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STRESS INDICES OF GRAPHS

R. RAJENDRA, P. SIVA KOTA REDDY, AND ISMAIL NACI CANGUL

ABSTRACT. The stress of a vertex in a graph had been introduced by
Shimbel in 1953 as the number of geodesics (shortest paths) passing
through it. A topological index of a chemical structure (molecular
graph) is a number that correlates given chemical structure with a chem-
ical reactivity or physical property. In this paper, we introduce two new
topological indices for graphs called first and second stress indices by
means of the notion of stress of a vertex. Further, we establish some
inequalities, prove some fundamental results and compute these stress
indices for some standard graphs. These two indices are expected to
give new applications in chemistry and social science problems as the
notion of stress of a vertex depends on the geodesics passing through
that vertex and may lead to new notions related to graphs.
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1. INTRODUCTION

For standard terminology and notions in graph theory, we follow the text-
book of Harary [4]. The non-standard notions will be given as and when
required.

Let G = (V, E) be a finite and undirected graph. The distance between
two vertices u and v in G, denoted by d(u,v), is the number of edges in
a shortest path (called a graph geodesic) connecting them. We say that a
graph geodesic P is passing through a vertex v in G if v is an internal vertex
of P. The degree of a vertex v in G is denoted by dg(v) or d(v).

The concept of stress of a vertex in a network (graph) has been introduced
by Shimbel as a centrality measure in 1953, [7]. This centrality measure has
applications in biology, sociology, psychology, etc., (see e.g. [5, 6]). The
stress of a vertex v in a graph G, denoted by strg(v) or briefly by str(v)
if there is no possibility of confusion, is the number of geodesics passing
through it. We denote the maximum stress amongst all the vertices of G by
O¢ and minimum stress among all the vertices of G by 6. The concepts of
stress number of a graph and stress regular graphs have been studied by K.
Bhargava, N. N. Dattatreya, and R. Rajendra in their paper [1]. A graph
G is k-stress regular if str(v) =k for all v € V(QG).
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The first and second Zagreb indices have been defined by means of the
degrees of vertices in a graph to explain some properties of chemical com-
pounds at molecular level, [2, 3]. The first Zagreb index M;(G) and the
second Zagreb index Ms(G) of a simple graph G are defined by

1) M(G)= Y d)?
veV(G)

(2) Mp(G) = ) d(u)d(v).
weE(G)

There are several variants of these two indices. By the motivation of these
two indices, in this paper, we introduce two new topological indices for
graphs called the first stress index and the second stress index by means of
the stresses of vertices. Further, we establish some inequalities and compute
both stress indices for some standard graphs.

2. STRESS INDICES OF GRAPHS

Definition 2.1. The first stress index S1(G) and the second stress index
S2(G) of a simple graph G are defined by

(3) S1(G) = Y str(v),
veV(G)

(4) So(G) = Y str(u)str(v).
weEE(G)

Observation. From the Definition 2.1, it follows that, for any graph G =
(V, E), we have

V16 < $1(G) < [VIeg
and

EI0% < S2(G) < |E|0%.

Example 2.1. We compute the stress indices of hydrogen-depleted molecu-
lar graph G of 1-Ethyl-2-methylcyclobutane C7Hy4. We label the vertices of
G (See Fig. 1). The stresses of the vertices of G are as follows: str(a) = 2,
str(b) =9, str(c) = 3, str(d) = 12, str(e) = 6, str(f) =0 and str(g) = 0.
The first and second stress indices of G are
51(G)=22+9%+32+122 4+ 6%+ 0% +0°
=274,
S2(G)=2-942-3+9-04+9-124+3-12+12-6+6-0
= 240.

Example 2.2. Consider the graph G given in Fig. 2. The stresses of the
vertices of G are as follows: str(vi) = str(vs) = str(vy) = str(vg) = 0,
str(ve) = 19, str(vs) = 1 and str(vy) = str(vg) = 0. Hence the first and
second stress indices of G are
S1(G) = 02 +19% + 0% + 0% + 12 + 0> + 0 + 0?

= 362,
S2(G)=0-194+19-0+19-04+19-1+19-04+19-04+19-0+0-1+1-0
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Figure 1: 1-Ethyl-2-methylcyclobutane C7;Hyy and the corresponding

hydrogen-depleted molecular graph G

Figure 2: A graph G

=19.

Proposition 2.1. Let N be the number of geodesics of length > 2 in a graph
G. Then

(5) 0< 81(G) < N*(|V|—q) < N*([V| - p)
and
(6) 0 < 9(G) < N*(|E| —t) < N*(|E| - p)

where q is the number of vertices with zero stress, p is the number of pendant
vertices (which is the same as pendant edges) and t is the number of edges
with at least one end vertex of zero stress in G.

Proof. If N is the number of all geodesics of length > 2 in a graph G, then
by the definition of stress of a vertex, for any vertex v in G, 0 < str(v) < N.
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Hence by the Definition 2.1, we have
(7 0< 81(G) < N*(|V| —q)

where ¢ is the number of vertices with zero stress in G. Let p be the number
of pendant vertices in G. Since the stress of a pendant vertex in a graph is
zero, p < ¢ and so

(8) N*(|V]—q) < N*([V| - p)
Now, (5) follows from the inequalities (7) and (8).

By a similar argument as above, we can establish (6). [

Corollary 2.2. If there is no geodesic of length > 2 in a graph G, then
S1(G) = So(G) = 0. In particular, for a complete graph K,, S1(K,) =
Sa(K,) = 0.

Proof. If there is no geodesic of length > 2 in a graph G, then N = 0. Hence,
by the Proposition 2.1, we have S1(G) = S2(G) = 0.

In K, there is no geodesic of length > 2 and the result follows. O

Theorem 2.3. For a graph G, S1(G) = 0 if and only if the neighbours of
every vertex induce a complete subgraph of G.

Proof. Suppose that S1(G) = 0. Then by Eq. (3), str(v)? = 0 for all
v € V(G). Hence str(v) =0 for all v € V(G). Let v € V(G). We need to
show that neighbors of v induce a complete subgraph of G. If v is a pendant
vertex, then there is nothing to prove. Suppose that v is not a pendant
vertex. We claim that any two neighbouring vertices are adjacent in G. If
there are two neighbours v and w of v that are not adjacent in G, then uvw
is a graph geodesic passing through v, which implies str(v)? > 1, a contra-
diction. Hence our claim holds. Thus neighbours of v induce a complete
subgraph of G. Since v is arbitrary in V(G), the neighbours of every vertex
induce a complete subgraph of G.

Conversely, suppose that neighbours of every vertex in G induce a com-
plete subgraph of G. Let v € V(G). Since neighbors of v induce a complete
subgraph of GG, any two neighbouring vertices are adjacent and so there is
no geodesic of length > 2 passing through v. Since v is an arbitrary vertex
in G, by the Corollary 2.2, it follows that S;(G) = 0. O

Theorem 2.4. If the neighbours of every vertex induce a complete subgraph
of G, then So(G) = 0.

Proof. Suppose that the neighbours of every vertex in G induce a complete
subgraph of G. Let v € V(G). Since the neighbors of v induce a complete
subgraph of G, any two neighbouring vertices of v are adjacent and so there
is no geodesic of length > 2 passing through v. Since v is an arbitrary vertex
in G, by Corollary 2.2, it follows that S2(G) = 0. O

Remark 2.1. Converse of Theorem 2.4 is not true in general. For a
counter-example, consider the path P3 on 3 vertices:
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U1 P U3

Figure 3: The path F;

The stresses of the vertices of P are as follows: str(vi) = str(vs) = 0 and
str(ve) = 1. Then the second stress index of P is

Sa(Ps) = str(vy)str(ve) + str(vs)str(vs) =0-14+1-0=0.

But here, v; and v3 are the only neighbors of v that are not adjacent to each
other but they do not induce a complete subgraph of Ps.

Proposition 2.5. For the complete bipartite graph K, »,

mn [n(n—1)? + m(m — 1)?]
4

Sl(Km,n) -
and
m?n?(m —1)(n — 1)
4

Proof. Let Vi = {v1,...,vn} and Vo = {uy,...,u,} be the partite sets of
K. We have

SQ (Km,n) -

-1
(9) str(v;) = n(nT) for1<i<m
and

-1
(10) str(uj) = % for 1 <j<n.

Substituting (9) and (10) in the Eqns. (3) and (4), we have
S1(Kmn) = Y str(v)®

veV(G)
= Z str(vg)? + Z str(uy)?

i=1 j=1
_m nn—1)71% < [m(m-1)]?
e
~mnf(n—1)?%  nm?(m—1)?
B 4 - 4
_mn [n(n —1)% 4+ m(m — 1)

4

and

So(Emn) = Y str(u)str(v)

weE(Q)

= Z str(v;)str(u;)

1<i<m, 1<j<m
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5 e

1<i<m, 1<j<n

o ) [t

2
~m*n*(m—1)(n—1)
= 1 .
O
Proposition 2.6. If G = (V, E) is a k-stress regular graph, then
51(G) = |[V[k?
and
Sy(G) = |E|K%.
Proof. Suppose that G is a k-stress regular graph. Then
str(v) =k
for all v € V(G). By the Eqns. (3) and (4), we have
S1(G) = Y str)’= Y K =[V|K
veV(G) veV(G)
and
S2(G) = Z str(u)str(v Z k-k=|E|k%
weE(Q) weE(GQ)
O

Corollary 2.7. For a cycle C,,
n(n —1)%(n — 3)2

o , if nis odd
$i1C) = Sa(C)=4 , %
n(n —2) Fni
AR A if n is even.
64 ’
Proof. For any vertex v in C,,, we have
~1(n —
W, if n is odd
str(v) =
n(n —2) e
_ if n is even.
8
Hence C,, is
—1)(n—-3
%‘(n)—s‘cress regular, if n is odd
-2
n(n8 )—stress regular, if n is even.

Since C), has n vertices and n edges, by the Proposition 2.6, we have the
result. O
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Proposition 2.8. Let T be a tree on n vertices. Then
2

SO =31 > e
vel |1<i<j<m(v)

and

So(T) = > > qericy > e

wed | 1<i<j<m(u) 1<i<j<m(v)
where I is the set of all internal (non-pendant) vertices in T', J is the set
of internal (non-pendant) edges in T and the sets C7,--- ,CY, denote the
vertexr sets of the components of T — v for an internal vertex v of degree
m = m(v).

Proof. We know that a pendant vertex in 7' has zero stress. Hence we
concentrate on internal (non-pendant) vertices and non-pendant edges to
compute stress indices. Let v be an internal vertex of T of degree m = m(v).
Let C7,---,C}, be the components of T — v. Since there is only one path
between any two vertices in a tree, it follows that

str(v) = Y [CY|ICYl.
1<i<j<m
Hence by the Equs. (3) and (4), we have the required results. O
Corollary 2.9. For a path graph P, on n vertices
n(2n —1)(n —1)3
6

Sl(Pn) =
and
nn+1)(n—1)(n —2)(n — 3).
30

Proof. The proof of this corollary follows by Proposition 2.8. We follow the
proof of the Proposition 2.8 to compute the indices. Let P, be the path

Sa(Py) =

graph with vertices vy, vo,- - , v, (shown in Fig. 4). We have
U1 Ug (2] V4 Un—1 Un
— ¢ o ¢ [
P,

Figure 4: The path F, on n vertices
str(v;)) =(—1)(n—1), 1<i<n.

S1(Py) = Z str(v)2 = Zstr(vi)Z
i=1

veV(Py)

=> (i—-1)>*(n—i)?
i=1
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n2n —1)(n—1)3

6
and
Sa(Py) = Z str(u)str(v)

weE(Pr)
n—1

= Z str(vi)str(viyr)
i=1
n—1

= (i—1)(n—i)i(n—i-1)
i=1
nn+1)(n—1)(n —2)(n — 3).

30
g

Proposition 2.10. Let Wd(n,m) denotes the windmill graph constructed
forn > 2 and m > 2 by joining m copies of the complete graph K, at a
shared common vertex v. Then
m2(m —1)2(n —1)*

4

S1(Wd(n,m)) =

and
Sa(Wd(n,m)) = 0.
Hence, for the friendship graph Fy, on 2k + 1 vertices, we obtain
Sy (Fy) = 4k (k —1)?
and

So(Fy) = 0.

Proof. Clearly the stress of any vertex other than universal vertex v is zero in
Wd(n, m) because the neighbors of that vertex induces a complete subgraph
of Wd(n,m). Also, since there are m copies of K, in Wd(n,m) and their
vertices are adjacent to v, it follows that, the only geodesics passing through
m(m —1)(n — 1)

. Note that there are

m(n — 1) edges incident on v and the edges that are not incident to v have
end vertices of stress zero. Hence by Equs. (3) and (4), we have

v are of length 2 only. So, str(v) =

S1(Wd(n,m)) = str(v)* =

m(m—1)(n— 12" m2(m - 1)2(n - 1)*
2 N 4

and
Sa(Wd(n,m)) = 0.
Since the friendship graph Fj on 2k + 1 vertices is nothing but Wd(3, k), it
follows that
K2(k—1)%3-1)*
4

Sy (Fy) = =4k (k —1)?

and
So(Fy) =0.
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Proposition 2.11. Let W, denote the wheel graph on n > 4 vertices. Then
(n—1)(n —4)?(n? + 12n — 12)

if n is even;

Sy (W) = 64
(n—1)2(17n% — 132n + 259)’ i is odd
64
and
2
(n=1)(n = 2)((32 —4)7(n = 6), if n is even;
F2(We)) = (n — 1)3(n — 3)(5n — 19) '
6 , if n is odd.

Proof. In W,, with n > 4, there are n — 1 peripheral vertices and one central
vertex, say v. It is easy to see that

(n—1)(n—4)

—

Let p be a peripheral vertex. Since v is adjacent to all the peripheral vertices
in W,, there is no geodesic passing through p and containing v. Hence

contributing vertices for str(p) are the remaining peripheral vertices. So, by
denoting the cycle W,, — v (on n — 1 vertices) by C,,_1, we have

(11) str(v) =

strw, (p) = strw, —(p)

= stre,_, (p)
(n—2)8(n—4)’ if n — 1 is odd;
(n—1)8(n—3)’ if n — 1 is even,
—2)(n—14
(n )8(n ), if n is even;
(12) = ) 5
(n— );n— ), if n is odd.

Let us denote the set of all the peripheral vertices in W, by P, the set of all
radial edges by R, and the set of all peripheral edges by Q. Note that there
are n — 1 radial edges and n — 1 peripheral edges in W,,. Substituting Eqns.
(11) and (12) in Equs. (3) and (4), we have

S1 (W) = str(v)? + Z str(p)?

peP
(n=2)(n-4]" . .
- - ) A —— , 1IN 1s even;
:[W} tln=1)x [<n—1>8<n—3>}2 .
[f} , if nis odd
(n—1)%(n — 4)? " (n—1)(n—2)*(n—4) if n is even;

4 64 ’
(n—1)%(n —4)* L= 1)°(n—3)°

1 ol , if n is odd

171
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(n—1)(n—4)%(n? +12n —12)

if n is even;

_ 64 '
(n —1)2(n3 +9n? — 113n + 247) if mis odd
ol , ifniso
and
So (W) = Z str(z)str(y) + Z str(x)str(y)
zYyER rycQ
=(n — 1)str(v)str(p) + (n — 1)str(p)?
W if n is even;
:(n—l)xwx ( _18( _3)
—e if n is odd
[(n2)(n4)r if n is even;
3 5 )
T 32
[ S } , if nis odd
(n=12mn-2)(n-4? (-Yn-2*n-4> . .
) T + o , if n is even;
(n—13n-3)(n—14)  (n—1)3(n—3)° i
= + i , if n is odd
(n = 1)(n = 2)(n — 4)*(5n — 6) if n is even;
_ 64 ’ ’
(n—1)3(n — 3)(5n — 19) -
o , if n is odd. =

Conclusion. All graphs considered in this manuscript are simple. We have
introduced two new topological indices for graphs called the first and second
stress indices by means of the stresses of vertices. Further, we established
some inequalities, proved some results and computed these stress indices for
some standard graphs. A large number of molecular-graph-based structure
descriptors (topological indices) depending on vertex degrees have been de-
fined in literature. But in this paper, we have defined the new topological
indices for graphs without using the degrees of vertices. These indices S1(G)
and S3(G) can be used for other classes of graphs and results in this direction
will be reported in subsequent papers. By investigating several properties of
these two indices in the forthcoming papers, it may be possible to discover
several molecular properties of some chemical molecules.
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