STABILITY OF GENERALIZED CUBE ROOT FUNCTIONAL (GCRF) EQUATIONS IN RANDOM NORMED SPACES

EENA GUPTA¹, RENU CHUGH², RAMU DUBEY^{3,*}, VISHNU NARAYAN MISHRA^{4,*}

¹Department of Mathematics,

Pt. NRS Govt. College, Rohtak-124001, Haryana, INDIA

²Department of Mathematics,

M. D. University, Rohtak-124001, Haryana, INDIA

^{3,*}Department of Mathematics,

J.C. Bose University of Science and Technology, YMCA, Faridabad 121 006, Haryana,

INDIA

^{4,*}Department of Mathematics,

Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya

Pradesh 484887, INDIA

*-Corresponding author

Email: eenasinghal160gmail.com (Eena Gupta),chugh.r10gmail.com

(Renu Chugh), rdubeyjiya@gmail.com, ramudubey@jcboseust.ac.in (Ramu Dubey) and vishnunarayanmishra@gmail.com (Vishnu Narayan Mishra)

ABSTRACT. In this paper, we introduce and investigate the stability of generalized cube root Functional (GCRF) Equation

 $C(al + bm + 3.a^{\frac{2}{3}}.l^{\frac{2}{3}}.b^{\frac{1}{3}}.m^{\frac{1}{3}} + 3.a^{\frac{1}{3}}.l^{\frac{1}{3}}.b^{\frac{2}{3}}.m^{\frac{2}{3}}) = a^{\frac{1}{3}}C(l) + b^{\frac{1}{3}}C(m)$ (0.1)

having solution as $C(l) = l^{\frac{1}{3}}$ in the setting of random normed spaces using direct and fixed point approach. After that, we study the stability of GCRF equation in intutionistic random normed space (IR-NS) and non-archimedean random normed space (NA-RNS).

 $^{2010\} Mathematics\ Subject\ Classification.\ : 39B72,\ 39B82.$

Key words and phrases. Quadratic root functional equation, Ulam-Gavruta-Rassias stability, generalized Hyers-Ulam stability.

1. Introduction

The crucial point from where the concept of investigating HUS results of functional equations, differential equations, difference equations is the problem of Ulam [25]. Hyers [8] presented a partial solution to the problem of Ulam. Later, Hyers' theorem was extended and generalized in various forms by many mathematicians Aoki [23], T. Rassias [24], J. Rassias [12] and Gavruta [18]. These results instigated many mathematicians to investigate stability of various types of functional equations in different types of spaces. For detailed review of literature on this field, one can refer ([6], [17], [16], [11], [10], [3], [19], [20], [21]).

The various fundamental stabilities associated with stability of reciprocal adjoint and difference functional equations were demonstrated in ([14], [15]). In recent times, there are many papers published on the stabilities and applications of some multiplicative inverse functional equations, one can refer ([1], [7], [9]).

In this article, we introduce generalized cube root Functional (GCRF) Equation having solution as $C(l) = l^{\frac{1}{3}}$ and then find stability in different random normed spaces.

2. Preliminaries

In this segment, we recall few primary definitions which are used in next segment.

Definition 2.1. [5] A function τ : $[0,1] \times [0,1] \longrightarrow [0,1]$ defined on unit interval is fornamed as triangular norm (t - norm) if τ function is commutative, associative, monotonic and satisfies the boundary condition i.e. $\tau(a,1) = a \forall a \in [0,1]$.

$$\xi_{\tau}^{(n)} \text{ is defined for } t - norm \ \tau \text{ as } \xi_{\tau}^{(n)} = \begin{cases} 1, & \text{if } n = 0\\ \tau(\xi_{\tau}^{(n-1)}, \xi) & \text{if } n \ge 1 \end{cases} \text{ for every } 0 \le \xi \le 1$$

and $n \in \mathbb{N} \cup \{0\}$. A t-norm τ is said to be of Hadzic- type if the family $(\xi_{\tau}^{(n)})_{n \in \mathbb{N}}$ is equicontinuous at $\xi = 1$.

Definition 2.2. [5] A random normed space (RNS) is a triplet (\mathbb{S}, μ, τ) , where \mathbb{S} is a linear space, τ is a continuous t-norm, and $\mu : \mathbb{S} \to D^+$ is a function such that, the subsequent axioms satisfied:

- (RNS1) $\mu_l(t) = \epsilon_0(t) \text{ for all } t > 0 \text{ iff } l = 0;$
- (RNS2) $\mu_{\alpha l}(t) = \mu_l(\frac{t}{|\alpha|}) \forall l \in \mathbb{S}, \ \alpha \text{ is non-zero;}$
- (RNS3) $\mu_{l+m}(t+s) \geq \tau(\mu_l(t), \mu_m(s)) \forall l, m \in \mathbb{S} \text{ and } 0 \leq s, t.$

Some other fundamental notions are available in [5].

3. Generalized HUS of equation (0.1) in RNS

Throughout this section, let us assume that \mathbb{S} is a real Vector spaces, (\mathbb{Y}, μ', T_M) is a RNS and (\mathbb{Z}, μ, T_M) be a complete RNS. For the sake of proving our main results in a concise manner, let $D_C : \mathbb{S} \longrightarrow \mathbb{Z}$ be difference operators defined as follow

$$D_C(l,m) = C(al + bm + 3a^{\frac{2}{3}}l^{\frac{2}{3}}b^{\frac{1}{3}}m^{\frac{1}{3}} + 3a^{\frac{1}{3}}l^{\frac{1}{3}}b^{\frac{2}{3}}m^{\frac{2}{3}}) - a^{\frac{1}{3}}C(l) - b^{\frac{1}{3}}C(m)$$

for all $l, m \in S$. We examine the generalized Hyers-Ulam-Stability (HUS) of the GCRF equation beneath the minimum t-norm T_M .

Theorem 3.1. Assume $\Omega : \mathbb{S}^2 \longrightarrow \mathbb{Y}$ be a function such that, for some $0 < \alpha < a^{\frac{1}{3}}$, where a > 0

$$\mu'_{\Omega(al,am)}(t) \ge \mu'_{\alpha\Omega(l,m)}(t) \tag{3.1}$$

and

$$\lim_{n \to \infty} \mu'_{\Omega(a^n l, a^n m)}(a^{\frac{n}{3}}t) = 1$$

for all $l, m \in \mathbb{S}$ and t > 0. If $C : \mathbb{S} \longrightarrow \mathbb{Z}$ is a mapping with C(0) = 0 such that

$$\mu_{D_{C}(l,m)}(t) \ge \mu_{\Omega(l,m)}'(t) \ \forall \ l, m \in \mathbb{S}, \ t > 0,$$
(3.2)

then there exists one and only one GCRF $C_3 : \mathbb{S} \longrightarrow \mathbb{Z}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \ge \mu_{\Omega(l,0)}'\left(t(a^{\frac{1}{3}}-\alpha)\right) \ \forall \ l,m \in \mathbb{S}, \ t > 0.$$
(3.3)

Proof. After using m=0 in (3.2), we get

$$\mu_{D_{C}(l,0)}(t) \ge \mu'_{\Omega(l,0)}(t)$$

$$\mu_{\frac{C(al)}{a^{\frac{1}{3}}} - C(l)}(t) \ge \mu'_{\Omega(l,0)}(ta^{\frac{1}{3}})$$
(3.4)

for all $l \in \mathbb{S}$ and t > 0. Now replacing l by $a^n l$ in (3.4), we have

$$\mu_{\frac{C(a^{n+1}l)}{a^{\frac{1}{3}(n+1)}} - \frac{C(a^{n}l)}{a^{\frac{1}{3}(n)}}}(t) \ge \mu_{\Omega(l,0)}^{'}(ta^{\frac{1}{3}}(\frac{a^{\frac{1}{3}}}{\alpha})^{n})$$

for all $l \in \mathbb{S}$ and t > 0. Since, $\frac{C(a^n l)}{a^{(\frac{1}{3})n}} - C(l) = \sum_{k=0}^{n-1} \frac{C(a^{k+1}l)}{a^{\frac{1}{3}(k+1)}} - \frac{C(a^k l)}{a^{\frac{1}{3}(k)}}$, we get

$$\mu_{\frac{C(a^{n}l)}{a^{(\frac{1}{3})n}}-C(l)}\left(\sum_{k=0}^{n-1}\frac{1}{a^{\frac{1}{3}}}(\frac{\alpha}{a^{\frac{1}{3}}})^{k}t\right) \ge T_{M}\left\{\mu_{\Omega(l,0)}^{'}(t), \ 0 \le k \le n-1, \ k \in W\right\} = \mu_{\Omega(l,0)}^{'}(t)$$
(3.5)

for all $l \in \mathbb{S}$ and t > 0. Letting l by $a^m l$ in (3.5), we obtain

$$\mu_{\frac{C(a^{n+m_l})}{a^{\frac{1}{3}(n+m)}} - \frac{C(a^{m_l})}{a^{\frac{1}{3}(m)}}}(t) \ge \mu_{\Omega(l,0)}'\left(\frac{ta^{\frac{1}{3}}}{\sum_{k=m}^{m+n-1}(\frac{\alpha}{a^{\frac{1}{3}}})^k}\right)$$
(3.6)

for all $l \in \mathbb{S}$, $n, m \in \mathbb{Z}$ with $0 \leq m < n$ and t > 0. Since $0 < \alpha < a^{\frac{1}{3}}$, the sequence $\{\frac{C(a^n l)}{a^{\frac{n}{3}}}\}$ is a Cauchy sequence but (\mathbb{Z}, μ, T_M) is complete RNS so converges to some point (say) $C_3(l) \in \mathbb{Z}$. Fix $l \in \mathbb{S}$ and take m = 0 in (3.6). We get

$$\mu_{\frac{C(a^{n_{l}})}{a^{(\frac{1}{3})n}} - C(l)}(t) \ge \mu_{\Omega(l,0)}^{'}\left(\frac{ta^{\frac{1}{3}}}{\sum_{k=0}^{n-1}(\frac{\alpha}{a^{\frac{1}{3}}})^{k}}\right)$$

and so, for any $\delta > 0$,

$$\mu_{C(l)-C_{3}(l)}(\delta+t) \geq T_{M}\left(\mu_{C_{3}(l)-\frac{C(a^{n}l)}{a^{(\frac{1}{3})n}}}(\delta), \mu_{\frac{C(a^{n}l)}{a^{(\frac{1}{3})n}}-C(l)}(t)\right)$$
$$\geq T_{M}\left(\mu_{C_{3}(l)-\frac{C(a^{n}l)}{a^{(\frac{1}{3})n}}}(\delta), \mu_{\Omega(l,0)}'\left(\frac{ta^{\frac{1}{3}}}{\sum_{k=0}^{n-1}(\frac{\alpha}{a^{\frac{1}{3}}})^{k}}\right)\right)$$
(3.7)

for all $l \in \mathbb{S}, t > 0$. Putting $n \longrightarrow \infty$ in (3.7), we get

$$\mu_{C(l)-C_3(l)}(\delta+t) \ge \mu'_{\Omega(l,0)}\left(t(a^{\frac{1}{3}}-\alpha)\right)$$
(3.8)

Here, δ is erratic and by picking δ to 0 in (3.8), we get

$$\mu_{C(l)-C_{3}(l)}(t) \ge \mu_{\Omega(l,0)}^{'}\left(t(a^{\frac{1}{3}}-\alpha)\right)$$
(3.9)

for all $l \in S$, t > 0. Hence, we conclude that inequality (3.3) holds. After changing l and m by $a^n l$ and $a^n m$ in (3.2), respectively, we obtain

$$\mu_{\frac{D_{C}(a^{n}l,a^{n}m)}{a^{\frac{n}{3}}}}(t) \ge \mu_{\Omega(a^{n}l,a^{n}m)}'(a^{\frac{n}{3}}t)$$

for all $l, m \in \mathbb{S}, t > 0$. Since $\lim_{n \to \infty} \mu'_{\Omega(a^n l, a^n m)}(a^{\frac{n}{3}}t) = 1$ is given in theorem. After using this, we get C_3 satisfies the equation (0.1) and hence C_3 is GCR mapping. For proving the uniqueness of the GCRF C_3 , suppose there exists another mapping C_3^{\bullet} : $\mathbb{S} \longrightarrow \mathbb{Z}$ which assures (3.3). For fixed $l \in \mathbb{S}, C_3(a^n l) = a^{\frac{n}{3}}C_3(l)$ and $C_3^{\bullet}(a^n l) = a^{\frac{n}{3}}C_3^{\bullet}(l)$ $\forall n \in \mathbb{Z}^+$. Thus it pursues from (3.3) that

$$\begin{split} \mu_{C_{3}(l)-C_{3}^{\bullet}(l)}(t) &= \mu_{\frac{C_{3}(a^{n}l)}{a^{\frac{n}{3}}} - \frac{C_{3}^{\bullet}(a^{n}l)}{a^{\frac{n}{3}}}}(t) \\ &\geq T_{M}\left(\mu_{\frac{C_{3}(a^{n}l)}{a^{\frac{n}{3}}} - \frac{C(a^{n}l)}{a^{\frac{n}{3}}}}(\frac{t}{2}), \ \mu_{\frac{C(a^{n}l)}{a^{\frac{n}{3}}} - \frac{C_{3}^{\bullet}(a^{n}l)}{a^{\frac{n}{3}}}}(\frac{t}{2})\right) \\ &\geq \mu_{\Omega(l,0)}^{'}\left(t(a^{\frac{1}{3}} - \alpha)(\frac{a^{1/3}}{\alpha})^{n}\right) \end{split}$$

As $\lim_{n\to\infty} \left(\left(\frac{a^{1/3}}{\alpha}\right)^n (a^{\frac{1}{3}} - \alpha)t \right) = \infty$, we have $\mu_{C_3(l)-C_3^{\bullet}(l)}(t) = 1 \quad \forall t > 0$. Hence, we obtain the uniqueness of GCR mapping C_3 . This proves the result.

Theorem 3.2. Assume $\Omega: \mathbb{S}^2 \longrightarrow \mathbb{Y}$ is a mapping such that, $\alpha > a^{\frac{1}{3}}$, where a > 0

$$\mu'_{\Omega(\frac{l}{a},\frac{m}{a})}(t) \ge \mu'_{\Omega(l,m)}(\alpha t)$$
(3.10)

and

$$\lim_{n \to \infty} \mu_{a^{\frac{n}{3}}\Omega(\frac{l}{a^n},\frac{m}{a^n})}(t) = 1$$

for all $l, m \in \mathbb{S}$ and t > 0. If $C : \mathbb{S} \longrightarrow \mathbb{Z}$ is a mapping with C(0) = 0 such that

$$\mu_{D_C(l,m)}(t) \ge \mu_{\Omega(l,m)}(t) \tag{3.11}$$

for all $l, m \in \mathbb{S}$ and t > 0, then, there exists one and only one GCR mapping $C_3 : \mathbb{S} \longrightarrow \mathbb{Z}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \ge \mu_{\Omega(l,0)}^{'}\left(t(\alpha - a^{\frac{1}{3}})\right)$$
(3.12)

for all $l \in \mathbb{S}$ and t > 0.

Proof. Putting m=0 in (3.11) and after that replacing l by $\frac{l}{a}$, we obtain

$$\mu_{C(l)-a^{\frac{1}{3}}C(\frac{l}{a})}(t) \ge \mu_{\Omega(l,0)}(\alpha t)$$
(3.13)

for all $l \in \mathbb{S}$ and t > 0. Implementing the triangle inequality, we get

$$\mu_{C(l)-a^{\frac{n}{3}}C(\frac{l}{a^{n}})}(t) \ge \mu_{\Omega(l,0)}^{'}\left(\frac{t\alpha}{\sum_{k=m}^{m+n-1}(\frac{a^{\frac{1}{3}}}{\alpha})^{k}}\right)$$

for all $l \in \mathbb{S}$ and t > 0. Then the sequence $\{a^{\frac{n}{3}}C(\frac{l}{a^n})\}$ is a Cauchy sequence. but (\mathbb{Z}, μ, T_M) is complete RNS so converges to some point (say) $C_3 : \mathbb{S} \longrightarrow \mathbb{Z}$ such that

$$C_3(l) = \lim_{n \to \infty} a^{\frac{n}{3}} C(\frac{l}{a^n}) \ \forall \ l \in \mathbb{S}.$$

This mapping C_3 satisfies (0.1) and (3.12). Remaining proof is identical to proof of the previous theorem. This gives the required result.

Corollary 3.3. Assume $\Phi \ge 0$ is a real number and n_0 is a fixed unit point of \mathbb{Y} . If $C: \mathbb{S} \longrightarrow \mathbb{Z}$ is a mapping with C(0) = 0 which satisfies

$$\mu_{D_C(l,m)}(t) \ge \mu'_{\Phi n_0}(t)$$

for all $l, m \in S$ and t > 0, then there exists one and only one GCRF $C_3 : S \longrightarrow \mathbb{Z}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \geq \mu_{\Phi n_{0}}^{'}(\frac{ta^{\frac{1}{3}}}{2}) \text{ for all } l \in \mathbb{S}, \ t > 0.$$

Proof. Let $\Phi : \mathbb{S}^2 \longrightarrow \mathbb{Y}$ be described by $\Phi(l, m) = \Phi n_0$. and put $\alpha = \frac{a^{\frac{1}{3}}}{2}$ in theorem (3.1), we get the reuired result.

Corollary 3.4. Let 0 < p, $q < \frac{1}{3}$ be real numbers and n_0 be a fixed unit point of \mathbb{Y} . If $C : \mathbb{S} \longrightarrow \mathbb{Z}$ is a mapping with C(0) = 0 which satisfies

$$\mu_{D_{C}(l,m)}(t) \geq \begin{cases} & \mu_{(\|l\|^{p}+\|m\|^{q})n_{0}}^{'}(t) \text{ or,} \\ & \mu_{(\|l\|^{p}\|m\|^{q})n_{0}}^{'}(t) \text{ where, } p+q < \frac{1}{3} \end{cases}$$

for all $l, m \in S$ and t > 0, then there exists one and only one GCRF $C_3 : S \longrightarrow \mathbb{Z}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \geq \begin{cases} & \mu_{n_{0}\|l\|^{p}}^{'}(t(a^{\frac{1}{3}}-a^{p})) \text{ or,} \\ & \epsilon_{0}(t(a^{\frac{1}{3}}-a^{p})) \end{cases}$$

for all $l \in \mathbb{S}$ and $t > 0$, where $\epsilon_{0}(t) = \begin{cases} & 0, \text{ if } 0 \geq t \\ & 1, \text{ if } 0 < t. \end{cases}$

Proof. Let $\Phi : \mathbb{S}^2 \longrightarrow \mathbb{Y}$ be defined by $\Phi(l, m) = (||l||^p + ||m||^q)n_0$ or $(||l||^p ||m||^q)$ and put $\alpha = a^p$ in theorem (3.1), we obtain the required decision.

Corollary 3.5. Let $0 be real numbers and <math>n_0$ be a fixed unit point of \mathbb{Y} . If $C : \mathbb{S} \longrightarrow \mathbb{Z}$ is a mapping with C(0) = 0 which satisfies

$$\mu_{D_{C}(l,m)}(t) \ge \mu_{(\|l\|^{p}\|m\|^{q} + \|l\|^{p+q} + \|m\|^{p+q})n_{0}}(t)$$

for all $l, m \in \mathbb{S}$ and t > 0, then there exists one and only one GCR mapping $C_3 : \mathbb{S} \longrightarrow \mathbb{Z}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \ge \mu_{n_{0}\|l\|^{p+q}}'(t(a^{\frac{1}{3}}-a^{p}))$$

for all $l \in \mathbb{S}$ and t > 0.

Proof. Let $\Phi : \mathbb{S}^2 \longrightarrow \mathbb{Y}$ be defined by $\Phi(l, m) = (\|l\|^p \|m\|^q + \|l\|^{p+q} + \|m\|^{p+q})n_0$. and put $\alpha = a^p$ in theorem (3.1), we obtain the desired result.

4. Non-Archimedean random normed space (NA-RNS)

A field κ equipped with a function $|.|: \kappa \to [0, \infty]$ is said to be a non-Archimedean field for which |u| = 0 iff u = 0, |uv| = |u||v|, and $|u+v| \le \max\{|u|, |v|\}$ for all $u, v \in \kappa$. It is clear that |-1| = |1| = 1 and $|u| \le 1 \forall u \in \mathbb{N}$.

Suppose that X is a vector space over a field κ with a "non-Archimedean" non-trivial valuation |.|.

Definition 4.1. [13] A function $\|.\|: X \to [0, \infty]$ is fornamed to be a "non-Archimedean norm" if following axioms are satisfied:

- (i) ||l|| = 0 iff l = 0
- (ii) ||al|| = ||a|| ||l||, for any $a \in \kappa$, $l \in X$;
- (iii) $||l + m|| \le \max\{||m||, ||l||\}$ for $l, m \in X$ (ultrametric).

Then $(X, \|.\|)$ is fornamed "non-Archimedean normed space".

Definition 4.2. [13] NA-RNS is a triplet (X, μ, T) , where X is a vector space over a "non-Archimedean field" κ , T is a continuous t-norm, and $\mu : X \to D^+$ is a mapping that satisfies the axioms given by:

- (NA-RNS1) $\mu_l(t) = \epsilon_0(t) \forall t > 0 \text{ iff } l = 0;$
- (NA-RNS2) $\mu_{\alpha l}(t) = \mu_l(\frac{t}{|\alpha|}) \ \forall \ l \in X, \ t > 0, \ \alpha \neq 0;$
- (NA-RNS3) $\mu_{l+m}(max\{s,t\}) \geq T(\mu_l(s), \mu_m(t)) \forall l, m \in X \text{ and } t, s \geq 0.$

5. Generalized Ulam-Hyers stability of (0.1) in NA-RNS

Let S be a linear space over non-Archimedean field K and (X, μ, T) be a complete NA-RNS over K.

Now, we describe random approximately GCR mapping. Assume $\Phi : \mathbb{S} \times \mathbb{S} \times [0, \infty] \longrightarrow \mathbb{R}$ be a distribution function such that $\Phi(l, m, .)$ is symmetric, nondecreasing and

$$\Phi(cl,cl,t) \ge \Phi(l,l,\frac{t}{|c|})$$

where $l \in \mathbb{S}, c \neq 0$.

Definition 5.1. A mapping $C : \mathbb{S} \longrightarrow \mathbb{X}$ is Φ -approximately GCR if

$$\mu_{C(al+bm+3a^{\frac{2}{3}}l^{\frac{2}{3}}b^{\frac{1}{3}}m^{\frac{1}{3}}+3a^{\frac{1}{3}}l^{\frac{1}{3}}b^{\frac{2}{3}}m^{\frac{2}{3}})-a^{\frac{1}{3}}C(l)-b^{\frac{1}{3}}C(m)}(t) \ge \Phi(l,m,t)$$
(5.1)

for all $l, m \in \mathbb{S}, t > 0$.

Theorem 5.2. Assume S be a linear space over non-Archimedean field K and (X, μ, T) be a complete NA-RNS over K. Let $C : S \longrightarrow X$ be a Φ -approximately GCR mapping and C(0) = 0. If for some $\alpha \in \mathbb{R}^+$ and for some integer k with $|a^k| < \alpha$,

$$\Phi(a^{-k}l, a^{-k}m, t) \ge \Phi(l, m, \alpha t)$$
(5.2)

and

$$\lim_{n \to \infty} T_{i=n}^{\infty} M(l, \frac{\alpha^{i} t}{|a^{ik}|}) = 1$$
(5.3)

then there exists one and only one GCR mapping $C_3: \mathbb{S} \longrightarrow \mathbb{X}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \ge T_{i=1}^{\infty} M\left(l, \frac{\alpha^{i+1}t}{|a^{ik}|}\right) \ \forall \ l \in \mathbb{S}, \ t > 0,$$
(5.4)

where

$$M(l,t):=T(\Phi(l,0,t),\Phi(al,0,t),...,\Phi(a^{k-1}l,0,t)) \ \forall \ l\in \mathbb{S}, \ t>0.$$

Proof. Firstly, with the help of induction applying on j, we show that for each $l \in S$, t > 0 and $j \ge 1$,

$$\mu_{C(a^{j}l)-a^{j}{}^{3}C(l)}(t) \ge M_{j}(l,t) := T(\Phi(l,0,t),...,\Phi(a^{j-1}l,0,t)).$$
(5.5)

Letting m = 0 in (5.1), we get

$$\mu_{C(al)-a^{\frac{1}{3}}C(l)}(t) \ge \Phi(l,0,t)$$

Thus, condition (5.5) holds for j=1. Let us consider that (5.5) is true for all $j \ge 1$. Changing m by 0 and l by $a^{j}l$ in(5.1), we have

$$\mu_{C(a^{j+1}l)-a^{\frac{1}{3}}C(a^{j}l)}(t) \ge \Phi(a^{j}l,0,t)$$

Since $|a^{\frac{1}{3}}| \leq 1$

$$\begin{split} \mu_{C(a^{j+1}l)-a^{\frac{j+1}{3}}C(l)}(t) &\geq T\left(\mu_{C(a^{j+1}l)-a^{\frac{1}{3}}C(a^{j}l)}(t), \mu_{a^{\frac{1}{3}}C(a^{j}l)-a^{\frac{j+1}{3}}C(l)}(t)\right) \\ &= T\left(\mu_{C(a^{j+1}l)-a^{\frac{1}{3}}C(a^{j}l)}(t), \mu_{C(a^{j}l)-a^{\frac{j}{3}}C(l)}(\frac{t}{|a^{\frac{1}{3}}|})\right) \\ &\geq T\left(\mu_{C(a^{j+1}l)-a^{\frac{1}{3}}C(a^{j}l)}(t), \mu_{C(a^{j}l)-a^{\frac{j}{3}}C(l)}(t)\right) \\ &\geq T(\Phi(a^{j}l,0,t), M_{j}(l,t)) \\ &= M_{j+1}(l,t) \end{split}$$

for all $l \in \mathbb{S}$. Thus (5.5) is true for all $j \ge 1$. Particularly

$$\mu_{C(a^{k}l)-a^{\frac{k}{3}}C(l)}(t) \ge M(l,t) \tag{5.6}$$

Replacing l by $a^{-(kn+k)}l$ in (5.6) and using (5.2), we get

$$\mu_{C\left(\frac{l}{a^{nk}}\right)-a^{\frac{k}{3}}C\left(\frac{l}{a^{kn+k}}\right)}(t) \ge M\left(\frac{l}{a^{kn+k}}, t\right) \ge M\left(l, \alpha^{n+1}t\right)$$
(5.7)

for all $l \in \mathbb{S}, t > 0$ and n=0,1,2,... Then

$$\mu_{(a^{\frac{k}{3}})^{n}C(\frac{l}{a^{nk}})-(a^{\frac{k}{3}})^{n+1}C(\frac{l}{a^{kn+k}})}(t) \ge M\left(l, \frac{\alpha^{n+1}t}{|(a^{\frac{k}{3}})^{n}|}\right)$$

for all $t>0,\,l\in\mathbb{S}$ and n=0,1,2,... . Therefore,

$$\begin{split} \mu_{(a^{\frac{k}{3}})^{n}C(\frac{l}{a^{nk}})-(a^{\frac{k}{3}})^{n+p}C(\frac{l}{a^{k(n+p)}})}(t) &\geq T_{j=n}^{n+p} \left(\mu_{(a^{\frac{k}{3}})^{j}C(\frac{l}{a^{jk}})-(a^{\frac{k}{3}})^{j+1}C(\frac{l}{a^{k(j+1)}})}(t) \right) \\ &\geq T_{j=n}^{n+p} M\left(l, \frac{\alpha^{j+1}t}{|a^{\frac{k}{3}}|} \right) \\ &\geq T_{j=n}^{n+p} M\left(l, \frac{\alpha^{j+1}t}{|a^{kj}|} \right) \end{split}$$

Since $\lim_{n\to\infty} T_{j=n}^{\infty} M(l, \frac{\alpha^{j+1}t}{|a^{kj}|}) = 1$ for all $l \in \mathbb{S}, t > 0, \{(a^{\frac{k}{3}})^n C(\frac{l}{a^{nk}})\}$ is a Cauchy sequence in the complete NA-RNS (\mathbb{X}, μ, T) . Hence, a mapping $C_3 : \mathbb{S} \longrightarrow \mathbb{X}$ can be

defined for which

$$\lim_{n \to \infty} \mu_{(a^{\frac{k}{3}})^n C(\frac{l}{a^{nk}}) - C_3(l)}(t) = 1$$
(5.8)

for all $l \in \mathbb{S}$, t > 0. Now, for each $n \ge 1$, $l \in \mathbb{S}$ and t > 0,

$$\begin{split} \mu_{C(l)-(a^{\frac{k}{3}})^{n}C(\frac{l}{a^{nk}})}(t) &= \mu_{\sum_{i=0}^{n-1}(a^{\frac{k}{3}})^{i}C(\frac{l}{a^{ki}})-(a^{\frac{k}{3}})^{i+1}C(\frac{l}{a^{k(i+1)}})}(t) \\ &\geq T_{i=0}^{n-1}\left(\mu_{(a^{\frac{k}{3}})^{i}C(\frac{l}{a^{ki}})-(a^{\frac{k}{3}})^{i+1}C(\frac{l}{a^{k(i+1)}})}(t)\right) \\ &\geq T_{i=0}^{n-1}M\left(l,\frac{\alpha^{i+1}t}{|a^{\frac{k}{3}}|^{i}}\right) \end{split}$$

Therefore,

$$\mu_{C(l)-C_{3}(l)}(t) \geq T\left(\mu_{C(l)-(a^{\frac{k}{3}})^{n}C(\frac{l}{a^{nk}})}(t), \mu_{(a^{\frac{k}{3}})^{n}C(\frac{l}{a^{nk}})-C_{3}(l)}(t)\right)$$
$$\geq T\left(T_{i=0}^{n-1}M\left(l, \frac{\alpha^{i+1}t}{|a^{\frac{k}{3}}|^{i}}\right), \mu_{(a^{\frac{k}{3}})^{n}C(\frac{l}{a^{nk}})-C_{3}(l)}(t)\right)$$

by letting $n \longrightarrow \infty$, we obtain

$$\mu_{C(l)-C_3(l)}(t) \ge T_{i=1}^{\infty} M\left(l, \frac{\alpha^{i+1}t}{|a^{ki}|}\right).$$

This gives (5.4) is true.

T being continuous, from a famous result in probabilistic metric space ([4]), it follows that

$$\begin{split} \lim_{n \to \infty} \mu_{(a^{\frac{k}{3}})^n C(\frac{al+bm+3a^{\frac{2}{3}} \cdot l^{\frac{2}{3}} \cdot b^{\frac{1}{3}} \cdot m^{\frac{1}{3}} + 3a^{\frac{1}{3}} \cdot l^{\frac{1}{3}} \cdot b^{\frac{2}{3}} \cdot m^{\frac{2}{3}}}{(a^{\frac{k}{3}})^n}) \cdot -(a^{\frac{k}{3}})^n \cdot a^{\frac{1}{3}} \cdot C(\frac{l}{(a^{\frac{k}{3}})^n}) - (a^{\frac{k}{3}})^n \cdot b^{\frac{1}{3}} \cdot C(\frac{l}{(a^{\frac{k}{3}})^n}) \\ &= \mu_{C(al+bm+3a^{\frac{2}{3}} \cdot l^{\frac{2}{3}} \cdot b^{\frac{1}{3}} \cdot m^{\frac{1}{3}} + 3a^{\frac{1}{3}} \cdot l^{\frac{1}{3}} \cdot b^{\frac{2}{3}} \cdot m^{\frac{2}{3}}) - a^{\frac{1}{3}} C(l) - b^{\frac{1}{3}} C(m)}(t) \end{split}$$

for almost all t > 0.

Moreover, replacing l by $a^{-kn}l$ and $m a^{-kn}m$ in (5.1) and using (NA-RNS2) and (5.2), we obtain

$$\begin{split} & \mu_{(a^k)^n C(\frac{al+bm+3a^{\frac{2}{3}} \cdot l^{\frac{2}{3}} \cdot b^{\frac{1}{3}} \cdot m^{\frac{1}{3}} + 3a^{\frac{1}{3}} \cdot l^{\frac{1}{3}} \cdot b^{\frac{2}{3}} \cdot m^{\frac{2}{3}}}{a^{kn}}) \cdot -(a^k)^n \cdot a^{\frac{1}{3}} \cdot C(\frac{l}{(a^k)^n}) - (a^k)^n \cdot b^{\frac{1}{3}} \cdot C(\frac{l}{(a^k)^n})} {t} \end{pmatrix}$$

$$\geq \Phi(a^{-kn}l, \ a^{-kn}m, \frac{t}{|a^k|^n}) \geq \Phi(l, \ m, \frac{\alpha^n t}{|a^k|^n})$$

for all $l, m \in \mathbb{S}$ and all t > 0. Since $\lim_{n \to \infty} \Phi(l, m, \frac{\alpha^n t}{|a^k|^n}) = 1$, we deduce that C_3 is a GCR mapping.

148

If $C_3^{\bullet} : \mathbb{S} \longrightarrow \mathbb{X}$ is another GCR mapping such that $\mu_{C_3^{\bullet}(l)-C(l)}(t) \ge M(l,t)$ for all $l \in \mathbb{S}$ and t > 0, then for each $n \in \mathbb{N}, l \in \mathbb{S}$ and t > 0

$$\mu_{C_{3}^{\bullet}(l)-C(l)}(t) \ge T\left(\mu_{C_{3}^{\bullet}(l)-(a^{\frac{k}{3}})^{n}C(\frac{l}{(a^{k})^{n}})}(t), \mu_{(a^{\frac{k}{3}})^{n}C(\frac{l}{(a^{k})^{n}})-C_{3}(l)}(t)\right)$$

By using (5.8), we conclude that $C_3^{\bullet} = C_3$.

Corollary 5.3. Let S be a vector space over non-Archimedean field \mathbb{K} and (\mathbb{X}, μ, T) be a complete NA-RNS over \mathbb{K} under a t-norm $T \in \mathcal{H}$. Suppose that $C : S \longrightarrow \mathbb{X}$ is a Φ -approximately GCR mapping. If

$$\Phi(a^{-k}l, a^{-k}m, t) \ge \Phi(l, m, \alpha t) \text{ for } x \in X, \ t > 0,$$
(5.9)

for some $\alpha \in \mathbb{R}^+$ and for some integer k with $|a^k| < \alpha$, then there exists one and only one GCR mapping $C_3 : \mathbb{S} \longrightarrow \mathbb{X}$ such that

$$\mu_{C(l)-C_{3}(l)}(t) \ge T_{i=1}^{\infty} M\left(l, \frac{\alpha^{i+1}t}{|a|^{ik}}\right)$$
(5.10)

for all $l \in \mathbb{S}$, t > 0, where

$$M(l,t) := T(\Phi(l,0,t), \Phi(al,0,t), ..., \Phi(a^{k-1},0,t))$$

for all $l \in \mathbb{S}$, t > 0.

Proof. Since $\lim_{i\to\infty} M\left(l, \frac{\alpha^i t}{|a|^{ik}}\right) = 1$, for all $l \in \mathbb{S}$, t > 0 and T is of Hadzic type, hence, we obtain

$$\lim_{n \to \infty} T_{i=n}^{\infty} M\left(l, \frac{\alpha^{i+1}t}{|a^{\frac{1}{3}}|^{ik}}\right) = 1 \text{ for all } l \in \mathbb{S}, \ t > 0.$$

Now we can apply Theorem (5.2) to get the result.

6. Fixed point approach

This segment is dedicated to the fixed point approach for finding "random stability" of the GCRF Equation. Luxemburg ([26]) introduced the notion of "generalized metric space".

Lemma 6.1. [13] Let (ψ, d) be a "complete generalized metric space" and $T : \psi \longrightarrow Y$ be a strict contraction with the "Lipschitz constant" k such that $d(l_0, A(l_0)) < +\infty$ for some $l_0 \in X$. Then T has a unique fixed point in the set $Y := \{m \in \psi, d(l_0, m) < \infty\}$ and the sequence $\{T^n(l)\}$ converges to the fixed point l^* for every $l \in Y$. Also, $d(l_0, T(l_0)) \leq \omega$ gives $d(l^*, l_0) \leq \frac{\omega}{1-k}$.

let $H : \mathbb{S} \times R \longrightarrow [0,1]$ be a function where \mathbb{S} is a linear space, (\mathbb{X}, ν, T_M) is a complete RNS such that $H(l, .) \in D^+$ for all $x \in \mathbb{S}$. Suppose set $F := \{k : \mathbb{S} \longrightarrow \mathbb{X}, k(0) = 0\}$ and the mapping $d_H : F \times F \longrightarrow R^+$ as

$$d_H(h,k) = \inf\{b \in R^+, \nu_{h(l)-k(l)}(bt) \ge H(l,t), \ \forall \ l \in \mathbb{S}, \ t > 0\}$$

Theorem 6.2. Let \mathbb{S} be a real Vector space, (\mathbb{X}, μ, T_M) a complete RNS and $C : \mathbb{S} \longrightarrow \mathbb{X}$ is a mapping with C(0) = 0 and $\Phi : \mathbb{S}^2 \longrightarrow D^+$ be a mapping with the inequality

for
$$0 < \alpha < a^{\frac{1}{3}} : \Phi_{al,am}(\alpha t) \ge \Phi_{l,m}(t), \ \forall \ l, \ m \in \mathbb{S} \ and \ t > 0$$
 (6.1)

If

$$\mu_{C(al+bm+3a^{\frac{2}{3}},l^{\frac{2}{3}},b^{\frac{1}{3}},m^{\frac{1}{3}}+3a^{\frac{1}{3}},l^{\frac{1}{3}},b^{\frac{2}{3}},m^{\frac{2}{3}})-a^{\frac{1}{3}}C(l)-b^{\frac{1}{3}}C(m)}(t) \ge \Phi_{l,m}(t)$$
(6.2)

 $\forall l, m \in \mathbb{S}$, then there exists one and only one GCR mapping $C_3 : \mathbb{S} \longrightarrow \mathbb{X}$ such that

$$\mu_{C_3(l)-C(l)}(t) \ge \Phi_{l,0}((a^{\frac{1}{3}} - \alpha)t), \ \forall \ l, \ m \in \mathbb{S}, \ t > 0.$$
(6.3)

Moreover, $C_3(l) = \lim_{n \to \infty} \frac{C(a^n l)}{a^{\frac{n}{3}}}$

Proof. Put m = 0 in (6.2), we get

$$\begin{split} & \mu_{C(al)-a^{\frac{1}{3}}C(l)}(t) \geq \Phi_{l,0}(t) \text{ or } \\ & \mu_{\frac{C(al)}{a^{\frac{1}{3}}}-C(l)}(t) \geq \Phi_{l,0}(a^{\frac{1}{3}}t) \end{split}$$

for all $l \in \mathbb{S}, t > 0$. Let $H(l, t) := \Phi_{l,0}(a^{\frac{1}{3}}t)$. Suppose set

$$F := \{k : \mathbb{S} \longrightarrow \mathbb{X}, \ k(0) = 0\}$$

and the mapping $d_H: F \times F \longrightarrow R^+$ as

$$d_H(h,k) = \inf\{b \in R^+, \nu_{h(l)-k(l)}(bt) \ge H(l,t), \ \forall \ l \in \mathbb{S}, \ t > 0\}$$

Using above lemma, (F, d_H) is a "complete generalized metric space". Next, suppose a linear mapping $J: F \longrightarrow F$ for which $Jh(l) := \frac{1}{a^{\frac{1}{3}}}h(al)$.

We prove J to be a strictly contractive with the Lipschitz constant $k = \frac{\alpha}{a^{\frac{1}{3}}}$. For this, let $h, k \in F$ be mappings such that $d_H(h,k) < \epsilon$. Then

$$\mu_{h(l)-k(l)}(\epsilon t) \ge H(l,t), \ \forall \ l \in \mathbb{S}, \ t > 0,$$

hence

$$\mu_{Jh(l)-Jk(l)}(\frac{\alpha}{a^{\frac{1}{3}}}\epsilon t) = \mu_{\frac{h(al)-k(al)}{a^{\frac{1}{3}}}}(\frac{\alpha}{a^{\frac{1}{3}}}\epsilon t) = \mu_{h(al)-k(al)}(\alpha\epsilon t) \ge H(al,\alpha t)$$

for all $l \in \mathbb{S}$, t > 0. Since $H(al, \alpha t) \ge H(l, t)$, then

$$\mu_{Jh(l)-Jk(l)}\left(\frac{\alpha}{a^{\frac{1}{3}}}\epsilon t\right) \ge H(l,t),$$

$$d_H(h,k) < \epsilon \implies d_H(Jh,Jk) < \frac{\alpha}{a^{\frac{1}{3}}}\epsilon.$$

$$d_H(Jh,Jk) < \frac{\alpha}{a^{\frac{1}{3}}}d_H(h,k) \ \forall \ h, \ k \in F.$$

Now, from

$$\mu_{C(l)-\frac{C(al)}{a^{\frac{1}{3}}}}(t) \geq H(l,t)$$

it gives that $d_H(C, JC) \leq 1$. Using the [26] theorem, there exists a fixed point of J, i.e, there exists a mapping $C_3 : \mathbb{S} \longrightarrow \mathbb{X}$ such that $C_3(al) = a^{\frac{1}{3}}C_3(l)$ for all $l \in \mathbb{S}$. Therefore, for any $l \in \mathbb{S}$ and t > 0,

$$d_H(u,v) < \epsilon \implies \mu_{u(l)-v(l)}(t) \ge H(l,\frac{t}{\epsilon})$$

from $d_H(J^nC, C_3) \longrightarrow 0$, it follows that $\lim_{n \to \infty} \frac{C(a^n l)}{a^{\frac{n}{3}}} = C_3(l)$ for any $l \in \mathbb{S}$. Also $d_H(C, C_3) \leq \frac{1}{1-L}d(C, JC) \implies d_H(C, C_3) \leq \frac{1}{1-\frac{\alpha}{a^{\frac{1}{3}}}}$ from which it immediately follows $\mu_{C_3(l)-C(l)}\left(\frac{a^{\frac{1}{3}}t}{a^{\frac{1}{3}}-\alpha}\right) \geq H(l,t) \ \forall \ t > 0$ and all $l \in \mathbb{S}$. This means that

$$\mu_{C_3(l)-C(l)}(t) \ge H\left(l, \frac{a^{\frac{1}{3}}-\alpha}{a^{\frac{1}{3}}}t\right) \forall t > 0 \text{ and } l \in \mathbb{S}.$$

It follows that

$$\mu_{C_3(l)-C(l)}(t) \ge \Phi_{l,0}((a^{\frac{1}{3}}-\alpha)t) \ \forall \ t > 0 \ \text{and} \ \ l \in \mathbb{S}$$

Also, C_3 is the unique fixed point of J with the property: there exists a real number $k \ge 0$ such that $\mu_{C_3(l)-C(l)}(kt) \ge H(l,t)$ for all t > 0 and all $l \in \mathbb{S}$, as desired. \Box

7. Intutionistic random normed spaces (IR-NS)

In 2010, Chang et al. [22] introduced the notation of IR-NS.

Lemma 7.1. [22] Suppose that the set L^* and operation \leq_{L^*} described by:

 $L^* = \{(l_1, l_2) : (l_1, l_2) \in [0, 1]^2 \text{ and } l_1 + l_2 \le 1\},\$

 $(l_1, l_2) \leq_{L^*} (m_1, m_2) \Leftrightarrow l_1 \leq m_1, l_2 \geq m_2, \forall (l_1, l_2), (m_1, m_2) \in L^*.$

Then (L^*, \leq_{L^*}) is a "complete lattice".

Units are indicated by $0_{L^*} = (0,1)$ and $1_{L^*} = (1,0)$. Using the lattice (L^*, \leq_{L^*}) , definition of t-norm can be developed.

Definition 7.2. [22] A mapping $T : (L^*)^2 \to L^*$ is fornamed to be triangular norm (t-norm) if:

- (i) $T(l, 1_{L^*}) = x \ \forall l \in L^*$;
- (ii) $T(l,m) = T(m,l) \ \forall (l,m) \in (L^*)^2$;
- (iii) $T(l, T(m, n)) = T(T(l, m), n) \forall (l, m, n) \in (L^*)^3;$
- (iv) $l \leq_{L^*} l', m \leq_{L^*} m' \Rightarrow T(l,m) \leq_{L^*} T(l',m') \ \forall (l,l',m,m') \in (L^*)^4.$

Definition 7.3. [22] Let μ , ν : $X \times (0, \infty) \longrightarrow [0, 1]$ be "measure and non-measure distribution functions" such that $\mu_l(t) + \nu_l(t) \le 1 \forall l \in X, t > 0$. The triplet $(X, P_{\mu,\nu}, T)$ is fornamed to be IR-NS if X is a linear space, T is continuous t-norm and $P_{\mu,\nu} : X \times (0, \infty) \rightarrow$ L^* is a mapping satisfying

- (i) $P_{\mu,\nu}(l,0) = 0_{L^*};$
- (ii) $P_{\mu,\nu}(l,t) = 1_{L^*}$ iff l = 0;
- (iii) $P_{\mu,\nu}(\alpha l, t) = P_{\mu,\nu}(l, \frac{t}{|\alpha|}) \ \forall \ \alpha \neq 0;$
- (iv) $P_{\mu,\nu}(l+m,t+s) \ge_{L^*} T(P_{\mu,\nu}(l,t),P_{\mu,\nu}(m,s))$

for all $l, m \in X$ and t, s > 0. Then $P_{\mu,\nu}$ is called an IR-NS, where $P_{\mu,\nu}(l,t) = (\mu_l(t), \nu_l(t))$.

8. Generalized Ulam- Hyers stability of equation (0.1) in IR-NS

This segment deals with the "generalized Ulam- Hyers stability" of the GCRF equation in IR-NS.

Theorem 8.1. Let $C : \mathbb{S} \longrightarrow \mathbb{X}$ be a mapping with C(0) = 0 where \mathbb{S} is a linear space and $(\mathbb{X}, \mathbb{P}_{\mu,\nu}, T)$ is a complete IR-NS, for which there are $\xi, \Omega : \mathbb{S}^2 \longrightarrow D^+$, where $\xi(l, m)$ is represented by $\xi_{l, m}$ and $\Omega(l, m)$ is represented by $\Omega_{l, m}$, further $(\xi_{l, m}(t), \Omega_{l, m}(t))$ is represented by $Q_{\xi,\Omega}(l, m, t)$, with inequality:

$$\mathbb{P}_{\mu,\nu}(C(al+bm+3a^{\frac{2}{3}}.l^{\frac{2}{3}}.b^{\frac{1}{3}}.m^{\frac{1}{3}}+3a^{\frac{1}{3}}.l^{\frac{1}{3}}.b^{\frac{2}{3}}.m^{\frac{2}{3}})-a^{\frac{1}{3}}C(l)-b^{\frac{1}{3}}C(m),t) \geq_{L}^{*}Q_{\xi,\Omega}(l,m,t)$$

$$(8.1)$$

If

$$T_{i=1}^{\infty}(Q_{\xi,\Omega}(a^{m+i-1}l, 0, a^{\frac{-2(i-\frac{m}{2}+1)}{3}}t)) = 1_{L^*}$$
(8.2)

and

$$\lim_{n \to \infty} Q_{\xi,\Omega}(a^n l, a^n m, a^{\frac{n}{3}}t) = 1_{L^*} \ \forall \ l, \ m \in \mathbb{S} \ and \ t > 0,$$

$$(8.3)$$

then there exists one and only one GCRF $C_3 : \mathbb{S} \longrightarrow \mathbb{X}$ such that

$$\mathbb{P}_{\mu,\nu}(C(l) - C_3(l), t) \ge_{L^*} T^{\infty}_{i=1} Q_{\xi,\Omega}(a^{i-1}l, 0, a^{\frac{-2}{3}(i+1)}t).$$
(8.4)

Proof. Choosing m to be zero in (8.1), we have

$$\mathbb{P}_{\mu,\nu}\left(C(al) - a^{\frac{1}{3}}C(l), t\right) \ge_{L^{*}} Q_{\xi,\Omega}(l,0,t)$$
$$\mathbb{P}_{\mu,\nu}\left(\frac{1}{a^{\frac{1}{3}}}C(al) - C(l), t\right) \ge_{L^{*}} Q_{\xi,\Omega}(l,0,a^{\frac{1}{3}}t)$$
(8.5)

Therefore, it follows that

$$\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{k+1}l)}{a^{\frac{1}{3}(k+1)}} - \frac{C(a^{k}l)}{a^{\frac{1}{3}(k)}}, \frac{t}{a^{\frac{k}{3}}}\right) \ge_{L^{*}} Q_{\xi,\Omega}(a^{k}l, 0, a^{\frac{1}{3}}t)$$
(8.6)

which implies that

$$\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{k+1}l)}{a^{\frac{1}{3}(k+1)}} - \frac{C(a^{k}l)}{a^{\frac{k}{3}}}, t\right) \ge_{L^{*}} Q_{\xi,\Omega}(a^{k}l, 0, a^{\frac{1}{3}(k+1)}t)$$
(8.7)

that is,

$$\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{k+1}l)}{a^{\frac{1}{3}(k+1)}} - \frac{C(a^{k}l)}{a^{\frac{k}{3}}}, \frac{t}{a^{k+1}}\right) \ge_{L^{*}} Q_{\xi,\Omega}(a^{k}l, 0, a^{\frac{-2}{3}(k+1)}t)$$
(8.8)

 $\forall k \in \mathbb{N}$ and t > 0. Using triangular Inequality, it follows

$$\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{k}l)}{a^{\frac{k}{3}}} - C(l), t\right) \ge_{L^{*}} T_{k=0}^{n-1}\left(\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{k+1}l)}{a^{\frac{1}{3}(k+1)}} - \frac{C(a^{k}l)}{a^{\frac{k}{3}}}, \sum_{k=0}^{n-1} \frac{t}{a^{k+1}}\right)\right) \\
\ge_{L^{*}} T_{k=1}^{n}\left(Q_{\xi,\Omega}(a^{k-1}l, 0, a^{\frac{-2}{3}(k+1)}t)\right)$$
(8.9)

Now, to prove convergence of the $\{\frac{C(a^k l)}{a^{\frac{k}{3}}}\}$, replace l by $a^{\frac{k}{3}}l$ in (8.9), we have,

$$\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{k+m}l)}{a^{\frac{1}{3}(k+m)}} - \frac{C(a^{m}l)}{a^{\frac{m}{3}}}, t\right) \ge_{L^*} T_{i=1}^n Q_{\xi,\Omega}(a^{i+m-1}l, 0, a^{\frac{-2}{3}(i-\frac{m}{2}+1)}t).$$
(8.10)

for m, n > 0. Also, as $m \to \infty$ R.H.S. of the equation (8.10) tends to 1_L^* , therefore $\{\frac{C(a^k l)}{a^{\frac{k}{3}}}\}$ is a Cauchy sequence. So, we define a mapping C_3 such that $C_3(l) = \lim_{n\to\infty} \frac{C(a^k l)}{a^{\frac{k}{3}}}$ for all $l \in \mathbb{S}$.

Now, we prove that C_3 is a GCR mapping. Changing l, m with $a^n l$ and $a^n m$, respectively, in (8.1), we get

$$\mathbb{P}_{\mu,\nu}\left(\frac{C(a^{n}(al+bm+3a^{\frac{2}{3}}.l^{\frac{2}{3}}.b^{\frac{1}{3}}.m^{\frac{1}{3}}+3a^{\frac{1}{3}}.l^{\frac{1}{3}}.b^{\frac{2}{3}}.m^{\frac{2}{3}}))}{a^{\frac{n}{3}}}-a^{\frac{1}{3}}\frac{C(a^{n}l)}{a^{\frac{n}{3}}}-b^{\frac{1}{3}}\frac{C(a^{n}m)}{a^{\frac{n}{3}}},t)\\ \geq_{L}^{*}Q_{\xi,\Omega}(a^{n}l,a^{n}m,a^{\frac{n}{3}}t) \tag{8.11}$$

Hence, C_3 satisfies (0.1) for all $l, m \in \mathbb{S}$ as n tends to ∞ and using the limit $n \to \infty$ in (8.9), we find (8.4).

Now, for proving the uniqueness of GCR mapping C_3 satisfying (8.4), let us consider that there exists another GCR mapping C_3^{\bullet} subject to (8.4). Hence it follows from (8.4) that

$$\begin{split} & \mathbb{P}_{\mu,\nu}(C_{3}(l) - C_{3}^{\bullet}(l), t) \\ & \geq_{L}^{*} \mathbb{P}_{\mu,\nu}(C_{3}(a^{n}l) - C_{3}^{\bullet}(a^{n}l), a^{\frac{n}{3}}t) \\ & \geq_{L}^{*} T\left(\mathbb{P}_{\mu,\nu}(C_{3}(a^{n}l) - C(a^{n}l), a^{\frac{n}{3}-1}t), \mathbb{P}_{\mu,\nu}(C(a^{n}l) - C_{3}^{\bullet}(a^{n}l), a^{\frac{n}{3}-1}t)\right) \\ & \geq_{L}^{*} T\left(T_{i=1}^{\infty}Q_{\xi,\Omega}(a^{n+i-1}l, 0, a^{\frac{-2}{3}(i+1)+n}t), T_{i=1}^{\infty}Q_{\xi,\Omega}(a^{n+i-1}l, 0, a^{\frac{-2}{3}(i+1)+n}t)\right) \end{split}$$

for all $l \in S$. We prove the uniqueness of C_3 by taking $n \to \infty$ in (8.4). This gives the desired result.

Theorem 8.2. Let $C : \mathbb{S} \longrightarrow \mathbb{X}$ be a mapping where $(\mathbb{S}, \mathbb{P}'_{\mu',\nu'}, T)$ is an IR-NS and $(\mathbb{X}, \mathbb{P}_{\mu,\nu}, T)$ is a complete IR-NS, such that

$$\mathbb{P}_{\mu,\nu}(C(al+bm+3a^{\frac{2}{3}}.l^{\frac{2}{3}}.b^{\frac{1}{3}}.m^{\frac{1}{3}}+3a^{\frac{1}{3}}.l^{\frac{1}{3}}.b^{\frac{2}{3}}.m^{\frac{2}{3}})-a^{\frac{1}{3}}C(l)-b^{\frac{1}{3}}C(m),t)\geq_{L^{*}}\mathbb{P}'_{\mu',\nu'}(l+m,t)$$

for all t > 0 in which

$$\lim_{m \to \infty} T_{i=1}^{\infty} (\mathbb{P}'_{\mu',\nu'}(l, \ a^{\frac{-2(i-\frac{m}{2}+1)}{3}}t)) = 1_{L^*}$$

154

for all $l, m \in S$ and all t > 0, then there exists one and only one GCRF $C_3 : S \longrightarrow X$ such that

$$\mathbb{P}_{\mu,\nu}(C(l) - C_3(l), t) \ge_{L^*} T_{i=1}^{\infty} \mathbb{P}'_{\mu',\nu'}(l, \ a^{\frac{-2}{3}(i-1)}t).$$

Example 8.3. Let $(\mathbb{S}, \|.\|)$ be a Banach algebra, $(\mathbb{S}, \mathbb{P}_{\mu,\nu}, M)$ an IR-NS in which

$$\mathbb{P}_{\mu,\nu}(l,t) = \left(\frac{t}{t+\|l\|}, \frac{\|l\|}{t+\|l\|}\right)$$

and let $(\mathbb{X}, \mathbb{P}_{\mu,\nu}, M)$ be a complete IR-NS $\forall l \in \mathbb{S}$. Define $C : \mathbb{S} \longrightarrow \mathbb{S}$ by $C(l) = l^{\frac{1}{3}}$. we get

 $\mathbb{P}_{\mu,\nu}(C(al+bm+3a^{\frac{2}{3}}.l^{\frac{2}{3}}.b^{\frac{1}{3}}.m^{\frac{1}{3}}+3a^{\frac{1}{3}}.l^{\frac{1}{3}}.b^{\frac{2}{3}}.m^{\frac{2}{3}})-a^{\frac{1}{3}}C(l)-b^{\frac{1}{3}}C(m),t)\geq_{L^{*}}\mathbb{P}'_{\mu',\nu'}(l+m,t),$

 $\forall t > 0 and a < 0.$ Also,

$$\lim_{m \to \infty} M_{i=1}^{\infty} (\mathbb{P}_{\mu,\nu}(a^{m+i-1}l, \ a^{\frac{-2(i-\frac{m}{2}+1)}{3}})) = \lim_{m \to \infty} \lim_{n \to \infty} M_{i=1}^{n} (\mathbb{P}_{\mu,\nu}(l, \ a^{\frac{-2(i-\frac{m}{2}+1)}{3}-m-i+1}t))$$
$$= \lim_{m \to \infty} \lim_{n \to \infty} (\mathbb{P}_{\mu,\nu}(l, \ a^{\frac{-2}{3}(m+2)}t))$$
$$= \lim_{m \to \infty} (\mathbb{P}_{\mu,\nu}(l, \ a^{\frac{-2}{3}(m+2)}t))$$
$$= 1_{L^*}$$

Thus, all the conditions of (8.1) are true and so there exists one and only one GCRF $C_3 : \mathbb{S} \longrightarrow \mathbb{X}$ such that

$$\mathbb{P}_{\mu,\nu}(C(l) - C_3(l), t) \ge_{L^*} \mathbb{P}_{\mu,\nu}(l, \ a^{\frac{-4}{3}}t).$$

9. Conclusion

We wind up this paper with a conclusion that we have proved stability results of GCRF equation associating a constant, sum of powers of norms, general control function, mixed product-sum of powers of norm and product of different powers of norms appropriate to the results established by Gavruta [18] and Rassias [12] in RNS using direct and fixed point method. We have proved the stability results in NA-RNS. Also, with the help of an example, we study stability results in IR-NS.

References

- A. Bodaghi and B. V. Senthil Kumar, Estimation of inexact reciprocal-quintic and reciprocalsextic functional equations, Mathematica, 59(82), No. 1-2, (2017), 3-14.
- [2] A. Bodaghi and Y. Ebrahimdoost, On the stability of quadratic reciprocal functional equation in non-Archimedean fields, Asian-European J. Math. 9(1) (2016), 1650002, 9 pages.
- [3] A. Najati and C. Park, Cauchy-Jensen additive mappings in quasi-Banach algebras and its applications, J. Nonlinear Anal. Appl. (2013), 1-16.
- [4] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsvier, North Holand (1983).
- [5] A. Serstnev, On the notion of random normed space, Dokl Akad Nauk SSSR 149 (1963), 280-283.
- [6] B. Bouikhalene and E. Elquorachi, Ulam-Gavruta-Rassias stability of the Pexider functional equation, Int. J. Appl. Math. Stat. 7 (2007), 7-39.
- [7] B. V. Senthil Kumar and H. Dutta, Non-Archimedean stability of a generalized reciprocalquadratic functional equation in several variables by direct and fixed point methods, Filomat, 32(9) (2018), 3199-3209.
- [8] D. H. Hyers, On the stability of the linear functional equation. Proc. Natl. Academy of Sciences of the USA, 27 (1941), 222-224.
- [9] E. Gupta, R. Chugh and B. V. Senthil Kumar, Non-Archimedean Approximation of MIQD and MIQA Functional Equations, International Journal of Applied Engineering Research (14) 6 (2019), 1313 - 1318.
- [10] E. Movahednia, Fixed point and generalized Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Comp. Sci. 6 (2013), 72-78.
- [11] J. R. Lee, D. Y. Shin and C. Park, Hyers-Ulam stability of functional equations in matrix normed spaces, J. Inequ. Appl. 2013, (2013): 22.
- [12] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
- [13] J. M. Rassias, R. Saadati, G. Sadeghi and J. Vahidi, On nonlinear stability in various random normed spaces, J. Inequ. Appl. 2011, (2011):62, 1-17.
- [14] K. Ravi, J. M. Rassias and B. V. Senthil Kumar, A fixed point approach to the generalized Hyers-Ulam stability of reciprocal difference and adjoint functional equations, Thai J. Math. 8(3) (2010), 469-481.
- [15] K. Ravi, J. M. Rassias, B. V. Senthil Kumar and A. Bodaghi, Intuitionistic fuzzy stability of a reciprocal-quadratic functional equation, Int. J. Appl. Sci. Math. 1(1) (2014), 9-14.
- [16] M. E. Gordji, S. Zolfaghari, J. M. Rassias and M. B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-β-Banach spaces, Abst. Appl. Anal. 2009, Article ID 417473 (2009), 1-14.
- [17] N. Ghobadipour and C. Park, Cubic-quartic functional equations in fuzzy normed spaces, Int. J. Nonlinear Anal. Appl. 1 (2010), 12-21.

- [18] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapppings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [19] R. Chugh and A. Kumar, A Survey on the Stability of some Functional Equation, International Journal of Mathematical Archive 3(5) (2012), 1811-1832.
- [20] R. Chugh and A. Kumar, On the Stability of Functional Equations in RN Spaces, International Journal of Computer Applications 45(11)(2012), 25-34.
- [21] R. Chugh and A. Kumar, The Stability of Pexiderized Cauchy Functional Equation, International Journal of Pure and Applied Mathematics 77(5)(2012), 649-666.
- [22] S. S. Chang, J. M. Rassias and R. Saadati, The stability of cubic functional equation in intutionistic random normed spaces, Appl. Math. Mech. 31 (2010), 21-26.
- [23] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [24] T. M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [25] S. M. Ulam, A collection of Mathematical Problems, Interscience Publ., New York, 1960.
- [26] W. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations, Nederl. Akad. Wetensch. Proc. Ser. A 61 Indag. Math. 20 (1958), 540546.