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ABSTRACT. In this paper, we introduce and investigate the stability of generalized cube

root Functional (GCRF) Equation

ol

C(al + bm + 3.a3 .13 b%.m3 +3.a5.15.b3.m3) = a3C1) +b3C(m)  (0.1)

having solution as C(l) = I3 in the setting of random normed spaces using direct and
fixed point approach. After that, we study the stability of GCRF equation in intutionistic

random normed space (IR-NS) and non-archimedean random normed space (NA-RNS).
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1. Introduction

The crucial point from where the concept of investigating HUS results of functional
equations, differential equations, difference equations is the problem of Ulam [25]. Hyers [§]
presented a partial solution to the problem of Ulam. Later, Hyers’ theorem was extended
and generalized in various forms by many mathematicians Aoki [23], T. Rassias [24], J.
Rassias [12] and Gavruta [18]. These results instigated many mathematicians to investigate
stability of various types of functional equations in different types of spaces. For detailed

review of literature on this field, one can refer ([6], [17], [16], [11], [10], [3], [19], [20], [21]).

The various fundamental stabilities associated with stability of reciprocal adjoint and
difference functional equations were demonstrated in ([14], [15]). In recent times, there are
many papers published on the stabilities and applications of some multiplicative inverse

functional equations, one can refer ([1], [7], [9]).

In this article, we introduce generalized cube root Functional (GCRF) Equation having

solution as C(1) = 15 and then find stability in different random normed spaces.

2. Preliminaries

In this segment, we recall few primary definitions which are used in next segment.

Definition 2.1. [5] A function 7 : [0,1] x [0,1] — [0, 1] defined on unit interval is for-
named as triangular norm (¢ —norm) if 7 function is commutative, associative, monotonic

and satisfies the boundary condition i.e. 7(a,1) =a ¥V a € [0, 1].

1, iftn=0
g&") is defined for ¢t — norm 7 as 5&”) = for every 0 < ¢ <1

7( $"‘1),§) ifn>1
and n € NU{0}. A t-norm 7 is said to be of Hadzic- type if the family (fﬁn))neN is

equicontinuous at £ = 1.

Definition 2.2. [5] A random normed space (RNS) is a triplet (S, y, 7), where S is a linear
space, T is a continuous t-norm, and g : S — D7V is a function such that, the subsequent

axioms satisfied:
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(RNS1) py(t) = eo(t) forall t > 0iff I = 0;
(RNS2) puy(t) = Ml(ﬁ) V1 €S, aisnon-zero;
(RNS3)  pigm(t +5) = 7(u(t), pm(s)) VI, m €S and 0 < s,t.

Some other fundamental notions are available in [5].

3. Generalized HUS of equation (0.1) in RNS

Throughout this section, let us assume that S is a real Vector spaces, (Y, u', Thr) is
a RNS and (Z, u, Thr) be a complete RNS. For the sake of proving our main results in a

concise manner, let D¢ : S — Z be difference operators defined as follow

W

De(l,m) = C(al + bm + 3a313b3m3 + 3a313b3m3) — a3C(1) — b3C/(m)

for all I,m € S. We examine the generalized Hyers-Ulam-Stability (HUS) of the GCRF

equation beneath the minimum t-norm Ty;.

Theorem 3.1. Assume Q:S? — Y be a function such that, for some 0 < o < a%, where

a>0
:u’lQ(al,am) (t) = :u‘:xQ(l,m)(t) (3.1)
and

M figgny gnpy (@3t) =1

n—oo

foralll,meS andt>0. If C:S — Z is a mapping with C(0) = 0 such that

De(m) (8) > figmy () ¥ L,m €S, t>0, (3.2)

then there exists one and only one GCRF Cs : S — 7Z such that
/ 1
How-cs () > Hogo (t(a3 - a)) Vimes, t>0. (3.3)
Proof. After using m=0 in (3.2), we get

1De,0)(t) > pogo) ()

’ 1
freen o (1) 2 Hog ) (ta®) (3.4)

a

il
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for all [ € S and ¢t > 0. Now replacing I by ™l in (3.4), we have

W=

’ 1.Qa
Ho@ntiy o (t) = ptoge)(tas(—)")
JE TRV YO «

for all € S and ¢ > 0. Since, £9°Y — o(1) = 72! Cl™) Ot e get

N G IO IO
n—1 1 o
fe@rn o Z —(—)Ft) = Tu {MQ(;,O)(t), 0<k<n-1 ke W} = Ha,0)(t)
(B k—p @3 a3
(3.5)
for all [ € S and ¢ > 0. Letting ! by @™l in (3.5), we obtain
1
’ tas
fre@ntmy ey (t) 2 oo | <=t a (3.6)
a%(TH»m) a%(m) k=m (g)

foralll € S, n, m € Z with0 < m <nandt > 0. Since 0 < a < a%, the sequence
C(a™)
(%

(say) C3(l) € Z. Fix I € S and take m = 0 in (3.6). We get

} is a Cauchy sequence but (Z, u, Ths) is complete RNS so converges to some point

1
/ tas
feemn g (1) 2 o) | <omt, o
e k=0 a%)

and so, for any ¢ > 0,

pe@-cs@) (0 +1) > Ty (ucs(l)_cm"l) (): pretn ¢ (t)>

eSS
tas
’ a
> Ty “a(z)—%wwwm ST (3.7)
a = a3
foralll € S, t > 0. Putting n — oo in (3.7), we get
, 1
e -cst) (6 + 1) = pg g0 (t(‘” - a)) (3.8)
Here, ¢ is erratic and by picking ¢ to 0 in (3.8), we get
/ 1
e -os@)(t) = Bogo) (7f(a3 - Oé)) (3.9)

for all I € S, t > 0. Hence, we conclude that inequality (3.3) holds.
After changing I and m by o™ and a™m in (3.2), respectively, we obtain

MDQ(a”TLL,anm) (t) 2 llLQ(anl’anm)(agt)
a3



Stability of generalized cube root functional (GCRFf) equations in random normed spaces 143

forall I, m € S, t > 0. Since lim,_~ //Q( a%t) = 1 is given in theorem. After

a"l,a"m)(
using this, we get C3 satisfies the equation (0.1) and hence C5 is GCR mapping.

For proving the uniqueness of the GCRF Cs, suppose there exists another mapping C :
S — 7Z which assures (3.3). For fixed I € S, C3(a™) = a5C3(l) and C$(a™) = a5C3(1)

V n € ZT. Thus it pursues from (3.3) that

tosy—cs)(t) = Heyany ey (t)
a3 a3

t t
> Ty (M%gﬂo_cmgn (5)7 He@ny  cgan (2)>

a3 a3 a3 a3
413

2 N,Q(Z,O) (t(a'}s - a)(@)")

1/3

As limp—00 ((“a )”(a% —a)t) = 0o, we have pc,q)-cs@y(t) =1Vt > 0. Hence, we

obtain the uniqueness of GCR mapping Cs. This proves the result. (]
Theorem 3.2. Assume Q:S?> — Y is a mapping such that, o > a%, where a > 0

ot m) (1) >t my (1) (3.10)

and

’

lim p Lo () =1

n
n—oo' a3Q(gw,om

foralllmeS andt>0. If C: S — Z is a mapping with C(0) = 0 such that

De (1m) (1) = ﬂ/ﬂ(l,m)(t) (3.11)

foralll,m € S and t > 0, then, there exists one and only one GCR mapping C3 : S — Z
such that
/ 1
tew-cs(t) = paao) (t(a - a3)) (3.12)
foralll €S and t > 0.

Proof. Putting m=0 in (3.11) and after that replacing ! by é, we obtain
“C(Z)—a%C(g)(t) > Hoq,0)(at) (3.13)
for all [l € S and ¢t > 0. Implementing the triangle inequality, we get

> ) ta
MC(Z)*G%C(#)(LL) = Fa(.0) min—1,4a3 k
k=m (F)
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foralll € Sand ¢t > 0. Then the sequence {a5C(-%)} is a Cauchy sequence. but (Z, 1, Tas)

l
a

is complete RNS so converges to some point (say) Cs : S — Z such that

Cs(l) = mna%cpi)vzeg

n—o0 am

This mapping Cj satisfies (0.1) and (3.12). Remaining proof is identical to proof of the

previous theorem. This gives the required result. O

Corollary 3.3. Assume ® > 0 is a real number and ngy is a fized unit point of Y. If
C:S — Z is a mapping with C(0) = 0 which satisfies
KDe(1,m) (t) > Hong (t)

for alll, m € S and t > 0, then there exists one and only one GCRF C5:S — Z such
that

’

1
tas
o -s)(t) 2 Hony (=) for all L €S, > 0.

W=

Proof. Let ® : S2 — Y be described by ®(I, m) = ®ng. and put a = a5

(3.1), we get the reuired result. O

in theorem

Corollary 3.4. Let 0 < p, q < % be real numbers and ng be a fized unit point of Y. If
C:S — Z is a mapping with C(0) = 0 which satisfies

g (¥ or
1De(tm)(t) 2 leHpﬂ‘qu)no 1
u(HlHPllqu)nO(t) where, p+q< %
for alll, m €S and t > 0, then there exists one and only one GCRF C3 : S — Z such
that

/ 1
MnoHal(t(aS —aP)) or,

Bey—cs@)(t) > .
eo(t(a® — af))

0, if0>1t
for alll €S and t > 0, where e(t) =

1, if 0 < t.

Proof. Let ® : S* — Y be defined by ®(I, m) = (||I||” + ||m||?)no or (||I|["||m[|?) and put

a = aP in theorem (3.1), we obtain the required decision. O
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Corollary 3.5. Let 0 < p+¢q < % be real numbers and ng be a fired unit point of Y. If
C:S — Z is a mapping with C(0) = 0 which satisfies

KD (1) () 2 (o ma o+ ml|p+a)no ()

foralll, m €S and t > 0, then there exists one and only one GCR mapping Cs : S — Z
such that

4 1
o) —Cs)(E) 2 g upra(t(as — a?))

foralll €S and t > 0.

Proof. Let ® : S2> — Y be defined by ®(I, m) = (||l[[?||m||¢ + ||I||P*? + [|m]|[PT9)ng. and

put o = aP in theorem (3.1), we obtain the desired result. O

4. Non-Archimedean random normed space (NA-RNS)

A field x equipped with a function |.| : & — [0, 0] is said to be a non-Archimedean field
for which |u| = 0 iff uw =0, |uv| = |ul|v], and |u 4+ v| < max{|ul,|v|} for all u, v € k. It is
clear that | — 1| =|1|=1and |u| <1VueN.

Suppose that X is a vector space over a field k with a “non-Archimedean” non-trivial

valuation |.|.

Definition 4.1. [13] A function ||.|| : X — [0, cc] is fornamed to be a “non-Archimedean
norm” if following axioms are satisfied:

(i) |l=0ifl=0

(ii) ||all] = ||la||||l||, for any a € &, | € X;

(iii) ||l + m| < max{||m|, ||l]|} for I,m € X (ultrametric ).

Then (X, |.||) is fornamed “non-Archimedean normed space”.

Definition 4.2. [13] NA-RNS is a triplet (X, u,T), where X is a vector space over a
“non-Archimedean field” x, T is a continuous t-norm, and p : X — DV is a mapping that
satisfies the axioms given by:

(NA-RNS1) (y(t) =€o(t) Vt > 0iff [ =0;

(NA-RNS2) praa(t) = (i) V1€ X, £ >0, a #0;

(NA-RNS3)  pym(maz{s,t}) > T((s), um(t)) VI, m € X and t, s > 0.
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5. Generalized Ulam-Hyers stability of (0.1) in NA-RNS

Let S be a linear space over non-Archimedean field K and (X, 4, T') be a complete NA-
RNS over K.
Now, we describe random approximately GCR mapping. Assume ® : S x S x [0,00] — R

be a distribution function such that ®(I,m,.) is symmetric, nondecreasing and
®(cl, cl,t) > O(1, 1, %')
where [ € S, ¢ # 0.
Definition 5.1. A mapping C : S — X is $-approximately GCR if
“C(az+bm+3a%z%b%m%+3a%z%z;%m%)—a%c(z)—b%c(m)(t) > (1,m. 1) (5.1)
foralll,meS, t > 0.
Theorem 5.2. Assume S be a linear space over non-Archimedean field K and (X, u,T)

be a complete NA-RNS over K. Let C': S — X be a ®-approxzimately GCR mapping and
C(0) = 0. If for some o € RT and for some integer k with |a*| < a,

®(a k1, a7 *m,t) > ®(1, m, at) (5.2)
and _
. oo a't
Jim T2, M1, w) =1 (5.3)

then there exists one and only one GCR mapping C3 : S — X such that
Cki+lt
te@-cy)(t) = T2 M (la |a“‘3|> VIES, t>0, (5.4)
where

M(l,t) := T(®(1,0,t), ®(al,0,t),...,®(a*11,0,t)) VI €S, t > 0.

Proof. Firstly, with the help of induction applying on j, we show that for each 1 € S, ¢ > 0
and j > 1,

i > i = i-1 . .
MC(aJ'l)fa%C(l)(t) = Mj(l7t) T((I)(Z7Oat)7 ,<I>(a Z,O,t)) (5 5)

Letting m = 0 in (5.1), we get

Poay-abop® = 1:0,1)
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Thus, condition (5.5) holds for j=1. Let us consider that (5.5) is true for all j > 1.
Changing m by 0 and [ by @/l in(5.1), we have
J
oy —ab o ® = 2(@',0,9)

Since |a%| <1
Mc(aﬂll),a%c(z)(t) = T (’uC(aHll) adC ail) ( ) K3 a3C(ail)— 10(1)(t)>
-7 (1 ()
- “C(aﬂll)—a%C(an) ’“ Clail)— as‘c() |a§|

T <“0(a1+11)a50(au) (®), Hoin-akow (t)>

> T((all,0,t), M;(1, 1))

Y

j+1(l7t)

for all I € S. Thus (5.5) is true for all j > 1. Particularly
by oo ® = ML) (5:6)

Replacing I by a~*"*%)[ in (5.6) and using (5.2), we get
l n+1
(t) > M (azmkf> > M (I,a""'t) (5.7)

foralll €S, t > 0 and n=0,1,2,... Then

M l a’rLJrlt
t) >
'UJ(G’%)nc(a"Lk)i(a%)nJrlC(akriJrk)( ) = s |(a§)"|

for all t > 0,7 € S and n=0,1,2,... . Therefore,

uC(ﬁ)—a%C(

l
akn+k )

f (t) > T;27

_ t
Jj=n (llll(ag)]c( i ) (ag)J+ C k(;+1))( ))

j+1
> TP (z @ t)
j=n ’ kj

ja’s |

J+1y
< qntp @t
z L= M (Z’ "] )

k k
(@5)nC( )~ (@5 rC( b

Since limy o0 T3, M (1, St) = 1 for all L € S, ¢ > 0, {(a5)"C(-L)} is a Cauchy
sequence in the complete NA-RNS (X, u,T). Hence, a mapping C3 : S — X can be
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defined for which
=1 (5.8)

i u(a%)”C(ﬁ)—Cg,(l)(t)

foralll €S,t>0. Now, foreachn > 1,1 €S and t > 0,

(t)

t =
”cur(a%)naﬁk)( ) s @hyioh) @8 ey

> T : )i t
2T, <M(a§)10({l§€i)(alg)’*lc(m)())

i+1t
> T M (l,a : )

|as |t

Therefore,

by letting n — 0o, we obtain

ai+1t
pe@y-csu(t) = T2 M (l» a’”|> .

This gives (5.4) is true.
T being continuous, from a famous result in probabilistic metric space ([4]), it follows that
lim & 2021 1 11 2 2 & 1 &
n—00 (aj)nc(nl%—b'm#—dag.lg.bg.éngﬁ—dag.lg.bg.'mg ).7(0,3)77‘.115.0( é _ af)".bﬁ.C( 1
(a3)m (a3)™

=L 2 2 1 1 10102 2. 1 1 (t)
C(al+bm+3a3.13.b63.m343a3.13.b3.m3)—a3C(1)—b3C(m)

for almost all £ > 0.
Moreover, replacing [ by a=** and m a=*"m in (5.1) and using (NA-RNS2) and (5.2), we

obtain
o2 2 1 1 11 2 2 1 1 (t)
(ak)nc( al+bm+3a3 .13 .b3a_I:y:13 +3a3.13.b3.m3 ),7(0."’)".(13 .C(W)*(ak)"»bs C(W)
t o™t

—kn —kn
Z (P(Cl l, a m, W) Z @(l, m, W)
for all [, m € S and all ¢ > 0. Since lim,_,c (I, m, %) = 1, we deduce that Cj is a

GCR mapping.
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If O3 : S — X is another GCR mapping such that pcs)—cq)(t) = M(l,t) for all [ € S
and ¢t > 0, then for each n € Nl € Sand t > 0

(), p

pesw-ca ) =T (“ 3)(a5 <a§>"c<mgn>—cg<Z>(t)>

(ali)n )

By using (5.8), we conclude that C§ = Cs. O

Corollary 5.3. Let S be a vector space over non-Archimedean field K and (X, u,T) be
a complete NA-RNS over K under a t-norm T € H. Suppose that C : S — X is a
®-approximately GCR mapping. If

®(a1,a " m,t) > (1, m,at) forz e X, t >0, (5.9)

for some o € RT and for some integer k with |ak| < «, then there exists one and only one

GCR mapping C5 : S — X such that
ai+1t
te@-csn)(t) = T2 M (L a|,k> (5.10)
foralll €S, t >0, where
M(l,t) :== T(®(1,0,t), ®(al,0,t), ..., &(a*1,0,1))

foralll €S, t>0.

Proof. Since lim; oo M (l, alifk) =1,foralll €S, t >0 and T is of Hadzic type, hence,

la

we obtain
ai+1t
lim T2, M|l,—— | =1forallles§, t>0.
n—00 ‘ag ‘zk
Now we can apply Theorem (5.2) to get the result. d

6. Fixed point approach

This segment is dedicated to the fixed point approach for finding “random stability”
of the GCRF Equation. Luxemburg ([26]) introduced the notion of “generalized metric

space”.

Lemma 6.1. [13] Let (1, d) be a “complete generalized metric space” and T : 1) — Y be
a strict contraction with the “Lipschitz constant” k such that d(lg, A(lp)) < +oo for some
lo € X. Then T has a unique fized point in the set Y := {m € ¢, d(lp,m) < oo} and the
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sequence {T"(1)} converges to the fized point I* for every l € Y. Also, d(lp,T(lp)) < w
gives d(I*,1lp) < 125

let H:S x R —[0,1] be a function where S is a linear space, (X, v, Ths) is a complete
RNS such that H(l,.) € D* for all x € S. Suppose set F:={k:S — X, k(0) = 0} and
the mapping dpy : F x F — R as

dH(h, k) = inf{b S RJr, Vh(l)fk(l)(bt) > H(l,ﬁ), vies, t> 0}

Theorem 6.2. Let S be a real Vector space, (X, u, Tps) a complete RNS and C : S — X
is a mapping with C(0) =0 and ® : S* — D% be a mapping with the inequality

for0<a< as : Do am(at) > Oy p(t), VI, meS and t>0 (6.1)

If

n Ozen0  (62)

202 1 1112 2 1 1
C(al+bm+3a3.13.63.m3+43a3.13.b3.m3)—a3C(1)-b3C(m
VI, m €S, then there exists one and only one GCR mapping Cs : S — X such that

1
/1,03(1)70(1)(15) > (I)lv()((aff - a)t), Vi, mesS, t>0. (63)

Moreover, C3(l) = limy, o0 C(agzl)
a

Proof. Put m =0 in (6.2), we get
MC(al)—a%C(l)(t) > (I)l,o(t) or

1
. > ®;0(as
pown o (t) 2 Srolast)

a3

foralll €S, t>0. Let H(I,t) := (I>l70(a%t). Suppose set
F:={k:S—X, k(0)=0}
and the mapping df : F x F — RT as
dir(h, k) = inf{b € R*, vy _p (b) > H(1,¢), V€S, t >0}

Using above lemma, (F,dy) is a “complete generalized metric space”. Next, suppose a

linear mapping J : F' — F for which Jh(l) := L%h(al).
a
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We prove J to be a strictly contractive with the Lipschitz constant k£ = .

a3
For this, let h, k € F' be mappings such that dg(h,k) < e. Then
Bny—kq@)(et) > H(lt), YI€S, t >0,
hence

et) = Mh(al)—lkml)( €t) = ln(at)—k(at)(aet) > H(al, at)

a3l

Sl
Sl

N.Ih(l)f.lk(l)(
foralll €S, t > 0. Since H(al,at) > H(l,t), then

Han@) k@) (—Tet) > H(l,t),

%\H‘ Q

di(h, k) < e = d(Jh,Jk) < e
a3

A (Jh, Jk) <

wE

dg(h, k)Y h, k€ F.

w

a
Now, from
_ow(t) = H(l1)
1
a3
it gives that di(C, JC) < 1. Using the [26] theorem, there exists a fixed point of J, i.e,
there exists a mapping C3 : S — X such that Cs(al) = CL%Cg(l) for all [ € S.

Fo

Therefore, for any [ € S and ¢t > 0,

t
du(u,v) <e = pyay—oy(t) = H(l, g)

from dp (J"C,Cs) — 0, it follows that lim,_e C“g D — C5(1) for any I € S.

Also dy(C,C3) < {1:d(C,JC) = du(C,C3) < ﬁ from which it immediately

a3

1
follows 10, (1y—c ) <a‘j;_ta> > H(l,t) Vt>0andalll €S. This means that

aé —
UC3(l)—C(l)(t) >H (l, 1t> Vit>0and [ €S.
a3
It follows that
UC3(Z)7C(I)(t) > (1)170((a% - Oz)t) Vit>0and [€S.

Also, (3 is the unique fixed point of J with the property: there exists a real number k& > 0
such that pc,)—c@y(kt) > H(l,t) for all t > 0 and all [ € S, as desired. O



152

E. Gupta, R. Chugh, R. Dubey and V. N. Mishra

7. Intutionistic random normed spaces (IR-NS)

In 2010, Chang et al. [22] introduced the notation of IR-NS.
Lemma 7.1. [22] Suppose that the set L* and operation <p- described by:
L* ={(l1, l2) : (I1, 12) € [0,1]%and I + 15 < 1},

(I1,l2) <px (m1,mo) & I <my, lp > ma, Y(l1,12), (m1,m) € L*.

Then (L*,<p«) is a “complete lattice”.

Units are indicated by 0z« = (0,1) and 17« = (1,0). Using the lattice (L*, <gz-),

definition of t-norm can be developed.

Definition 7.2. [22] A mapping T : (L*)?> — L* is fornamed to be triangular norm (t-
norm) if:

(i) T,1p<)=azVlelL*;

(i)  T(I,m) =T(m,l) ¥(I,m) € (L*)? ;

(iii) T, T(m,n))=T(T(,m),n)V (I, m, n) € (L*)?;

(v) 1<pl,m<p-m =T(,m)<p- T, m)V{11I,mm)e L)

Definition 7.3. [22] Let u, v : X x (0,00) — [0,1] be “measure and non-measure
distribution functions” such that p;(¢t)+v(t) <1VI1 e X, t > 0. The triplet (X, P,,,T) is
fornamed to be IR-NS if X is a linear space, T is continuous t-norm and P, : X x (0, 00) —
L* is a mapping satisfying

(i) Puon(1,0) =0rs;

(if) Puu(l,t) =1p- iff I = 0;

(i) Pup(al,t) = Puu(l, ) V a #0;

(iv)  Pu,(l+m,t+s) >p T(Puu(l,t), Puy(m,s))

foralll, m € X and ¢, s > 0. Then P, , is called an IR-NS, where P, ,,(I,t) = (pu(t), vi(2)).

8. Generalized Ulam- Hyers stability of equation (0.1) in IR-NS

This segment deals with the “generalized Ulam- Hyers stability” of the GCRF equation
in IR-NS.
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Theorem 8.1. Let C : S — X be a mapping with C(0) = 0 where S is a linear space and
(X, Py, T) is a complete IR-NS, for which there are &, Q0 : S* —s DT, where (1, m)
is represented by & m and Q(l, m) is represented by Q. p, further (&, m(t), Q, m(t)) is
represented by Q¢ o(l,m,t), with inequality:

2 2 1 1 1 1 2 2 1 1
P, (C(al + bm + 3a3.13.b5.m3 4 3a3.03.b3.m3) —a3C(l) — b3C(m),t) >7 Qe a(l,m,t)
(8.1)
If
. —2(i—1r+1)
T2 (Qeala™ ™, 0, a— 5 1)) =1z (8.2)
and
ILm Qg@(anl,a"m,a%t) =1+ VI, meS andt >0, (8.3)
then there exists one and only one GCRF C3 : S — X such that
P (C(l) — Ca(l 00 i—1 =2 (i+1)
v 3(1),t) > T;21Q¢(a'71,0,a73 t). (8.4)
Proof. Choosing m to be zero in (8.1), we have
P, (C(al) - a%C(Z),t) >0 Qea(l,0,1)
1
P, <10(az) - C(l),t) >1- Qea(l,0,a5t) (8.5)
a3
Therefore, it follows that
C(a**)  C(d*1) ¢ & 1
— — ) > [,0,a3t 8.6
NM/< e lm o oE) 2t Qea(a’l,0,a3t) (8.6)
which implies that
C(a**1 C(a¥l 1
]P)ﬂnu < a(;»(k—"_l)) - i]; )7t> ZL* Q{,Q(akl7oaa3(k+1)t) (87)
that is,
C(a**t)  C(afl) ¢ =2
Fiuw < a%(k+1) a a% ’ ak+1) 2L Q&Q(aklvo7a 3 (k+1)t) (8'8)

V k€ Nand ¢t > 0. Using triangular Inequality, it follows

1

C(a*l) _— C(a* 1) C(a*l) — ¢
Py, (1; - C(l)at) > Tr—o | Puw k1) a§ ’Z ak+1

+(
as k=0

ZL* T]?:l (Q&Q(akilla 0: a%(k+1)t)) (89)
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c

Now, to prove convergence of the { (a:l) }, replace 1 by a3l in (8.9), we have,
3

a

k+ml mj . —20:_m
- (C((Z ) - C(am ),t> >/ Tin=1Q£’Q(az+m—ll70’a%(z—7+l)t). (810)

a%(k+m) as

for m, n > 0. Also, as m — oo R.H.S. of the equation (8.10) tends to 1}, there-

fore {C(a:l)} is a Cauchy sequence. So, we define a mapping C5 such that Cs(l) =
a3

limy, o0 S0 for all [ € S.
a3
Now, we prove that C3 is a GCR mapping. Changing [, m with o™l and am, respectively,

in (8.1), we get

W=
W

C(a"(al + bm + 3a3.15.b3.m3 + 3a3.13.b m%)) o C(a™) b C(a"m)

n
as3 a

n I

a3

Puw(

w|3

>}, Qeola™l,a"m, aft) (®.11)

Hence, C5 satisfies (0.1) for all I, m € S as n tends to co and using the limit n — oo in
(8.9), we find (8.4).
Now, for proving the uniqueness of GCR mapping C3 satisfying (8.4), let us consider that
there exists another GCR mapping C3 subject to (8.4). Hence it follows from (8.4) that
Py (C3(l) = C3(1), 1)
>4 P, (C3(a"l) — C3(a"),a5t)
> T (P (Cy(a™l) = C(a"1), a5 ~1), B (Cla™) = C3(a"1), a5 710))
Z*L T (Tioz()lQ§7Q(an+iillv 0, a%?(i+1)+nt)’ T;O:Ole)Q(a’nJriillv 0, a%z(i+1)+nt))

for all I € S. We prove the uniqueness of C'3 by taking n — oo in (8.4). This gives the
desired result. O

Theorem 8.2. Let C : S — X be a mapping where (S, P/// > T) is an IR-NS and
(X, Puo, T) is a complete IR-NS, such that

P, (C(al+bm+3a5.15.b3.m3 +3a3 .15 .b5.m3 ) —a3 C(1) = b3 C(m), t) >+ P 'y s (I+m, t)
for all t > 0 in which

. oo , —2(i— % +41)
Jim T (0o 5 1) =1
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for alll, m €S and all t > 0, then there exists one and only one GCRF C3 : S — X
such that

P (C(1) = C3(1),t) > TP (1, a%(i—l)t)_

Example 8.3. Let (S, |.||) be a Banach algebra, (S,P,,, M) an IR-NS in which

t [l1]]
]P) 14 b - b
uw(t) <t—|—||l|| t+||l||>

and let (X,P,,, M) be a complete IR-NSY 1 € S. Define C: S — S by C(l) = I5. we
get

P, (C(al+bm~+3a3 .13 b3 .m3 +3a3.13.b3.m3)—as C(1)—b3C(m), 1) >+ P (1+m, 1),

Vit>0anda<0. Also,

. o i1, 26 BD . 2B
Jim M% (P (a La 7)) = lim lim M, (Py,(l, a3 t)

_ . ﬁ(erQ)
i3go gl 3 )

= lim (P, (I, a3 ™t))

m—oQ

=17+

Thus, all the conditions of (8.1) are true and so there exists one and only one GCRF
C3:S — X such that

P, (C(1) — Cs(1),t) >1- Po(l, a3 t).

9. Conclusion

We wind up this paper with a conclusion that we have proved stability results of GCRF
equation associating a constant, sum of powers of norms, general control function, mixed
product-sum of powers of norm and product of different powers of norms appropriate to
the results established by Gavruta [18] and Rassias [12] in RNS using direct and fixed
point method. We have proved the stability results in NA-RNS. Also, with the help of an
example, we study stability results in IR-NS.
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