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5 REGULAR PARTITIONS WITH DISTINCT ODD PARTS
VEENA V. S. AND FATHIMA S. N.

ABSTRACT. In this article, we prove infinite families of congruences for pods(n)
(the number of 5-regular partitions of n with distinct odd parts (and even parts are
unrestricted)) using the theory of Hecke eigenforms. We also study the divisibility
properties of pods(n) using the arithmetic properties of modular forms.
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1. INTRODUCTION

A partition of a non-negative integer m is a non-increasing sequence of positive
integers whose sum is n. Let pod(n) denote the number of partitions of n in which
odd parts are distinct (and even parts are unrestricted). It is significant to note
that Hirschhorn and Sellers [5] appear to be the first to consider pod(n) from an
arithmetic viewpoint. The generating function of pod(n) is given by [5],

P(—q)’

where 1(q) is defined in (2.4) and for any positive integer I, we denote f; as

(1.1) S pod(n)q" =
n=0

oo

fi=Tla -4, lal <1

n=1

Using modular forms, Radu and Sellers [9] established several congruence properties
for pod(n). For more details, see [2,5].

In this article, we consider a restricted version of pod(n) in which none of the parts
is divisible by 5. Let pods(n) denote the number of 5-regular partitions with distinct
odd parts of n (and even parts are unrestricted). For example pods(5) = 3, where
the relevant partitions being 4+1, 342, 24+2+1. The generating function of pods(n)
is given by

U(=¢°)

¥(—=q)

In this article, we establish several infinite families of congruences as a consequence
of our main results, such as

(12) S pods(n)g" =
n=0

(1.3) pods (49n + 75+ 24> =0 (mod5) where j#0 (mod?7),
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(1.4) pods (50071 +255 + 62) =0 (mod2) where j#0 (mod5),

(1.5) pods <100n +205 + 12) =0 (mod?2) where j#0 (mod?5).

The following are our main results.

Theorem 1.1. Let k, n be non negative integers and i € {1,2,--- ,k+1}. Then
for every odd prime and any integer j £ 0 (mod pyy1), we have

2... 2 2 _1
pi pkpk+1(p2k+1+ 7) )Eo (mod 5).

(1.6) pods (p%..piﬂn—l—

Theorem 1.2. Let k, n be non negative integers and i € {1,2,--- ,k+1}. Then
for every prime p; > 3 such that p; Z 1 (mod 8) and any integer j Z 0 (mod pg41),
we have

5p2..p2 +2§) -1
(17) p0d5(20p%“pi+1n+ Py PPkt 1(Pry1 4 27)

2

) =0 (mod 2).

Theorem 1.3. Let k, n be non negative integers and i € {1,2,--- ,k+1}. Then
for every prime p; > 3 such that p; Z 1 (mod 8) and any integer j Z 0 (mod pg41),
we have

(1.8) pods (4p%...pz+1n+

2 2 8j) —1
D1 Pkpk-&-l(p;-&-l“' 7) )E() (mod 2).

This article is organized as follows. In Section 2, we recall some basic definitions
related to modular forms and some properties of Ramanujan general theta function.
We also found a new dissection identity, which aids the proofs of the main theorems.
Section 3 is devoted to the proofs of the Theorem 1.1-1.3 using the theory of Hecke
eigenforms. In Section 4, we introduce an internal congruence by the technique
of manipulating g-series. We conclude the paper by characterizing the divisibility
properties of pods(n) using the arithmetic properties of modular forms.

2. PRELIMINARIES

In this section, we recollect some definitions, theorems, and identities to prove
our main results.

Definition 2.1. [8, Definition 1.15] If x is a Dirichlet character modulo N, then a
form f(z) € Mi(T'1(N)) (resp. Sp(I'1(N)) has Nebentypus charactery if

F(257) = e + 1)

for all z € H and all Z € I'o(IV). The space of such modular forms (resp. cusps

forms) is denoted by My(To(N),x) (resp. Sp(To(N),x)). If x is trivial character
then we write My (To(N)) and Si(To(N)) for short.

For z € H, the Dedekind eta function n : HH — C is defined by

=

(o)
n(z) :=q2 H (1 —q") where ¢ :=e?™=.
n=1
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A function f(z) is called an eta-quotient if it is of the form
f(z) = Tn(s2)",
3IN
where N is a positive integer and r5 € Z.

Theorem 2.1. [8, Theorem 1.64 and Theorem 1.65] If f(z) =[5y 1(62)" is an
eta-quotient with k = %25\1\/ rs €7,

257“5 =0 (mod 24)
SIN

and

Z %Tg =0 (mod 24),

5N

then f(z) satisfies

F(257) = e + 1)

(—1)* [Ty 075
(—")-

for every {Z Z} € I'o(N). Here the character x is defined by x(d) :=

In addition if ¢,d and N are positive integers with d | N and ged(c,d) = 1, then the
ged(d,8)>rs

order of vanishing of f(z) at the cusp § is % ZMN ged(d. Xds"
¢ '

Suppose that f(z) is an eta-quotient satisfying conditions of the above theorem. If
f(z) is holomorphic at all cusps of T'o(N), then f(z) € Mg(To(N), x).
Next, we recall the definition of Hecke operators.
If f(z) = >0 pa(n)g" € Mp(To(N),x) and let m be a positive integer, then the
action of Hecke operator T,, on f(z) is defined by

P T =Y ( 3 x(d)dkla(ﬁ))q".

n=0 “d|gcd(n,m)

In particular, if m = p is a prime, we have

[o o]

(2.1) T, = (aum) + x(p)pk-la(;j))q“.

n=0
We follow the convention that a(n) = 0 unless n is a nonnegative integer.
Definition 2.2. A modular form f(z) = 7" a(n)q" € Mi(To(N),x) is called a
Hecke eigenform if for every m > 2 there exist a complex number A\(m) for which
(2.2) f(2) [ Ton = A(m) f(2).
Recall Ramanujan general theta function f(a,b) is defined by [1, Eqn. 18.1]

f(a,b) = Z oM FD2pn(=D/2 5 gp| < 1.

n=—oo
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Some special cases of f(a,b) are [1, Entry 22],

(2.3) e(q) = f(g,q) = Zq _f 5
n=-—oo 1
o0 2
(2.4 vl = fla.d’) = g0 = 2,
n=0

where the product representations arise from the famous Jacobi triple product iden-
tity [1, p.36, Entry 19].

(2.5) fa,b) = (—a;ab)os(—b; ab)oo(ab; ab)so
We denote
(2. X(@) = (i oo = L2
fifa

Furthermore, from [1, p.51, Example (v)] we have
(2.7) F(a:4°) = ¥(=¢*)x(q)-
By g-series manipulation, we can see
(2.8 vi-g =20

2
Lemma 2.1. [1, p.49, Entry 31] The following 5-dissection holds.
(2.9) (a) = f(q"%4") + af (6% 6°°) + (™).
Lemma 2.2. [1, p.262, Entry 10] The following identity holds.
(2.10) (@) — (@) = fla,a") (% @)
Lemma 2.3. The following 2-dissection holds.
(2.11) 0(a") = o(d®) + 24" (¢"),

f15 _ feof0fs0fa0 L f30.f30 f2a0
fs [ faofe0f240 [y fsofi20

Proof. We have the following 2-dissection of ¢(q) from [4, 1.9.4],
la) = p(a*) +200(c%).

Replacing ¢ — ¢'® from the above identity, we arrive at (2.11).
Again from [11], we have

(2.12)

fs _ fafofief3s tq fo 3 fus
fi 3 fshafs f2f16f24

Changing ¢ — ¢° from the above identity, we obtain (2.12). O

Lemma 2.4. The following 4 dissections holds.

E _ f8f156f220 2 2f83f220f§2 f16f40 ) 5f§f§2f80
i 2 fa0 2 12 fi6fa0 M f4f8f20f32f80 e 21
3f8f1()f80 Jr2(]3f8f§2f20

2 f% fifoofso

+
(2.13)
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f _ fahelfio _ & I8 fso
fio fafanfso fi6f%

Proof. Recall the 2-dissection of % due to Hirschorrn [6]
1

(2.15) fs _ fsf " fifrofao

fi ffuo 1 f3fsf20

(2.14)

From [1], we have

[

1 I8 f3 17

2.16 — = 2 .
(219 R Y AT
Multiplying (2.15) and (2.16), we obtain
f5 1313 [ 14 frofao I3 fT6f% o f2 frofs f10
17 = = .
(2.17) 2 Ak fo Ta I3 f36.f20 +24 13 fao0 + 2 I3 13 fa0

Changing ¢ — ¢? in (2.16) and (2.17) respectively, then employing the resulting
identity in (2.15), we complete the proof of (2.13).

Consider the 2-dissection of h from [6]
5

fi _ ffsfy  fifwo

(2.18) = q .
fs fafiofio " fsfio
Changing ¢ — ¢ in (2.18), we arrive at (2.14). O
Lemma 2.5. The following 2 dissection holds.
(2.19)
1 o f122f1520 6 f4f62f420f60f240 f4f62f80f1220 15 f122f2240
53— T¢ +2

= q q .
fifs  fafel?feo o F3 15 fiafaofsofizo f312 fi2f10 f240 12 f6.f% fi20
Proof. Setting =3 and v = 2 in the following identity [1, p.69, Eqn (36.7)]

D@V ) = (@)

pn—1/2

+ Z qum2—I/mf(q(u-&-Zm)(uQ—zﬂ)7 q(H—QTn)(NZ—VZ))]E(qQVm q2u—21/m)’

)
m=1

we deduce that

(2:20) D(@)(a) = o)) + af (@, a) f(a, ¢).
In light of (2.5), we obtain

2 4y _ Jafs
(221) F@a") = 2.
Replacing ¢ — ¢° in (2.7), we obtain
(2:22) 1@, q%) = ¥(=¢")x(¢”) = Fiofts oo

~ fsfafa
Employing (2.21) and (2.22) in (2.20), we obtain

fhfisfeo f2fa
f5f20f30 fafr2’

(2.23) V(")0(q) = 0(a")(d®) +q
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Applying the 2-dissections (2.11) and (2.12) respectively in (2.23), then multiplying

the resulting identity by , we arrive at (2.19). d

5
3. PROOFS OF THEOREM 1.1-1.3

In this section, we prove the infinite families of congruences of pods(n) using
the theory of Hecke eigenforms, which is similar to the approach done by Ray and
Barman [10] for Andrews partition with even parts below odd parts.

Proof of Theorem 1.1: Invoking binomial theorem in the generating function for
pods(n) (1.2), we deduce

(3.1) > pods(n)g" = ¢*(—¢) (mod 5).
n=0

Replacing ¢ — ¢% in (3.1), then rewriting the resulting identity in terms of eta-
quotients, we obtain

o0 4 4
1" (22)n"(82)
3.2 pods(n)g® ! = 22220 20 (mod 5).
(3.2 > s () A (mod )
4 4 o0
1" (22)n"(82) :
Denote ——F—— = ¢(n)q™, then this leads to
(3.3) pods(n) =c¢(2n+1) (mod 5) and ¢(n) =0 if n is even.
4 4 4 4
n°(22)n"(82) n(22)n"(8z2) .
Now by Theorem 2.2, i(42) € M;(T'(16)). Moreover, i(42) is an
eigen form (for example, see [7]). Therefore
4(22)n* (82 > n >
gy TEITED g 2 3 e+ e 2 )] =20 3 el
n*(4z) = p —
which implies
n
(3.5) c(pn) +pc<p) = A(p)c(n).

Let » = 1 in the above identity, we obtain ¢(p) = A(p), since ¢(1) = 1. However
¢(p) = 0 only for p = 2, so that A(2) = 0. Hence for all odd primes, we have

(3.6) c(pn) +pc<z> =0.
From (3.6), we derive that for alln >0 and ptr,

(3.7) c(p*n+pr) =0

and

(3.8) c(p®n) = 4pc(n)  (mod 5).

Set n =2n — pr + 1 in (3.7) and together with (3.3), we deduce

(3.9) pods <p2n + (pQ; D) —|—p7'(1 2p2)> =0 (mod 5).
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Again setting n = 2n + 1 in (3.8) and combining (3.3), we obtain

2 _
(3.10) pods <p2n + (2921)) =4p pods(n) (mod 5).

1— 2
Since p is an odd prime, 2 | (1 — p?) and gcd(Tp,p) = 1. Therefore when r runs

lfp2

over a residue system excluding the multiple of p, so does r. Thus (3.9) can

be rewritten as

(3.11) pods <p2n + @ -1

5 +pj> =0 (mod 5).

where p 1 j.
For all odd primes p the following holds.

p%...p% -1
2

p%...pi - 1) . p% -1

3.12 2..p2
(3.12) PI---DR + 5 5

=i <p§---pin +
Employing (3.10) frequently we obtain

%pi —1

(3.13) pods <p%pin +P 5 > =4p pods(n) (mod 5).

2
Pig1 — 1

5 +pg+17 in (3.13) and combining

Let j # 0 (mod pgy1). Settingn = piﬂn—k
with (3.11), we conclude

2... 2 2 _1
D1 pkpk+1(p§+l +2j) > =0 (mod 5).

(3.14) pods (p%...piﬂn +

Hence we complete the proof of Theorem.

Remark 3.1: Let p be an odd prime. By taking all the primes p1, p2, ..., px+1 to be
equal to the same prime p in the above Theorem, we obtain the following infinite
family of congruences

2k+2 _

(3.15) pods <p2k+2n +pHrlj 4 pQ) =0 (mod 5).

In particular, setting k = 0, for all non negative integers n and j £ 0 (mod 7), we
have

pods <49n + 75+ 24) =0 (mod 5).

Proof of Theorem 1.2: Employing (2.15) in (1.2), then extracting the even powers
of ¢ and replacing ¢> — ¢ from the resulting identity, we obtain

= no__ f4f%o
(3.16) nzzopod5(2n)q = 7f1f2f5f20'

Using (2.19) in (3.16), then extracting odd powers of q and replacing ¢ — ¢ from
the resulting identity, we obtain

f2f5f§f1220+ f313 f5 f10/80
fEfsfiofeo  fifefiof20f120

[e.e]
(3.17) > " pods(4n + 2)q" = 2¢"

n=go

265



266

Veena V. S. and Fathima S. N.

Invoking binomial theorem under modulo 2, we obtain

(3.18) Zp0d5 (4n+2)¢" = f5f10  (mod 2).

n=g
Extracting the terms involving ¢®* from the above identity and rewriting the result-

ing identity in terms of eta-quotients, we attain

[o0)

(3.19) Zpod5(20n +2)¢% ! = 5(82)n(162)  (mod 2).

n=o

By Theorem 2.2, we can easily verify that n(82)n(162) € Sy (I'o(128), (=2)). Besides
7(82)n(162) is a Hecke eigen form [see, [7]], we can complete the proof by using the
same procedures done in previous theorem.

Remark 3.2: Let p > 3 be a prime such that p # 1 (mod 8) and consider
any integer j # 0 (mod p). By taking all the primes p1, po, ..., prs1 to be equal to
the same prime p in the above Theorem, we obtain the following infinite family of
congruences, which is similar to Remark 3.1.

2k+2 _
2

Let k=0 and p =5 in (3.20), we arrive at (1.4)
Proof of Theorem 1.3: We have

5
(3.20) pods (20p2k+2n +5ptly g 2P ) =0 (mod 2).

- fofsf:
3.21 ods(n)q" = 22020
(3.21) T;)p s =55
Employing (2.13) and (2.18) in the above identity, then extracting terms involving

¢*™ and changing ¢* — ¢ from the resulting identity, we obtain

- w_ TRES L f3fsfE
(3:22) 2 pods(4n)q" = FP 1 fa0 % fSfafio

Under modulo 2, the above identity can be rewritten as

n=0

(3.23) > pods(4n)q" = % =fifs (mod 2).
n=0
In terms of eta-quotients, we deduce
o
(3.24) Zpodg)(erL)qg"Jr1 = n(82)n(162) (mod 2).

n=o

We omit the remaining proof as it follows the same lines of the previous theorem.
Remark 3.3 Let p > 3 be a prime such that p # 1 (mod 8) and consider any integer
j # 0 (mod p). By taking all the primes p1, pa, ..., pr+1 to be equal to the same prime
p in the Theorem 1.3, we obtain the following infinite family of congruences.

2%k+2 _ 4
(3.25) pods <4p2k+2n + 4p?Hl 4 p2> =0 (mod 2).

Setting k£ = 0 and p = 5 in the above identity, we obtain (1.5).
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4. INTERNAL CONGRUENCE

Theorem 4.1. For any non negative integer k and n, we have

A A
(4.1) pods (5 n+ 2) = pods(n) (mod 5).
Proof. From (3.1), we have
(4.2) > pods(n)g" =*(~q) (mod 5).
n=0

Replacing ¢ — —¢ in (2.9) we obtain

(4.3) V(=q) = f(¢"°,—¢") + af (—=¢°, ¢*°) + *Y(—¢*).

Sn+2

Employing (4.3) in (4.2), then extracting terms involving q and changing ¢°> — ¢

from the resulting identity, we deduce
(4.4)
o0

> pods(5n+2)¢" = *UH(—°)+ 12 (=4, ") 2 (6%, — ) +3q* (—¢°) F(—a. 4" F(@*. — ).

n=0

Changing ¢ — —¢ in (2.10) and employing the resulting identity in (4.4), we obtain

(4.5) Zpodg)(fm +2)¢" = p*(—q) = pods(n) (mod 5).
n=0
By induction, we complete the proof. O

5. DIVISIBILITY PROPERTIES

For a fixed positive integer k, Gordon and Ono [3] proved that the number of
partitions of n into distinct parts is divisible by 2¥ for almost all n. Similar studies
are done by many mathematicians for certain kinds of partitions.

Theorem 5.1. Let m be a fized positive integer, then pods(n) is almost always
divisble by 2™, namely

< X : pod =0 d 2m
o) L # {0 < X pods(n) =0 (mod 27))

=1.
X —o00 X

Proof. The generating function of pods(n) is given by

— n_ Jofsfa
> pods(n)g" = :
= fifafio
The above identity can be rewritten in terms of eta-quotients such that
> n(48z)n(1202)n(480%)
(5.2) pods(n)g**" 12 = .
7;) 1(242)n(962)n(240%)

2(24
Let Ap(z) = U (54 Z;, then by binomial theorem we have
n\«apz
" (242)

)= ———2> mAly
v ) nP" (24pz) )

1 (modp
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Define By, (z) by

(5:3) Bin(2)

For p = 2, we have

B 77(482)77(1202)7](4802)Ap

- n(242)n(1202)n(240z2) " P (2).

oo
(5.4) B (z) = Zp0d5(n)q24"+12 (mod 2™T1).

n=0
By Theorem 2.1, B,,(z) is a form of weight 27~ on I'g(960). The cusps of I'g(960)
are represented by fractions § where d | 96 and gcd(c,d) = 1. By, (z) is holomorphic
at a cusp § if and only if

ged(d, 24)?
24

ged(d, 120)2  ged(d, 480)2
120 480
 ged(d, 48)2(2k - ged(d, 96)?  ged(d, 240)2
48 96 240 -

(2k+1 _ 1) +

Now

+1

ged(d, 480)2 ged(d, 24)? (25 1) 4 4gcd(d, 120)2
480 ged(d, 480)2 ged(d, 480)2

n.9cd(d, 48)? ged(d,96)? _Qgcd(d, 240)?
ged(d, 480)2 ged(d, 480)2 ged(d, 480)2

- ged(d, 480)% (2M -1 1 k1 1 1

- 480 20 4 10 5 2

2k -1)—5

> 0.

Hence by Theorem 2.2, By,(z) € Mam-1(I'0(960), (2)). Recall the following result
due to Serre [8, p. 43],
If f(z) => 02y a(n)g" € My(To(N), x) has Fourier expansion

[e.°]

f(z) =) em)q" € Z[qll,

n=g
then there exist a constant o > 0 such that
X
#{n<X:en)Z0 (modl)} = O((logX)a>'
Here, let [ = 2™, using (5.4) we can complete the proof. d

Theorem 5.2. Let m be a fized positive integer, then pods(n) is almost always
divisble by 5™, namely

(5.5) iy A7 S X i pods(n) =0 (mod 5™)}

=1.
X —00 X

Proof. Let p =15 in (5.3), and employing the same arguments of the above theorem,
we arrive at the desired result. (]

Remark: From the above two theorems, we can easily deduce pods(n) is almost
always divisible by 10™.
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