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PSEUDOREPRESENTATIONS WITH SMALL DEFECT

THAT ARE TRIVIAL ON A NORMAL SUBGROUP

A. I. Shtern

Abstract. A sufficient condition for the triviality of the restriction of a

pseudorepresentation of a group to a normal subgroup is given.

§ 1. Introduction

Recall that a mapping π of a given group G into the family of invertible
operators on a Hilbert space E is said to be a quasirepresentation of G on E
if π(eG) = 1E , where eG stands for the identity element of G and 1E for the
identity operator on the space E, and

�π(g1g2) − π(g1)π(g2)� ≤ ε, g1, g2 ∈ G,

for some ε, which is usually assumed to be sufficiently small and (its greatest
lower bound for π) is referred to as a defect of π, and a quasirepresentation π
of G is said to be a pseudorepresentation of G if π(gn) is conjugate to π(g)n,
n ∈ Z, with the help of an operator sufficiently close to the identity operator.
For the generalities concerning pseudorepresentations and quasirepresenta-
tions of groups, see [1–6].

§ 2. Preliminaries

If a pseudorepresentation π of G is one-dimensional and has a sufficiently
small defect (less than 0.24) and if π is trivial on a normal subgroup N of G
(i.e., π(n) = 1E for every n ∈ N , where 1E stands for the identity operator
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on E), then, as was shown in [7], the one-dimensional pseudorepresentation
π is completely determined by some pseudorepresentation of the quotient
group G/N . It is unclear whether or not a similar assertion holds for general
pseudorepresentations. However, the conditions under which the restriction
of a given pseudorepresentation to a given normal subgroup is trivial in the
above sense are of interest. In the note, we give a sufficient condition for
the triviality of such a restriction of a pseudorepresentation of a group to a
normal subgroup.

§ 3. Main theorem

The following theorem is a triviality theorem, i.e., establishes conditions
under which a given pseudorepresentation is the identity representation on
the corresponding Hilbert space. The theorem uses qualitative results of [2].

Theorem. Let G be a group, let π be a pseudorepresentation of G on a
Hilbert space E with a defect ε, let �π(g)� ≤ C and �(π(g))−1� ≤ C for all
g ∈ G, and let ε < (C+ε)−2/2. Let �π(g)−1E� ≤ δ and �(π(g))−1−1E� ≤ δ
for all g ∈ G and some δ such that ε < (1 + δ + ε)−2/2, δ < 1, and

(1) (1 + 2ε((1 − δ)−1 + ε)2)ε(1 − 2ε((1 − δ)−1 + ε)2)−1 <
√

3 − ε.

Then π(g) = 1E for all g ∈ G.

Proof. Recall that, by Theorem 5.3 of [2], if �π(g)� ≤ C and �(π(g))−1� ≤ C
for all g ∈ G, then the operator Q implementing the conjugacy of π(gn) and
(π(g))n can be chosen to satisfy the inequality

�Q − 1E� ≤ 2ε(C + ε)2,

where ε stands for the defect of π. Since, in our case, the inequality

C ≤ max((1 + δ), (1 − δ)−1) = (1 − δ)−1

holds, it follows from what was said above that the norm of Qπ(gn)Q−1−1E

does not exceed the left-hand side of (1). Therefore, �π(g)n − 1E� does
not exceed the left-hand side of (1) increased by ε, and hence is less than√

3. The representation {π(g)n, n ∈ Z} of the cyclic subgroup generated by
π(g), g ∈ G (the group G(g) is commutative and hence amenable), turns
out to be bounded. Therefore, this representation is conjugate to a unitary
representation. It follows from the inequality

�π(g)n − 1E� <
√

3, g ∈ G, n ∈ Z,
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that there are no spectral points of π(gn) outside the arc on the unit circle
formed by the complex numbers z, |z| = 1, with |z − 1| <

√
3. This arc

contains no subgroups of the unit circle except for the identity subgroup {1}.
Hence, the unitary operators of the representation

gn �→ π(g)n, g ∈ G, n ∈ Z,

are identity operators, and the corresponding representation of the cyclic
group {gn, n ∈ Z} takes all elements to the identity operator 1E . Since
g ∈ G is arbitrary, it follows that π(g) = 1E for all g ∈ G, as was to be
proved.

§ 4. Concluding remarks

The above theorem implies immediately the following corollary which gives
sufficient conditions under which a given pseudorepresentation of a group is
trivial on a given normal subgroup of the group.

Corollary. Let G be a group, let π be a pseudorepresentation of G on a
Hilbert space E with a defect ε, let N be a normal subgroup of G, let �π(n)� ≤
C and �(π(n))−1� ≤ C for all n ∈ N , and let ε < (C + ε)−2/2. Let

�π(n) − 1E� ≤ δ and �(π(n))−1 − 1E� ≤ δ

for all n ∈ G and some δ such that

ε < (1 + δ + ε)−2/2, δ < 1,

and, as in (1),

(1 + 2ε((1 − δ)−1 + ε)2)ε(1 − 2ε((1 − δ)−1 + ε)2)−1 <
√

3 − ε.

Then π(n) = 1E for all n ∈ N .

In contrast to the case of one-dimensional pseudorepresentations (see [7]),
it is unclear whether or not a pseudorepresentation trivial on a normal sub-
group is determined by a pseudorepresentation of the corresponding quotient
group.
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