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A NOTE ON STRONG CONVERGENCE OF SUMS OF
INDEPENDENT RANDOM VARIABLES UNDER
SUB-LINEAR EXPECTATION

KYO-SHIN HWANG

ABSTRACT. The sub-linear expectation space is a nonlinear expecta-
tion space having advantages of modeling the uncertainty of probability
and statistics. Strong convergence for non-additive probabilities or non-
linear expectation are challenging issues which have raised progressive
interest recently. In the sub-linear expectation space, we use capac-
ity and sub-linear expectation to replace probability and expectation of
classical probability theory. Recently Zhang has proved very important
theorems in the sub-linear expectation space which can be looked upon
as being extensions of Kolmogorov’s three series theorem in classical
probability theory. Zhang and Lin obtained Marcinkiewicz’s strong law
of large numbers for sums of independent random variables under sub-
linear expectation space. In addition, they have given a theorem about
strong convergence of a random series for independent random variables
under sub-linear expectation.

In this paper we investigate the strong convergence for sums of inde-
pendent random variables under sub-linear expectation and gives also
almost surely convergence of sums of independent random variables in
capacity. They are extensions of strong convergence of a random series
and almost surely convergence of sums for independent random variables
in the framework of sub-linear expectation. By using Zhang’s result, the
proof rests on the methods of proof due to Petrov’s result concerning the
almost sure convergence of series of independent random variable. As
an application Marcinkiewicz’s strong law of large number for nonlinear
expectation are obtained.
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1. INTRODUCTION

Limit theorems play on an important role in the development of proba-
bility theory and statistics. They were widely used in many fields, which
only hold in the case of model certainty. The proofs of these limit theorems
depend basically on the additivity of probability measures and mathemat-
ical expectation in some occasions of model certainty. However, there are
uncertainties, such as risk measures, super-hedge pricing and modeling un-
certainty in finance. The model certainty assumption is not realistic in many
areas of applications since the uncertainty phenomena can not be modeled
using additive probabilities or expectations in the model certainty. So the
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question arises naturally whether the strong convergence of sums of random
variables can be still maintained in sub-linear expectation.

Recently, motivated by the risk measures, super-hedge pricing and model-
ing uncertainty in finance, Peng([9]) initiated the notion of independent and
identically distributed random variables under sub-linear expectations. The
general framework of the sub-linear expectation space in a general function
space by relaxing the linear property of the linear expectation to the sub-
additivity and positive homogeneity was introduced by Peng([8-11]). The
sub-linear expectation does not depend on the probability measure, pro-
vides a very flexible framework to model distribution uncertainty problems
and produces many interesting properties different from those of the lin-
ear expectations. Under Peng’s framework, many limit theorems have been
investigating. Recently, Peng([9]) obtained a new central limit theorem un-
der sub-linear expectation and Zhang([17]) studied on Donsker’s invariance
principle under the sub-linear expectation with an application to Chung’s
law of the iterated logarithm and also Zhang and Lin([20]) investigated
on Marcinkiewics’s strong law of large numbers for nonlinear expectation.
Many authors investigated on limit theorems under nonlinear expectation in
the wide fields such as the strong law of large number([1,4,7,18]), the law of
the iterated logarithm([2,16,17]) and the convergence of the infinite series of
random variables([15,19]). For the convergence of the sums of random vari-
ables, Zhang([19]) gave three series theorem on the sufficient and necessary
conditions for the almost sure convergence of the infinite series Y, X,
under the sub-linear expectation.

In this paper we investigate the strong convergence for sums of indepen-
dent random variables under sub-linear expectation. Our results is basi-
cally form by Petrov’s results([12-14]) on the strong convergence of sums of
random variables. Our aim is that Petrov’s results still hold on some as-
sumptions under sub-linear expectation. Recently, Xu and Zhang([15]) and
Zhang([19]) has proved very important theorems in the sub-linear expecta-
tion space which can be looked upon as being extensions of Kolmogorov’s
three series theorem in classical probability theory. By using Zhang’s results,
the proof rests on the methods of proof due to Petrov’s result concerning
the almost sure convergence of the infinite series of independent random
variable.

This paper is organized as follows: in Section 2, we summarized some basic
notations and concepts, related properties under the sub-linear expectations
and present the preliminary propositions that are useful to obtain the main
results. In Section 3, we give some lemmas and the main results including
the proof.

2. PRELIMINARIES

We use the framework and notations of Peng([8-11]). Let (£2,F) be a
given measurable space and let H be a linear space of real functions defined
on (Q,F) such that if X7, X5,---, X, € H then (X1, Xs,---,X,) € H
for each ¢ € Cj 1ip(R"™), where Cj 1;,(R"™) denotes the linear space of local
Lipschitz functions ¢ satisfying

p(x) —py)| < COA+ X"+ [y[™)|x -yl vx, y € R"
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for some C' > 0, m € N depending on ¢. Let Cy 1;,(R") denote the linear
space of bounded functions ¢ satisfying

lp(x) —p(y)| < Clz —y|, Vx, y€R"

for some C' > 0 depending on ¢. #H is considered as a space of "random
variables”. In this case we denote X € H.

Definition 2.1. ([8-11]) A sub-linear expectation E on H is a function
E:H—R satisfying the following properties: for all X, Y € H we have

(i) Monotonicity: If X >V then E[X] > E[Y];

(i) Constant preserving: E[d = ¢;

(iii) Sub-additivity: E[X + Y] < E[X] 4+ E[Y]; whenever E[X] + E[Y] is
not of the form +o0o — 0o or —oo + o0;

(iv) Positive homogeneity: E[]AX] = AE[X], A >0
Here R = [—o00,00]. The triple (9, H, IE) is called a sub-linear expectation
space.

__ Given a sub-linear expectation IE, let us denote the conjugate expectation
€ of E by
E[X]=-E[-X], VXeH.
From the definition, it is easily shown that
EIX] <E[X], EX+c=E[X]+c¢ and E[X —Y]>E[X]-E[Y]

for all X,Y € H with E[Y] being finite. Further, if E[|X|] is finite, then
E[X] and E[X] are both finite.

Let X = (X3, X9, ,X,) be a given n-dimensional random vector on a
sublinear expectation space (2, H,E). We define a functional on Cj r;»(R™)
by

Fxlg] = Blo(X)] : ¢ € Cuup(R") = R
Fx is called the distribution of X under E.

We adopt the following notion of independence and identical distribution
for sublinear expctation which is initiated by Peng([8-9,11]).

Definition 2.2. (Identical distribution) Let X; and X be two n-dimensional
random vectors defined respectively in sub-linear expectation spaces (1, H1,E1)
and (22, Ha,Eg2). X; and Xy are called identically distributed, denoted by
X1 =d X2 s if

E1[p(X1)] = Ea[p(Xa)], Ve € Chrip(R"),
whenever the sub-linear expectation are finite.

Definition 2.3. (Independent) In a sub-linear expectation space (€2, #, E),
a random vector Y = (Y1, -+ ,Y,), Y; € H is said to be independent to an-

other random vector X = (X1, , Xm), X; € H under E if
E[p(X,Y)] = E[E¢(z,Y)[s=x], V¢ € Clrip(R™ x R"),
whenever p(z ) E[|¢(z,Y)|] < oo for all z and E[|7(X)|] < oo.
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Definition 2.4. (IID random variables) A sequence of random vari-
ables {X,,n > 1} is said to be independent, if X;+1 is independent to
(X1, Xa,--+,X;) for each ¢ > 1. It is said to be identically distributed, if
X, =4 X for each i > 1.

In Peng([8-11]), the space of the test function ¢ is Cjr;p(R™). When
the considered random variables have finite moments of each order, i.e.,
E[p(X)] < oo for each ¢ € C 1;,(R™), the test function ¢ in the definition is
limit in the space of bounded Lipschitz function Cj, r,;,(R"), since there exists

¢k € Cp Lip(R") such that g L ¢ (pr(z) = supyepn {¢(y) — K|z —y[}).
Definition 2.5. (I) A function V : F — [0,1] is called a capacity if

V(@) = 0,V(Q) = 1 and V(AU B) < V(A) + V(B) for all A, B € F.

(IT) A function V : F — [0, 1] is called to be countably sub-additive if

V(U An) <Y V(A,) =1, VA, € F.
n=1

Let (9, ’HIE) be a sub-linear space. We denote a pair (V, V) of capacities by
V(A) := inf{E[¢(] : [4 < &, € H}, V(A)=1-V(A°), VA€ F,
where A€ is the complement se of A. Then
Elf] < V(4) <Elg), &) <V(4) < Elg),
if f<Ia<y, fge€H. Itisobvious that V is sub-additive, i.e., V(AUB) <
V(A) +V(B). But V and £ are not. However, we have
V(AUB) <V(A)+V(B) and E[X +Y]<E[X]+E[Y]
due to the fact that
V(A°NB®) = V(A°\B) > V(A®)—V(B) and E[-X-Y] < E[-X]-E[-Y].

Further, if X is not in ., we define E by E[X] = inf{E[Y]: X <Y,Y € H}.
Then V(A) = E[I4].

In this paper we only consider the capacity generated by a sub-linear
expectation. Given a sub-linear expectation space (2, H,E), we define a
capacity:

V(A) :=E[l4], VAeF

and also define the conjugate capacity:

V(A) = 1-V(A%), VAeF.

It is clear that V is a sub-additive capacity and V(A) = E[14].

The following representation theorem for sub-linear expectation is very
useful(see Peng([9-11]) for the Proof):
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Proposition 2.1. Let (1, ’H,IE) be a sublinear expectation space.
(I) There exists a family of finitely additive probability measures {Py : 6 €
O} defined on (2, F) such that for each X € H

E[X] = %?gEPG [X].

(I1) For any fized random variables X € H, there exists a family of probabil-
ity measures {{i9}gco defined on (R, B(R)) such that for each ¢ € Cy rip(R),

Blo()] = sup /R (@) (d).

The following proposition can be found in Proposition 2.1 in Chen([3]).

Proposition 2.2. (Chebyshev’s inequality) Let X be a real measurable ran-

dom variable in sub-linear expectation space (Q,H,E). Let f(z) > 0 be a
nondecreasing function on R. Then for any x,

E[f(z)]
f(z)
Let f(x) > 0 be an even function and nondecreasing on (0,00). Then for
any x > 0,

V(X > ) <

V(x| 2 ) < 2L
/()

We need the following notation. As in [13-14], the set of functions ¢ (z)
such that each 1 (x) is positive and nondecreasing for x > ¢ for some zg
and the series Y 1/(ny(n)) is convergent will be denoted by ¥.. Functions
z® and log't® z for any o > 0 are examples of the class of functions ..

For any random variable X and constant ¢, define X¢ = (—c) V (X A ¢).

3. MAIN RESULTS

In this section, we give the main results. We first recall some related
important lemmas in sub-linear expectation space (2, H,E). Then we give
a theorem about the convergence of a random series, from which we can
deduce a theorem similar to Kolmogorov’s three series theorem in classical
probability theory.

Lemma 3.1. Let {X,,n > 1} be a sequence of independent random vari-
ables on (Q,H,E). Suppose that V is countably sub-additive. Then Y >,
converges almost surely in capacity if the following three conditions hold for
some ¢ > 0;

(51) 321 V(I Xnl > ¢) < oo,

(S2) >0 | E[XE] and > 02 E[—XE] are both convergent,

(S3) 2onlt EL(X5 — E[X7])?)] < 00 and 3257 E[(X}; + E[-X7])?)] < oo
Conversely, if V is continuous and Y " | X, is convergent almost surely in

capacity V, then (S1), (S2), (S3) will hold for all ¢ > 0
Proof. The proof of Lemma 3.1 can be found in Zhang([19]). d
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The following theorem is concerned about the strong convergence of a ran-
dom series under sub-linear expectation in view of Chung’s result([5]) and
Petrov’s results([12-14]). It is used in applications such as Chung’s strong
law of large numbers under sub-linear expectation and Marcinkiewicz’s strong
law of large numbers under sub-linear expectation.

Theorem 3.2. Let {X,,,n > 1} be a sequence of independent random vari-
ables in the sub-linear expectation space (SZ,’H,IE), and let V be countably
sub-additive. Let {an,n > 1} be a positive increasing sequence tending to
infinity. Let {gn(z),n > 1} be a sequence of locally Lipschhitz, even func-
tions, positive and non-decreasing for x > 0. For each n, let one of the
following two conditions hold:

(a) z/gn(z) is non-decreasing for x > 0,

(b) 2/gn(z) and gn(z)/x* are non-increasing for x > 0.

If the series

o A~

el gn(an)

is satisfied. Moreover, suppose that

-~

E[X,) =0=E[X,], n=1,2,---

when condition (b) is satisfied. Then the series
o0
X,
(2) >
n=1 "
converges almost surely in capacity V.

Proof. 1t would be sufficient for our purpose to get the conditions (S1), (52), (S3)
of Lemma 3.1. By Proposition 2.2, we have

~

Hence by (1),
o8] [o I
Elgn(X
SOV(Xe] 2 an) < 3 ]
n=1 n=1 gn(an)
It is easy to prove that > >, V(|X,| > an) < oo is equivalent to for any
c>0,

ZV(\XH\ > cap) < 00.

n=1
Therefore it follows that condition (S7) in Lemma 3.1 is proved.
Next we will prove condition (S2) in Lemma 3.1. Define

X =(—an)V(XpAap) for n=1,2,---.

We just need to prove

0 A~
D E[X[] < oo
n=1
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Because of considering {—Xp,,n > 1} instead of {X,,n > 1} in Lemma 3.1,

we can obtain
©0 A~
D E[-Xf] < oo
n=1

By Proposition 2.1, for any fixed random variable X € H, there exists a
family of probability measures {jg}gco defined on (R, B(R)) such that for
each ¢ € Cp rip(R)

Blo(X)] = sup /R (@) 15 d).

Hence if condition (a) is satisfied, then

[ omatao)
|$|§an

an
Ssup/ — _ga(|z in,o(dz
S J o gl n(|2]) tin,0(d)

[E[X7)| < sup
[4SC)

< Sup/ In\T)[n,0 dx
gn(an) 0€0 J|z|<an (=) (dz)
IE
Usingthefactthatfﬁi[ ]—O—g[ Xp] for n = 1,2,--- and X,, — X§ <

(|X |7(1n) < |X ‘ I{\Xﬂ|>aﬂ} and also ‘X ‘ I{|Xn\>a7,} S Cl sz( ) since
X& = (—an) V (X, A ay), we have

E[XZ] = E[X-E[Xa < E[XC-Xa] < E[|IXn - Xg]
E[|Xo| - I{|Xn| > an}]

IN

and also

If condition (b) holds, the only modification is that we have

B <swp [ felpma(do)
€ J|z|>an

(479
sup / (] pmo (d)
0cO J|z|>an gn(an)

an
_—sup/ 9n(T) pin,0(dx
gn(an) 0€0 J|z|>a, (@)pin.o )

IN

< ol

since now gn(an)/an < gn(z)/z for |z| > ay by assumption (b). Thus we

obtain
o0
~ [ X¢
E E [—”] < 00
an
n=1
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Finally, we just prove condition (S3) in Lemma 3.1. Suppose that g, (z)
satisfies condition (a). Then for |z| < ay, we have

P _ R _ 9

E = galan) = gnlan)
But if n is such that (b) holds, then for this same region

z? < a2
gn(x) = gnlan)
for |z] < ayp, we have
2 gn(x)

for all n. Therefore

E[bez] = sup/ Jrg,unﬁ(dx)
0c0 J|z|<an

IN

n sup/ Gn () pin 0 (dx)
gnlan) 9e6 Jjz|<an

~

oo 2
~ |/ Xxc
>E| (%) } <.
an
n=1
Therefore, from Lemma 3.1, it follows that the series (2) is convergent a.s
in capacity V, and the proof is complete. O

gnlan)

By (1), we have

The following lemma 3.3 generalizes the Abel-Dini Theorem (see [6]) and
is easily proved in the same way.

Lemma 3.3. Let {a,} be a sequence of non-negative numbers, A, = ;_; ak
and A, — oco. Then the series Y .- (an/Anp(Ay)) is convergent for any
function ¢ € V..

The following theorem gives a criterion for the almost surely convergence
of sums of independent random variables in capacity. It is to generalize
Petrov’s Theorem([13-14]) under sub-linear expectation.

Theorem 3.4. Let {X,,,n > 1} be a sequence of independent random vari-
ables in the sublinear expectation space, and let V be countably sub-additive.
Let g(x) be a locally Lipschitz sequence of even functions, positive and strictly
increasing for x > 0 and is such that g(x) — 00 as x — oo. Let either of
the following two conditions hold:

(a) z/g(x) is non-decreasing for x > 0,

(b) 2/g(x) and g(x)/x? are non-increasing for x > 0.

Further, let

(3) Elg(X,)] < oo, n=1,2,--
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and

(4) Ay = I/E\l[g(Xk)] — 0.

Moreover, suppose that

-~

(5) E[X,] =0=E[X,), n=1,2,---
when condition (b) is satisfied. Then

Su=0(g ' (Anp(4,))) as. V
for any function (x) € W.. Here g~1(-) stands for the function inverse to
9()-
Proof. We shall use the idea of the proof of the theorem in [13,14]. Let
Y(x) € U.. By the hypotheses of g in the theorem, it guarantee the existence

of a positive inverse function ¢~!(x) for all sufficiently large x. Let a, =
g 1 (An(Ay)), then a,, 1 0o as n — co. From (4) and Lemma 3.3, it follows

that R
— E[g(Xn)]
2 A <

On the other hand, since the equation g(a,) = A (Ay), by using Theorem
3.2, the series Y X, /a, is convergent a.s. in capacity V. By Kronecker’s
lemma, we have

Sn/gH (Ant(4n)) = 0 as. Y,
which completes the proof. 0O

Remark. It is open problem that : Let g(x) be an even continuous function,
positive and strictly increasing for x > 0 and such that g(0) = 0 and g(x) —
o0 as ¥ — 0. For any function (x) € Wy, there exists a sequence of
independent random variables {X,,n > 1} satisfying condition (3), (4), (5)
and

] Sul
imsup

n—oo 9 N An(An))
where Sy, = > 1| X;.

>0 as V,

We have the following corollaries. It is to state the consequence of Theo-
rem 3.2 corresponding g, (z) = = and a, = n'/?, n =1,2,---. The following
Corollary 3.5 is very similar to Marcinkiew’s strong law of large numbers for
nonlinear expectations(see [15],[20]).

Corollary 3.5. Suppose {X,,n > 1} is a sequence of independent and
identical random variable in the sub-linear expectation space with E[X;] =

~

0=E&[X1] and V is countably sub-additive. If the series

> E[X2]
Z nQ/Z < o0.

n=1

(I) For 0 <p <1, then

— — 0 as. V
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(II) For 1< p < 2, suppose lim,_,o0 B[(| X1| — a)t] = 0, then

Sn

nl/p—>0 as. V

It is considerably simple to state the consequence of Theorem 3.2 and
Theorem 3.4 corresponding to the g(z) = |z|P for order of growth of sums
of independent random variables under sub-linear expectation.

Corollary 3.6. Let {X,,n > 1} be a sequence of independent random vari-
ables under the sub-linear expectation space and 'V is countably sub-additive.
Let Sy, = > p_y Xk and let

IEHX"V)} < o0, N = 17 27 e
for some positive p < 2. Put

n
Ay =Y E[ X ]
k=1
If
A, =00 as n— o0.
Then if 0 < p < 1, we have S, = o((An1b(An))'/P) aus. in capacity V for any
function Y(z) € U, if 1 < p < 2, the assertion is true under the condition

(5).
4. CONCLUSIONS

This paper proves a theorem about strong convergence of a random series

for independent random variables under sub-linear expectation, and gives
also a criterion for almost surely convergence of sums of independent random
variables in capacity. They are extensions of strong convergence of a ran-
dom series and almost surely convergence of sums for independent random
variables in the framework of sub-linear expectation.
Limit theorems for non-additive probabilities or non-linear expectations are
challenging issues which have raised progressive interest recently. Our re-
sults include Marcinkiewicz’s strong law of large numbers for nonlinear ex-
pectations and gives a criterion for order of growth of sums of independent
random variables under sub-linear expectation. It is very useful in finance
when there is ambiguity. But the constraint conditions in this paper are
very strong, such as the condition > 7 | E[g,(Xy)]/gn(an) < oo and inde-
pendence under sub-linear expectation. How can we weaken the constraint
conditions? Can we find the conditions to hold the open problem in Remark?
We will investigate them in the future work.
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