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IDENTITIES FOR SPECIAL NUMBERS AND
POLYNOMIALS INVOLVING FIBONACCI-TYPE
POLYNOMIALS AND CHEBYSHEV POLYNOMIALS

NESLIHAN KILAR AND YILMAZ SIMSEK

ABSTRACT. The main motivation of this paper is to give some identities and series rep-
resentations for special numbers and polynomials involving the Fibonacci-type polyno-
mials, the Chebyshev polynomials, the cosine-Euler polynomials, the sine-Euler poly-
nomials, the cosine-Bernoulli polynomials, and the sine-Bernoulli polynomials. More-
over, observations and comments on the results of this paper are given.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 05A15, 11B39, 11B68, 26C05, 33B10.

KEYWORDS AND PHRASES. Bernoulli numbers and polynomials, Euler numbers and
polynomials, Chebyshev polynomials, Fibonacci-type polynomials, Cosine-Bernoulli
polynomials, Cosine-Euler polynomials, Sine-Bernoulli polynomials, Sine-Euler poly-
nomials, Generating function.

1. INTRODUCTION

Special numbers and polynomials have been used in many scientific studies recently.
In the literature, we see that these are also used in the models used in solving real
world problems. Likewise, generating functions for special numbers and polynomials
give the same effectiveness on the scientific studies (¢f. [1]-[25]). In this paper, by using
generating functions of the special polynomials involving trigonometric functions and
their functional equations, we give some relations, identities, and series representations
for the Fibonacci-type polynomials, the Chebyshev polynomials, the Bernoulli numbers
and polynomials, the Euler numbers and polynomials, the cosine-Euler polynomials, the
sine-Euler polynomials, the cosine-Bernoulli polynomials, and the sine-Bernoulli poly-
nomials.

We use the following notations and definitions throughout of this paper:

Let N={1,2,3,...}, Ny = NU {0}, R denote the set of real numbers and C denote
the set of complex numbers. In addition, let z =« + iy, 2 = « — iy and i = —1.

The Bernoulli polynomials B, (x) are defined by

1) Fi(t,2) = e = 3" Bufa),

n=0

where |t| < 27 (cf. [2]-[23]; and references therein).

The paper was supported by Scientific Research Project Administration of Akdeniz
University with Project Number: FDK-2020-5276.



494

N. Kilar and Y. Simsek

When x = 0, using (1), we have the Bernoulli numbers B,,, which are defined by

[oe]

2 Lo Btn
) e'ffl_Z "l

n=0

(cf. [2]-[23]; and references therein).
By combining (1) with (2), we have

(3) Bn(z) = En: (’;) @ B,_;

=0
(cf. [2]-[23]; and references therein).
The Euler polynomials E,(z) are defined by

(4) Fy(t,z) = %ert =Y Bl
n=0

where [t| < 7 (c¢f. [2]-[23]; and references therein).
When z = 0, using (4), we have the Euler numbers E,,, which are defined by

o0

- 2 SE n
et +1 = "nl
(cf. [2]-[23]; and references therein).
By combining (4) with (5), we have
n
©) Eua) =3 (7)o By
=0 \J

(cf. [2]-[23]; and references therein).
The Fibonacci polynomials are defined by

(7) GF(t:fC):ﬁ: E Fy(2)t
n=0
where [f] < 1 (cf 3], [4], [5], [12], [21]).

The Chebyshev polynomials of the first kind 7}, (z) and second kind U, (z) are defined
by means of the following generating functions, respectively:

1—at
(8) 1—2at+¢2 ZT
and
9) 1 —21t+t2 ZU

(cf. [1], [2], [6], [13]; and references therein).
Combining (7) with (8) and (9), we have

[e.e] o [e.e]
S T (i) th = Fuyr (22)i™" = > aF, (22)i"t"
n=0 n=0 n=0
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and
o0 o9}
> Fopr (20)i"" =Y U, (iz) ",
n=0 n=0
where i2 = —1. By using the above equations, we get the following well-known relation

between the Fibonacci polynomials and the Chebyshev polynomials of the first kind and
second kind, respectively:
T, (ix) = i"Fp11 (2z) — 2" F, (2x)
and
i"Fpi1 (2z) = Uy, (iz)
for detail, see also [17].
For z = 1, we have the following well-known identities involving the Fibonacci num-

29
bers and the Lucas numbers: _
i n
Un <§) =1i"Fpt1
i "
Tn (5) = ELna

where Fo =0, i =Fy =1, Fhao=Fy 1+ Fyand Lo =2, L1 =1, Lyyo = Ly + Ly

(¢f. [25]).
The Fibonacci-type polynomials in two variables G, (z,y; k, m,[) are defined by

and

1

10
(10) 1—akt—y

0
mtm+l - Z gn (:Ev Y3 ka m, Z) tnv
n=0

where k,m,l € Ny (¢f. [17]). The explicit formula for the polynomials G, (z,y; k, m,1)
is given as follows:

)

[757]
n—v(m+il-1 mv , . nk—muvk—lv
oty = 30 (7T 1)

v=0
where [b] denotes the largest integer less than or equal to b (¢f. [17], [18]).
Substituting y =1 and k =m =1 =1 into (10), we have
Fy (l‘) =Gn1 (:177 11,1, ]-)

for detail, see also [17].
The polynomials Cy,(z,y) and Sy, (z,y) are defined by means of the following generat-
ing functions, respectively:

o0

t?’L
(11) Fo (tz,y) = e cos (yt) = Cnl@,y)
n=0
and
. = t"
(12) Fy (tz,y) = €™ sin (yt) = > _ Sulw,y) .

n=0
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Using (11) and (12), we have the following formulas for the polynomials Cy(x,y) and

Sn(x,y), respectively:

CU

Cn — 1) n—2j,25
@) =21 (5 )"y

J=0

w[3

and

Sp(z,y) = [ni] (—1)j( " >w”‘2j‘1y2j“
LA = 25 +1 ‘
)

(cf. [7)-[11], [14]-[16], [19], [22], [23]).
By using (8), (9), (11) and (12), the relations among the polynomials C),(z,y), the
polynomials Sy, (x,y) and the Chebyshev polynomials are given as follows, respectively:

(13) T, (z) = C, (ac, V1- $2)

and

S (a;, V1-— 1:2)
(14) Un-1(z) = e
(cf. [9], [10]).

The cosine-Bernoulli polynomials BT(IC) (z,y) and the sine-Bernoulli polynomials B,(LS) (z,9)

are defined by means of the following generating functions, 1‘espectively:

t
(15) Fpe (t,z,y) = 16 tcos (yt) = ZB
and

t
(16) Fps(t,z,y) = etj "sin (yt) = ZB

(cf. [11], [16]). Note that so-called cosine-Bernoulli polynomlals and sine-Bernoulli poly-
nomials were also studied with the name of the parametric type of Bernoulli polynomials
in the literature, see for detail (¢f. [11], [16], [22], [23]).

By using (11), (12), (15) and (16), we have the following well-known identities, re-
spectively:

(17) B (x+1,y) — B9 (2,y) = nC_1(z,y)
and

(18) B (z+1,y) - BY (x,y) = nSn_1(2,y)
(cf. [11], [16]).

The cosine-Euler polynomials Eff) (z,y) and the sine-Euler polynomials Eff) (x,y)
are defined by means of the following generating functions, respectively:

2
; 16 tcos (yt) = ZE

n=0

’I’L

(19) Fgo (t,m,y) =
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and

o0
. "
e sin (yt) = Y _ B (2,y)

n=0

(20) Fgs(t,z,y) = T
(cf. [11], [15]). Note that so-called cosine-Euler polynomials and sine-Euler polynomials
were also studied with the name of new type of Euler polynomials in the literature, see
for detail (cf. [11], [15], [22], [23]).

By using (11), (12), (19) and (20), we get the following identities:

(21) E© (2 4+ 1,9) + B (2,9) = 20 (a,)
and

(22) E) (x+1,y) + EY (2,y) = 2Sn(z,y)
(cf. [11], [15]).

2. IDENTITIES AND RELATIONS INVOLVING FIBONACCI-TYPE POLYNOMIALS AND SOME
SPECIAL NUMBERS AND POLYNOMIALS

In this section, by using functional equations of the generating functions, we de-
rive some formulas for the Euler numbers and polynomials, the Bernoulli numbers and
polynomials. We also derive some identities related to the Fibonacci-type polynomials,
the Chebyshev polynomials, the polynomials C,, (z,y) and the polynomials S, (z,y).
Moreover, we give many interesting relations among the cosine-Euler polynomials, the
sine-Euler polynomials, the cosine-Bernoulli polynomials, the sine-Bernoulli polynomials
and the Fibonacci-type polynomials.

By using (15) and (1), we obtain the following functional equation:

(23) Fpp(t,z) + Fpp(t,2) = 2Fpc (t,2,y) .
From (23), we have
(24) Bu(2) + Ba(2) = 2B(7 (2,9)
(¢f [11]).
By using (16) and (1), the following functional equation is obtained:
(25) Fpp(t,z) — Fpp(t,z2) = 2iFps (t,,y) .
From (25), we have
(26) Bu(2) = Bu(2) = 2B (z,y)
(¢f [11]).

After some calculations in the equations (24) and (26), we arrive at the following
theorem:

Theorem 2.1. Let n € Ny. Then we have

(27) By(2) = B (z,y) +iB{ (x,y)
and
(28) By(2) = B (z,y) —iB{ (x,y) .

Combining (27) and (28) with (3), we have the following corollary:
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Corollary 2.2. Let n € Ng. Then we have

n
B ) + B @) =3 () @+ iV By
j=0
and .
BﬁLC) (z,y) — iBﬁLS) (z,y) = Z (n) (x — iy)jBn_j.
; J
7=0

By using (19) and (4), we obtain the following functional equation:

(29) FEp(taz)+FEp(t52) :2FEC (tvxay)
From (29), we have
(30) En(2) + En(2) = 2B(7 (z,y),
(cf. [11)).
By using (20) and (4), the following functional equation is obtained:
(31) Fp(t, ) — Fip(t, 2) = 2iFps (t,2,y) -
From (31), we have
(32) En(2) = Ba(2) = 2B (2,y),
(cf. [11]).
After some calculations in the equations (30) and (32), we arrive at the following
theorem:

Theorem 2.3. Let n € Ng. Then we have

(33) En(2) = E©) (z,y) +iE{) (z,y)
and
(34) Eyn(2) = B (2,y) — B (2,y).

Combining (33) and (34) with (6), we get the following corollary:
Corollary 2.4. Let n € Ng. Then we have

ET(lC) (l‘,y) —+ ZE(S Z ( )(1' + Zy ]En —j
7=0

(cf. [11]), and
B ) =89 @) =3 () (@ - iV B

=0

AN

By using (8), (9) and (10), we get the relations among the Chebyshev polynomials
of the first kind 7}, (z), the Chebyshev polynomials of the second kind U, (z) and the
polynomials G, (z,y; k,m,[) by the following corollaries:

Corollary 2.5. Let n € N. Then we have
(35) T, (x) =G, (2z,-1;1,1,1) — 2G,_1 (22, —-1;1,1,1).
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Corollary 2.6. Let n € Ny. Then we have

(36) Un (2) =Gp (22,-1;1,1,1).
Combining (35) with (13), we obtain the following corollary:

Corollary 2.7. Let n € N. Then we have

(37) C, (:z: V1o x2) =G (22, -1:1,1,1) — 2Gp_1 (22, ~1;1,1,1).
Combining (36) with (14), we obtain the following corollary:
Corollary 2.8. Let n € Ny. Then we have

(38) St (x ﬂ) = V1— 226, (22,-1;1,1,1).
By combining (17) with (37), we arrive at the following theorem:
Theorem 2.9. Let n € N. Then we have
Gy (22, —-1;1,1,1) — 2G,,_1 (22, —1;1,1,1)
Br(z+1 (:z:—i—l V1 ) n+1<x,\/1fx2>
n+1 '

By combining (18) with (38), we arrive at the following theorem:
Theorem 2.10. Let x # 1 and v # —1. Let n € Ny. Then we have
Br(i)2 (iE +1 \/—) Bﬁﬂ ( ,m)
(n+2)V1— a2 '

By combining (21) with (37), we arrive at the following theorem:

Gn (22,-1;1,1,1) =

Theorem 2.11. Let n € N. Then we have

Gn (22, —1;1,1,1) — 2Gn_1 (22, —1;1,1,1)

Eg (:c—i—l,ﬂ) +En (x, 1 —x2)
9 .

By combining (22) with (38), we arrive at the following theorem:

Theorem 2.12. Let x # 1 and v # —1. Let n € Ng. Then we have
B (2+1,v1=22) + B, (0.vT—27)
21 — 22 '

3. OBSERVATIONS ON INFINITE SERIES REPRESENTATIONS INCLUDING SPECIAL
NUMBERS AND POLYNOMIALS

(39) Gn(22,-1;1,1,1) =

In this section, some infinite series representations including special numbers and
polynomials are given, using the works of Ozdemir and Simsek [17] and also Koshy [12].



500

N. Kilar and Y. Simsek

For ¢ > 1, Ozdemir and Simsek [17] gave the following infinite series representation
for the polynomials G; (z,y; k, m,n):

9
WJ (xay;kamv n) cm
(40) Z cJ = cmtn _ pkentm—1 _ ym’

§=0
where
WJ (ZL‘, Y; k: m, TL) = gj—n (l’, Y; kv m, Tl) )
where j > n.
Substituting ¢ = 10, z =y = 1, k = m = n = 1 into (40), we have the following
infinite series representation for the Fibonacci numbers, which was proved by Stancliff

[24], in 1953:
— F, 1
nz:% 1on+l il
(¢f. [12], [17)).
Substituting ¢ = 2, y = 1, k = m = n = 1 into (40), Ozdemir and Simsek [17] gave
the following infinite series representation for the Fibonacci polynomials:

iFj(x)_ 2
2 3-2

j=0
Substituting z = 1 into the above equation, we have
J
DL
Jj=0 2J
(¢f. [12], [17)).
For ¢ > 1, modification of equation (40) is given as follows:
o0
(41) Z g] (x7y;kam7 n) — Cn+m )
cJ cntm _ pkentm—1 _ ym
j=0

Substituting x = 2, y = —1, k = m =n =1 into (41) and using (39), we get

oo

Z Gj 2o, —1;1,1,1)

¢l
J=0

B\ (a+1,vT=a?) + B (a,vT—a?)

_ Z j+1
= 21 — a?d

Now, assuming that |«| < 1, we obtain the following theorem:

Theorem 3.1. Let || <1 and ¢ > 1. Then we have

() JVi—a? () Vi a2
io: Ej“‘l (a + 17 1-— 062) + Ej+1 (Oé, 1- 0l2> _ 262 1-— a2
2 o T2 —2ac+1
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