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MINIMUM PENDANT DOMINATING ESTRADA INDEX
OF A GRAPH
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ABSTRACT. The main purpose of this paper is to introduce the con-
cept of minimum pendant dominating Estrada index of a graph. First,
we compute minimum pendant dominating Estrada index for complete
graph, star graph, complete bipartite graph and cocktail party graph
which are amongst the most widely-used graph classes. Also, upper
and lower bounds for this new index are established. Finally, the rela-
tions between the new Estrada index and the new type of energy are
investigated.
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1. INTRODUCTION

Let G be a simple, finite, undirected graph with vertex set V(G) and
edge set E(G). Let the n vertices of G be labeled by v, va,- -+ ,v,. Two
vertices v; and v; are said to be adjacent if v;v; € E(G). The degree of a
vertex v; € V(G) is the number of vertices adjacent to v; and is denoted by
da(v;). A walk is a sequence of vertices and edges of the graph. A graph is
connected if each pair of vertices in a graph is joined by a walk. A bipartite
graph is a graph such that its vertex set can be partitioned into two sets
X and Y (called the partite sets) such that every edge meets both X and
Y. A complete bipartite graph is a bipartite graph such that any vertex of
a partite set is adjacent to all vertices in the other partite set. A complete
bipartite graph with partite sets of cardinalities p and ¢ is denoted by K, ,.
The graph K ,_; is also called a star graph of order n, denoted by S,. A
simple connected undirected graph in which every pair of distinct vertices
is connected by a unique edge is called a complete graph and is denoted by
K,,. The adjacency matrix of a graph G is a square matrix A(G) = [a;;] of
order n, defined via

1 if the vertices v; and v; of G are adjacent
Qs —
“ 0 otherwise.

The eigenvalues of A(G) are the adjacency eigenvalues of G, and they are
labeled by A1, A2, - -+, Ap. The notion of graph energy is a graph-spectrum-
based quantity introduced in the 1970s. After a latent period of 20-30 years,
it became a popular research topic both in mathematical chemistry and in
pure spectral graph theory, resulting over a thousand published papers. The
graph energy was defined by Gutman as the sum of absolute values of the
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eigenvalues of the adjacency matrix of a graph G, namely as

(1) E=>"|x].
i=1

This concept was intensively studied in chemistry since it can be used to
approximate the total m-electron energy of a molecule (see, e.g. [21, 22]).
Since then, mathematical properties of energy were also discovered (see e.g.
(4, 7], [26]-[28]).

In spectral graph theory, the eigenvalues of several matrices like adjacency
matrix, Laplacian matrix, distance matrix, Zagreb matrices, etc. are stud-
ied extensively for more than 50 years. Recently, maximum degree matrix,
minimum degree matrix and adjacency matrix with respect to a subset S of
V(G) of a graph G are introduced and studied in [1, 2, 3, 32].

A graph-spectrum-based graph invariant was introduced by Estrada [12,
13], which was defined by

EE=EE(G) =) e
=1

EFE is nowadays usually referred to as the Estrada index, see [30]. Although
invented only a few years ago, [12], the Estrada index has already found
numerous applications. It was used to quantify the degree of folding of
long-chain molecules, especially proteins, [13]. Another fully unrelated ap-
plication of FE (this time for simple graphs, like those studied in the present
paper) was put forward by Estrada and Rodriguez-Veldzquez, [18, 19]. They
showed that FE provides a measure of the centrality of complex (commu-
nication, social, metabolic, etc.) networks. These ideas were recently fur-
ther elaborated and extended in [15]. In [20], a connection between EFE
and the concept of extended atomic branching was established, which was
an attempt to apply FE in quantum chemistry. Another such applica-
tion, this time in statistical thermodynamics, was proposed by Estrada and
Hatano, [17], and later further extended in [16]. There are also applications
in biochemical, [14], physico—chemical, [20], and network-theoretical studies,
[18, 19]. In addition, this graph invariant is taken the attention of mathe-
maticians as well. Indeed, in the last few years, quite a few mathematicians
became interested in the Estrada index and communicated mathematical
results on FE in mathematical journals. In what follows, we briefly survey
the most significant ones of these results. Some mathematical properties of
the Estrada index were established in [8, 9, 10, 23, 24, 25]. One of the most
important properties is the following:

EE=Y" M’“('G)
k=1 '

k
where My = My(G) is the k-th moment of a graph G. We get M) =
n

My (G) = Z(/\i)k. It is well-known that My(G) is equal to the number of
i=1
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closed walks of length k in G.

Recently, the analogous variants of this index such as the distance Estrada
index, [6], the Seidel-Estrada index, [5], and the Harary energy and Harary
Estrada index of a graph, [29], were introduced. Bearing this in mind, it
seems to be purposeful to consider also the graph Estrada indices pertaining
the minimum dominating number. Relatedly, we would have to introduce
the minimum pendant dominating Estrada indices.

This paper is organized as follows: In Section 2, we give a list of some
previously known results. In Section 3, after introducing the minimum pen-
dant dominating Estrada index, we establish upper and lower bounds for
it. In Section 4, we investigate relations between the minimum pendant
dominating Estrada index and the minimum pendant dominating energy.

2. PRELIMINARIES AND KNOWN RESULTS

In this section, we shall list some previously known results that will be
needed in the next sections. First, we recall a definition:

Definition 2.1. (¢f. [31]) The cocktail party graph denoted by Kyx2 is a
n
graph having the vertezr set V = U{ul, v;} and the edge set E = {u;uj, v;v;
i=1
i # 7 U{wivj, viuj 1 1 < i < j<n}.
The following two properties can be found in any calculus book:

Remark 2.1. For any real x, the power series expansion of €* is as follows:

IEk
T — -
(2) =) T
k=0
Remark 2.2. For non-negative x1,29, -+ ,x, and k > 2,

(3) Yt < (3wt
i=1 i=1

3. THE MINIMUM PENDANT DOMINATING ESTRADA INDEX

In this section, we consider the minimum pendant dominating Estrada
index of a graph G. Also we present lower and upper bounds for it.

Let G be a simple graph having n vertices. Let G have the vertex set
V(GQ) = {v1,v2,- - ,v,} and edge set E(G). A subset D of V(G) is called a
dominating set of G if every vertex of V(G) — D is adjacent to some vertex
in D. Any dominating set with minimum cardinality is called a minimum
dominating set and its cardinality will be denoted by 7(G). A dominating
set D is called a pendant dominating set if D contains at least one pendant
vertex, that is, a vertex of degree 1. The least cardinality of a pendant
dominating set in G is called the pendant domination number of G denoted
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by Ype(G), (see, for details, [31]). The minimum pendant dominating matrix
of G, [31], is the n x n matrix defined by Ape p(G) := (a;;) where

1 if ViV € E(G)
a; =<1 if i=jand v; €D
0 otherwise.

The minimum pendant dominating eigenvalues of the graph G are the eigen-
values of Ape(G). Since Ape(G) is real and symmetric, its eigenvalues are real
numbers and we label them in non-increasing order as a; > g > -+ > ap,.
The minimum pendant dominating energy of G is defined to be the sum of
the absolute values of the eigenvalues of Ep,.(G). In symbols, we write

n
Epe(G) = Z |asil,
i=1
(cf. [31]). Bearing this in mind, we would have to introduce the minimum
pendant dominating Estrada index of a graph as follows:

Definition 3.1. Let G be a graph having n vertices and let the eigenvalues
of its minimum pendant dominating matriz be a1 = oo = --- = ap. Then
the minimum pendant dominating Estrada index of G, denoted by EEp.(G),
is defined to be

n
EEp(G) =) e,
=1
Then
00 Rk
EB,(G) =) o
k=1

where

It is clear from the below example that the minimum pendant dominating
Estrada index of a graph G depends on the minimum pendant dominating
set:

Example 3.1. Consider the graph given in Figure 1. The possible minimum
pendant dominating sets are (i) D1 = {v1,v2,v4}, (ii) Dy = {va,vs3,v5}, (i) Dg =
{vo,v3,v6}, (iv) Dy = {v2,v3,v4}, (v) D5 = {v1,v4,v3}, (vi) Dg = {vs,v6,v2}.
Hence choosing D1 as a pendant dominating set, we find

110000
111000
010100

ApeDi(@) =10 01 1 1 1
000101
000110

Then the minimum pendant dominating spectrum containing the correspond-
ing eigenvalues would be {a1(G) = 2.714, a2(G) = 2.141, a3(G) = 0.629,
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ay(G) = —0.216, a5(G) = —1, ag(G) = —1.268}. Then the minimum pen-
dant dominating Estrada index would be EEp(G) = 26.9281968265447.

Now, suppose we choose another pendant dominating set Dy = {va,vs,v5}.
Then similarly we would have

010000
111000
011100

ApeD:(G) =10 01 0 1 1
000111
000110

Therefore the minimum pendant dominating spectrum would have the eigen-
values a1(G) = 2.732, as(G) = 2.095, asz(G) = 0.738, as(G) = —0.477,
a5(G) = —0.732, ag(G) = —1.356. Hence the minimum pendant dominating
FEstrada index would be EEp(G) = 26.9400504235982.

V6

5
Figure 1. The graph G in Example 1

Now, by the eigenvalues in [31], we find formulae for the minimum pen-
dant dominating Estrada indices of certain classical graph types including
complete graph, star graph, complete bipartite graph and cocktail party
graph. The proofs are straightforward and omitted:

Lemma 3.1. For any integer n > 2, the minimum pendant dominating
Estrada index of a complete graph K, is equal to

n-1-1n2 2n49 n-14+v/n2 2n49
EE,(K,)=e 2 +e 2 +

(n—3)e ' +n-3.

Lemma 3.2. For any integer n > 2, the minimum pendant dominating
Estrada index of a star graph Ky n,—1 is equal to

EEp(Kip 1) =eV" 2 4+e V2 pe? 4 n—3.

Lemma 3.3. For any integer n > 2, the minimum pendant dominating
Estrada index of a complete bipartite graph K, , is equal to

n-1+y/n2 2n+45 n-1-1n2-2n45 —n+tl+y/n242n -3
e 2 +e 2

EEp(Knn) =e 2

—ntl1-vn242n-3
-z +

+e 2n — 4.
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Lemma 3.4. The minimum pendant dominating Estrada index of a cocktail
party graph is equal to

—1+ -1-V5

.
EEpe(Kpyy) = "2Vl 4 on=2-VnP Tl _ 1)e2 475" 4o 2
+(n—-3e?+et+n—1

Before showing our main results, we present a useful result:

Theorem 3.5. (¢f. [31]) Let G be a simple graph having vertex set V =
{v1,ve, - ,un}, edge set E and let D = {uj,us, -+ ,ur} be a minimum
dominating set. If a1, a0, -+, any are the eigenvalues of minimum pendant
dominating matric Ape(G), then

-

-
Il
—

(Z) a; = r\/pe(G)a

af =2m + e (Q).

-

Ti
\

(i)

In the following theorem, using Theorem 1, we obtain an upper bound
for the minimum pendant dominating Estrada index:

Theorem 3.6. Let G be a graph with n vertices and m edges and let
n
Z a? > 1. Then

i=n4+1

(4) EEp(G) <n—1+eV2mme(@-1
Proof. Let the number of positive eigenvalues of G be ny. Since f(z) = e*
monotonically increases in the interval (—oo, +00) and m # 0, we get

n
EEp(G) =) €™
=1
N
<n-—n4s+ Z e

i=1

_ o ()
=nonet) )

i=1 k>0

=0 Y0 > ()t

k>1 i=1

<t L g[Sl

k=1 =1

:n—f—Z%[Zm—l—’ype(G)—A i af}

k>1 i=n4y+1

k
2

(SlE
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n
as Z a? > 1. Consequently,
i=n4+1

1 k
EE,(G) < n+ Z o {2m+'\/pe(G) — 117 =n— 14 eV2mHue(@-1,

k>1
O

Theorem 3.7. Let G be a graph with n vertices and m edges. Then for any
integer ko = 2, we have

EEu(G) <n—pe — 1 —1/2m + vpe(G)

ko Rk(G)—< 2m+~,pe(c;)>k

2 il

k=2

+ eV 2m+pe(G) .

Proof. Using Theorem 1 (ii) and the definition of the minimum pendant
dominating Estrada index, we have

ko

Ri(G) Ly
EEpe(G> = Z %! + Z k! Z ch
k=0 : k>ko+1  i=1
ko n
S Rkk('G) s %(Z a2)% by Inequality (3)
k=0 ’ k>ko+1 =1
k
. Ri(G) (W>
= Z P Z k!
k=0 ’ k=ko+1 '
k
. " m)
=Z°Rk(G)+e\/W_ZO:< -
per il k=0 . |

Setting ko = 2 above, we have

EEpe(G) <1 = 3e(G) = 1= /2m + e (G) + eV 25700,

4. BOUNDS FOR THE MINIMUM PENDANT DOMINATING ESTRADA INDEX
INVOLVING THE MINIMUM PENDANT DOMINATING ENERGY OF GRAPHS

In this section, we investigate the relations between minimum pendant
dominating Estrada index and the minimum pendant dominating energy.
First, we state the following theorem:

Theorem 4.1. Let G be a graph with n > 2 vertices and m edges. Then

2m + 7pe(G)
(5) o1 > T(g)'
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Proof. Let a;,b; be two decreasing non-negative sequences with a;,b; # 0
and w; be a non-negative sequence for i = 1,2,...,n. Then the following
inequality is valid (see [11] p. 85):

(6) Z wia? Z w,b2 < mazx {b1 Z w;a;, ai Z w; Z} z": w;a;b;.
i=1

For a; = b; := |ai| and w; :=1,i=1,2,...,n, inequality (6) becomes
n n n n
Z || Z lo|? < max {al Z |cvi|, o Z |a1|} Z i
i=1 i=1
Since

n

D lail” = Za

=1

> lail = Epe(G),
i=1

the assertion of Theorem 4.1 directly follows from the above inequality, i.e.

and

inequality (5) is shown. O
Theorem 4.2. Let G be a graph with n vertices. Then
2m+ype(G) n—1 —vpe(G)
EEpe(G) >e Fpe@ TImipe(@) +e n-1
T Epe(C)
e n—1

Proof. By the definition of the minimum pendant dominating Estrada index
and using arithmetic-geometric mean inequality, we obtain
EE,(G) =€ + e + ... + e

l
>e+(n—-1) (He“’)

o e

Py
=e*4+(n—1)e »1

‘)pc(G)

:e“1—|—(n—l)e“ 1 4+ e n-1

Now we consider the following function

1 @
f@)=e" + s pemr
en—l
for x > 0. We have
-1 —pe(G)
flx)y=e" + n_ e
en—l

It is easy to see that f is an increasing function for > 0. Hence we obtain

2m+ype(G) n—1 —vpe(G)
EEp(G) 2z e Pre@ 4 — e e T
Epe(G)
e n—1
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Theorem 4.3. The minimum pendant dominating Estrada index EE,.(G)
and the pendant dominating energy Ep.(G) satisfy the following inequality:

1 Epe(G)
(1) 3Epe(@)e—1)+ (0 —ns) + e < EEpe(G) Sn—1+e 2

Proof. Lower bound: Since e® > 1 + z, equality holds if and only if z = 0
and e > ex, equality holds if and only if z = 1, we have

EEp(G) = Zeai = Z eY + Z e
i=1

a; >0 ;<0
>3 ot (1400
;>0 a; <0

=elar+aa+- - Fan)+n—ng)+(an 41+ +on)

n
=(e—(ar+os+ - Fan)+n—n)+>
i=1
1

= §Epe(G)(e =1+ (n—n4) + vpe.

Upper bound: We have

1 n+ . 1 N+ k Epe(G)
BER(G) <nt T g a0 <ot g Sar) =n-1e e

k=1 i=1 k>1

Theorem 4.4. Let G be a graph with n vertices and m edges. Then
EEpe(Q) — Epe(GQ) <1 — 1= /2m + 7pe(G) + eV2mwe(@),

Proof. By the definition of the minimum pendant dominating Estrada index,
we have

n ()(ik n a; k
2B @) =nt Y3 O oy Ll

i=1 k>1 ’ i=1 k>1

Moreover, by considering the minimum pendant dominating energy, we get

n k
o
BER(G) <n+ Ep(@)+ 33 k|| :
i=1 k>2 ’
Hence
- | a; ¥
EEp(G) ~ Ep(G) <n+ 3320

i=1 k>2

<n—1—1/2m + pe(G) + eV2mTwe(@)

Theorem 4.5. Let G be a graph with n vertices and m edges. Then
EEpe(G) =+ Epe(G) <n-—1-— Ype + eEPE(G).
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Proof. By the definition of the minimum pendant dominating Estrada index,
we have

oG
ev =

(O‘z)k . af
il = n_'\/Pe(G) +sz_l|

i=1 k>0 ’ i=1 k>2

- | i ¥
<n —vpe(Q) +ZZ X

i=1 k>2

:n_ﬁ/pe(G)+Z%Z|ai |k

k=2 i=1

<n—pe(G)+ Y _(il%l)k

k>2 i=1

=n—1-7(G)—E +ZZ

i=1 k=0

O
Theorem 4.6. Let G be a graph with n vertices. Then
EE,(G) <n—1+ ePre(@),

Proof. By the definition of the minimum pendant dominating Estrada index,
we have

BE(G) <n+ 330 ]

i=1 k=1

<H+Z%<2|ai |k>
i

k>1

=n+ Z (Epe]i'G))k

k>1
which implies

EEpe(G) <n— 1+ ePre(@,

CONCLUDING REMARKS

In this paper, the minimum pendant dominating Estrada index of a graph
is introduced. We also obtained some bounds for this new index. Finally, we
investigate the relations between the new Estrada index and the new energy.
It is possible to apply the ideas obtained and proved here can be applied to
specific graph classes, to derived graphs and to graph operations. Also these
methods can be applied to molecular graphs to get some physico-chemical
properties of the molecules under investigation.

pe G)
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