13).
Consider the 2-dissection of $\frac{f_{1}}{f_{5}}$ from [6]

$$
\begin{equation*}
\frac{f_{1}}{f_{5}}=\frac{f_{2} f_{8} f_{20}^{3}}{f_{4} f_{10}^{3} f_{40}}-q \frac{f_{4}^{2} f_{40}}{f_{8} f_{10}^{2}} \tag{2.18}
\end{equation*}
$$

Changing $q \rightarrow q^{2}$ in (2.18), we arrive at (2.14).
Lemma 2.5. The following 2 dissection holds.
(2.19)
$\frac{1}{f_{1} f_{5}}=\frac{f_{12}^{2} f_{120}^{5}}{f_{2}^{2} f_{6} f_{10}^{2} f_{60}^{2} f_{240}^{2}}+q^{6} \frac{f_{4} f_{6}^{2} f_{40}^{2} f_{60} f_{240}}{f_{2}^{3} f_{10}^{2} f_{12} f_{20} f_{80} f_{120}}+q \frac{f_{4} f_{6}^{2} f_{80} f_{120}^{2}}{f_{2}^{3} f_{10}^{2} f_{12} f_{40} f_{240}}+2 q^{15} \frac{f_{12}^{2} f_{240}^{2}}{f_{2}^{2} f_{6} f_{10}^{2} f_{120}}$.
Proof. Setting $\mu=3$ and $\nu=2$ in the following identity [1, p.69, Eqn (36.7)]

$$
\begin{aligned}
& \psi\left(q^{\mu+\nu}\right) \psi\left(q^{\mu-\nu}\right)=\varphi\left(q^{\mu\left(\mu^{2}-\nu^{2}\right)}\right) \psi\left(q^{2 \mu}\right) \\
& +\sum_{m=1}^{\mu-1 / 2} q^{\mu m^{2}-\nu m} f\left(q^{(\mu+2 m)\left(\mu^{2}-\nu^{2}\right)}, q^{(\mu-2 m)\left(\mu^{2}-\nu^{2}\right)}\right) f\left(q^{2 \nu m}, q^{2 \mu-2 \nu m}\right)
\end{aligned}
$$

we deduce that

$$
\begin{equation*}
\psi\left(q^{5}\right) \psi(q)=\varphi\left(q^{15}\right) \psi\left(q^{6}\right)+q f\left(q^{25}, q^{5}\right) f\left(q^{4}, q^{2}\right) \tag{2.20}
\end{equation*}
$$

In light of (2.5), we obtain

$$
\begin{equation*}
f\left(q^{2}, q^{4}\right)=\frac{f_{6}^{2} f_{4}}{f_{2} f_{12}} \tag{2.21}
\end{equation*}
$$

Replacing $q \rightarrow q^{5}$ in (2.7), we obtain

$$
\begin{equation*}
f\left(q^{5}, q^{25}\right)=\psi\left(-q^{15}\right) \chi\left(q^{5}\right)=\frac{f_{10}^{2} f_{15} f_{60}}{f_{5} f_{20} f_{30}} \tag{2.22}
\end{equation*}
$$

Employing (2.21) and (2.22) in (2.20), we obtain

$$
\begin{equation*}
\psi\left(q^{5}\right) \psi(q)=\varphi\left(q^{15}\right) \psi\left(q^{6}\right)+q \frac{f_{10}^{2} f_{15} f_{60}}{f_{5} f_{20} f_{30}} \frac{f_{6}^{2} f_{4}}{f_{2} f_{12}} \tag{2.23}
\end{equation*}
$$

Applying the 2 -dissections (2.11) and (2.12) respectively in (2.23), then multiplying the resulting identity by $\frac{1}{f_{2}^{2} f_{10}^{2}}$, we arrive at (2.19).

3. Proofs of Theorem 1.1-1.3

In this section, we prove the infinite families of congruences of $\operatorname{pod}_{5}(n)$ using the theory of Hecke eigenforms, which is similar to the approach done by Ray and Barman [10] for Andrews partition with even parts below odd parts.
Proof of Theorem 1.1: Invoking binomial theorem in the generating function for $\operatorname{pod}_{5}(n)$ (1.2), we deduce

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n} \equiv \psi^{4}(-q) \quad(\bmod 5) \tag{3.1}
\end{equation*}
$$

Replacing $q \rightarrow q^{2}$ in (3.1), then rewriting the resulting identity in terms of etaquotients, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{2 n+1} \equiv \frac{\eta^{4}(2 z) \eta^{4}(8 z)}{\eta^{4}(4 z)} \quad(\bmod 5) . \tag{3.2}
\end{equation*}
$$

Denote $\frac{\eta^{4}(2 z) \eta^{4}(8 z)}{\eta^{4}(4 z)}=\sum_{n=0}^{\infty} c(n) q^{n}$, then this leads to

$$
\begin{equation*}
\operatorname{pod}_{5}(n) \equiv c(2 n+1) \quad(\bmod 5) \text { and } c(n)=0 \text { if } n \text { is even. } \tag{3.3}
\end{equation*}
$$

Now by Theorem 2.2, $\frac{\eta^{4}(2 z) \eta^{4}(8 z)}{\eta^{4}(4 z)} \in M_{2}\left(\Gamma_{0}(16)\right)$. Moreover, $\frac{\eta^{4}(2 z) \eta^{4}(8 z)}{\eta^{4}(4 z)}$ is an eigen form (for example, see [7]). Therefore

$$
\begin{equation*}
\frac{\eta^{4}(2 z) \eta^{4}(8 z)}{\eta^{4}(4 z)} \left\lvert\, T_{p}=\sum_{n=1}^{\infty}\left[c(p n)+p c\left(\frac{n}{p}\right)\right] q^{n}=\lambda(p) \sum_{n=1}^{\infty} c(n) q^{n} .\right. \tag{3.4}
\end{equation*}
$$

which implies

$$
\begin{equation*}
c(p n)+p c\left(\frac{n}{p}\right)=\lambda(p) c(n) . \tag{3.5}
\end{equation*}
$$

Let $n=1$ in the above identity, we obtain $c(p)=\lambda(p)$, since $c(1)=1$. However $c(p)=0$ only for $p=2$, so that $\lambda(2)=0$. Hence for all odd primes, we have

$$
\begin{equation*}
c(p n)+p c\left(\frac{n}{p}\right)=0 . \tag{3.6}
\end{equation*}
$$

From (3.6), we derive that for all $n \geq 0$ and $p \nmid r$,

$$
\begin{equation*}
c\left(p^{2} n+p r\right)=0 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
c\left(p^{2} n\right) \equiv 4 p c(n) \quad(\bmod 5) . \tag{3.8}
\end{equation*}
$$

Set $n=2 n-p r+1$ in (3.7) and together with (3.3), we deduce

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p^{2} n+\frac{\left(p^{2}-1\right)}{2}+p r \frac{\left(1-p^{2}\right)}{2}\right) \equiv 0 \quad(\bmod 5) . \tag{3.9}
\end{equation*}
$$

Again setting $n=2 n+1$ in (3.8) and combining (3.3), we obtain

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p^{2} n+\frac{\left(p^{2}-1\right)}{2}\right) \equiv 4 p \operatorname{pod}_{5}(n) \quad(\bmod 5) \tag{3.10}
\end{equation*}
$$

Since p is an odd prime, $2 \mid\left(1-p^{2}\right)$ and $\operatorname{gcd}\left(\frac{1-p^{2}}{2}, p\right)=1$. Therefore when r runs over a residue system excluding the multiple of p, so does $\frac{1-p^{2}}{2} r$. Thus (3.9) can be rewritten as

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p^{2} n+\frac{\left(p^{2}-1\right)}{2}+p j\right) \equiv 0 \quad(\bmod 5) \tag{3.11}
\end{equation*}
$$

where $p \nmid j$.
For all odd primes p the following holds.

$$
\begin{equation*}
p_{1}^{2} \ldots p_{k}^{2} n+\frac{p_{1}^{2} \ldots p_{k}^{2}-1}{2}=p_{1}^{2}\left(p_{2}^{2} \ldots p_{k}^{2} n+\frac{p_{2}^{2} \ldots p_{k}^{2}-1}{2}\right)+\frac{p_{1}^{2}-1}{2} \tag{3.12}
\end{equation*}
$$

Employing (3.10) frequently we obtain

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p_{1}^{2} \ldots p_{k}^{2} n+\frac{p_{1}^{2} \ldots p_{k}^{2}-1}{2}\right) \equiv 4 p \operatorname{pod}_{5}(n) \quad(\bmod 5) \tag{3.13}
\end{equation*}
$$

Let $j \not \equiv 0\left(\bmod p_{k+1}\right)$. Setting $n=p_{k+1}^{2} n+\frac{p_{k+1}^{2}-1}{2}+p_{k+1} j$ in (3.13) and combining with (3.11), we conclude

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p_{1}^{2} \ldots p_{k+1}^{2} n+\frac{p_{1}^{2} \ldots p_{k}^{2} p_{k+1}\left(p_{k+1}+2 j\right)-1}{2}\right) \equiv 0 \quad(\bmod 5) \tag{3.14}
\end{equation*}
$$

Hence we complete the proof of Theorem.
Remark 3.1: Let p be an odd prime. By taking all the primes $p_{1}, p_{2}, \ldots, p_{k+1}$ to be equal to the same prime p in the above Theorem, we obtain the following infinite family of congruences

$$
\begin{equation*}
\operatorname{pod}_{5}\left(p^{2 k+2} n+p^{2 k+1} j+\frac{p^{2 k+2}-1}{2}\right) \equiv 0 \quad(\bmod 5) \tag{3.15}
\end{equation*}
$$

In particular, setting $k=0$, for all non negative integers n and $j \not \equiv 0(\bmod 7)$, we have

$$
\operatorname{pod}_{5}(49 n+7 j+24) \equiv 0 \quad(\bmod 5)
$$

Proof of Theorem 1.2: Employing (2.15) in (1.2), then extracting the even powers of q and replacing $q^{2} \rightarrow q$ from the resulting identity, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(2 n) q^{n}=\frac{f_{4} f_{10}^{3}}{f_{1} f_{2} f_{5} f_{20}} \tag{3.16}
\end{equation*}
$$

Using (2.19) in (3.16), then extracting odd powers of q and replacing $q^{2} \rightarrow q$ from the resulting identity, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n+2) q^{n}=2 q^{7} \frac{f_{2} f_{5} f_{6}^{2} f_{120}^{2}}{f_{1}^{3} f_{3} f_{10} f_{60}}+\frac{f_{2}^{2} f_{3}^{2} f_{5} f_{40} f_{60}^{2}}{f_{1}^{4} f_{6} f_{10} f_{20} f_{120}} \tag{3.17}
\end{equation*}
$$

Invoking binomial theorem under modulo 2, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n+2) q^{n} \equiv f_{5} f_{10} \quad(\bmod 2) \tag{3.18}
\end{equation*}
$$

Extracting the terms involving $q^{5 n}$ from the above identity and rewriting the resulting identity in terms of eta-quotients, we attain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(20 n+2) q^{8 n+1} \equiv \eta(8 z) \eta(16 z) \quad(\bmod 2) \tag{3.19}
\end{equation*}
$$

By Theorem 2.2, we can easily verify that $\eta(8 z) \eta(16 z) \in S_{1}\left(\Gamma_{0}(128),\left(\frac{-2}{\bullet}\right)\right)$. Besides $\eta(8 z) \eta(16 z)$ is a Hecke eigen form [see, [7]], we can complete the proof by using the same procedures done in previous theorem.
Remark 3.2: Let $p \geq 3$ be a prime such that $p \not \equiv 1(\bmod 8)$ and consider any integer $j \not \equiv 0(\bmod p)$. By taking all the primes $p_{1}, p_{2}, \ldots, p_{k+1}$ to be equal to the same prime p in the above Theorem, we obtain the following infinite family of congruences, which is similar to Remark 3.1.

$$
\begin{equation*}
\operatorname{pod}_{5}\left(20 p^{2 k+2} n+5 p^{2 k+1} j+\frac{5 p^{2 k+2}-1}{2}\right) \equiv 0 \quad(\bmod 2) \tag{3.20}
\end{equation*}
$$

Let $k=0$ and $p=5$ in (3.20), we arrive at (1.4)
Proof of Theorem 1.3: We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n}=\frac{f_{2} f_{5} f_{20}}{f_{1} f_{4} f_{10}} \tag{3.21}
\end{equation*}
$$

Employing (2.13) and (2.18) in the above identity, then extracting terms involving $q^{4 n}$ and changing $q^{4} \rightarrow q$ from the resulting identity, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n) q^{n}=\frac{f_{10}^{2} f_{4}^{6}}{f_{1}^{5} f_{8}^{2} f_{20}}-2 q \frac{f_{2}^{2} f_{5} f_{8}^{2} f_{20}}{f_{1}^{6} f_{4} f_{10}} \tag{3.22}
\end{equation*}
$$

Under modulo 2 , the above identity can be rewritten as

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n) q^{n} \equiv \frac{f_{4}}{f_{1}} \equiv f_{1} f_{2} \quad(\bmod 2) \tag{3.23}
\end{equation*}
$$

In terms of eta-quotients, we deduce

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n) q^{8 n+1} \equiv \eta(8 z) \eta(16 z) \quad(\bmod 2) \tag{3.24}
\end{equation*}
$$

We omit the remaining proof as it follows the same lines of the previous theorem.
Remark 3.3 Let $p \geq 3$ be a prime such that $p \not \equiv 1(\bmod 8)$ and consider any integer $j \not \equiv 0(\bmod p)$. By taking all the primes $p_{1}, p_{2}, \ldots, p_{k+1}$ to be equal to the same prime p in the Theorem 1.3, we obtain the following infinite family of congruences.

$$
\begin{equation*}
\operatorname{pod}_{5}\left(4 p^{2 k+2} n+4 p^{2 k+1} j+\frac{p^{2 k+2}-1}{2}\right) \equiv 0 \quad(\bmod 2) \tag{3.25}
\end{equation*}
$$

Setting $k=0$ and $p=5$ in the above identity, we obtain (1.5).

4. Internal congruence

Theorem 4.1. For any non negative integer k and n, we have

$$
\begin{equation*}
\operatorname{pod}_{5}\left(5^{k} n+\frac{5^{k}-1}{2}\right) \equiv \operatorname{pod}_{5}(n) \quad(\bmod 5) \tag{4.1}
\end{equation*}
$$

Proof. From (3.1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n} \equiv \psi^{4}(-q) \quad(\bmod 5) \tag{4.2}
\end{equation*}
$$

Replacing $q \rightarrow-q$ in (2.9) we obtain

$$
\begin{equation*}
\psi(-q)=f\left(q^{10},-q^{15}\right)+q f\left(-q^{5}, q^{20}\right)+q^{3} \psi\left(-q^{25}\right) \tag{4.3}
\end{equation*}
$$

Employing (4.3) in (4.2), then extracting terms involving $q^{5 n+2}$ and changing $q^{5} \rightarrow q$ from the resulting identity, we deduce
$\sum_{n=0}^{\infty} \operatorname{pod}_{5}(5 n+2) q^{n} \equiv q^{2} \psi^{4}\left(-q^{5}\right)+f^{2}\left(-q, q^{4}\right) f^{2}\left(q^{2},-q^{3}\right)+3 q \psi^{2}\left(-q^{5}\right) f\left(-q, q^{4}\right) f\left(q^{2},-q^{3}\right)$.
Changing $q \rightarrow-q$ in (2.10) and employing the resulting identity in (4.4), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(5 n+2) q^{n} \equiv \psi^{4}(-q) \equiv \operatorname{pod}_{5}(n) \quad(\bmod 5) \tag{4.5}
\end{equation*}
$$

By induction, we complete the proof.

5. DIVISIBILITY PROPERTIES

For a fixed positive integer k, Gordon and Ono [3] proved that the number of partitions of n into distinct parts is divisible by 2^{k} for almost all n. Similar studies are done by many mathematicians for certain kinds of partitions.

Theorem 5.1. Let m be a fixed positive integer, then $\operatorname{pod}_{5}(n)$ is almost always divisble by 2^{m}, namely

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\#\left\{n \leq X: \operatorname{pod}_{5}(n) \equiv 0 \quad\left(\bmod 2^{m}\right)\right\}}{X}=1 \tag{5.1}
\end{equation*}
$$

Proof. The generating function of $\operatorname{pod}_{5}(n)$ is given by

$$
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n}=\frac{f_{2} f_{5} f_{20}}{f_{1} f_{4} f_{10}}
$$

The above identity can be rewritten in terms of eta-quotients such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{24 n+12}=\frac{\eta(48 z) \eta(120 z) \eta(480 z)}{\eta(24 z) \eta(96 z) \eta(240 z)} \tag{5.2}
\end{equation*}
$$

Let $A_{p}(z)=\frac{\eta^{2}(24 z)}{\eta(24 p z)}$, then by binomial theorem we have

$$
A_{p}^{p^{m}}(z)=\frac{\eta^{p^{m+1}}(24 z)}{\eta^{p^{m}}(24 p z)} \equiv 1 \quad\left(\bmod p^{m+1}\right)
$$

Define $B_{m}(z)$ by

$$
\begin{equation*}
B_{m}(z)=\frac{\eta(48 z) \eta(120 z) \eta(480 z)}{\eta(24 z) \eta(120 z) \eta(240 z)} A_{p}^{p^{m}}(z) \tag{5.3}
\end{equation*}
$$

For $p=2$, we have

$$
\begin{equation*}
B_{m}(z) \equiv \sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{24 n+12} \quad\left(\bmod 2^{m+1}\right) \tag{5.4}
\end{equation*}
$$

By Theorem 2.1, $B_{m}(z)$ is a form of weight 2^{m-1} on $\Gamma_{0}(960)$. The cusps of $\Gamma_{0}(960)$ are represented by fractions $\frac{c}{d}$ where $d \mid 96$ and $\operatorname{gcd}(c, d)=1 . B_{m}(z)$ is holomorphic at a cusp $\frac{c}{d}$ if and only if

$$
\begin{aligned}
\frac{g c d(d, 24)^{2}}{24}\left(2^{k+1}-1\right)+ & \frac{g c d(d, 120)^{2}}{120}+\frac{g c d(d, 480)^{2}}{480} \\
& -\frac{g c d(d, 48)^{2}}{48}\left(2^{k}-1\right)-\frac{g c d(d, 96)^{2}}{96}-\frac{g c d(d, 240)^{2}}{240} \geq 0
\end{aligned}
$$

Now

$$
\begin{aligned}
& \frac{g c d(d, 480)^{2}}{480}\left(20 \frac{g c d(d, 24)^{2}}{g c d(d, 480)^{2}}\left(2^{k+1}-1\right)+4 \frac{g c d(d, 120)^{2}}{g c d(d, 480)^{2}}+1\right. \\
& \left.-10 \frac{g c d(d, 48)^{2}}{g c d(d, 480)^{2}}\left(2^{k}-1\right)-5 \frac{g c d(d, 96)^{2}}{g c d(d, 480)^{2}}-2 \frac{g c d(d, 240)^{2}}{g c d(d, 480)^{2}}\right) \\
& \geq \frac{g c d(d, 480)^{2}}{480}\left(\frac{2^{k+1}-1}{20}+\frac{1}{4}+1-\frac{2^{k}-1}{10}-\frac{1}{5}-\frac{1}{2}\right) \\
& >0
\end{aligned}
$$

Hence by Theorem 2.2, $B_{m}(z) \in M_{2^{m-1}}\left(\Gamma_{0}(960),\left(\frac{5}{\bullet}\right)\right)$. Recall the following result due to Serre [8, p. 43],

If $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ has Fourier expansion

$$
f(z)=\sum_{n=0}^{\infty} c(n) q^{n} \in \mathbb{Z}[[q]]
$$

then there exist a constant $\alpha>0$ such that

$$
\#\{n \leq X: c(n) \not \equiv 0 \quad(\bmod l)\}=\mathcal{O}\left(\frac{X}{(\log X)^{\alpha}}\right)
$$

Here, let $l=2^{m}$, using (5.4) we can complete the proof.
Theorem 5.2. Let m be a fixed positive integer, then $\operatorname{pod}_{5}(n)$ is almost always divisble by 5^{m}, namely

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\#\left\{n \leq X: \operatorname{pod}_{5}(n) \equiv 0 \quad\left(\bmod 5^{m}\right)\right\}}{X}=1 \tag{5.5}
\end{equation*}
$$

Proof. Let $p=5$ in (5.3), and employing the same arguments of the above theorem, we arrive at the desired result.

Remark: From the above two theorems, we can easily deduce $\operatorname{pod}_{5}(n)$ is almost always divisible by 10^{m}.

References

[1] B. C. Berndt, Ramanujans Notebooks, Part III, Springer, New York, 1991.
[2] S. P. Cui, W. X. Gu, Z. S. Ma, Congruences for partitions with odd parts distinct modulo 5, Int. J. Number Theory 11 (2015), 2151-2159.
[3] B. Gordon, K. Ono, Divisibility of certain partition functions by powers of primes, Ramanujan J. 1 (1997), 25-34.
[4] M. D. Hirschhorn, The Power of q, Developments in Mathematics 49, Springer, 2017.
[5] M. D. Hirschhorn, J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273-284.
[6] M. D. Hirschhorn, J.A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc. 81 (2010), 58-63.
[7] Y. Martin, Multiplicative eta-quotients, T. Am. Math. Soc. 348 (1996), 4825-4856.
[8] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series: Arithmetic of the Coefficients of Modular Forms and Q-series, American Mathematical Soc. 2004.
[9] S. Radu, J. A. Sellers, Congruence properties modulo 5 and 7 for the pod function, Int. J. Number Theory 7 (2011), 2249-2259.
[10] C. Ray, R. Barman, On Andrews' integer partitions with even parts below odd parts, J. Number Theory 215 (2020), 321-338.
[11] E. X. W. Xia, O. X. M. Yao, Analogues of Ramanujans partition identities, Ramanujan J. 31 (2013), 373-396.

Research Scholar, Department of Mathematics, Pondicherry University, Puducherry605014

E-mail address: veenavsmath@gmail.com
Assistant Professor, Department of Mathematics, Pondicherry University, Puducherry605014

E-mail address: dr.fathima.sn@gmail.com

[^0]: The first author's research is supported by Pondicherry University Fellowship, Department of Mathematics, Pondicherry University, Puducherry-605014.

