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Control of the wireless power transfer circuit
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ABSTRACT. We consider one of the most popular
wireless power transfer circuits, formalize it as the
optimal control problem and apply Pontryagin
maximum principle for obtaining its solution.
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1. Introduction

Most of devices that are driven by electric power are usually fed via electric wires
connected to AC power supply. On the other hand, some of electric devices are required or
designed to be fed without electric wires — in the way of called wireless power transfer (WTP).

Many papers concerning wireless power transfer use resonant phenomena [2, 5, 9, 10]. In
general, if input frequency is adjusted to the resonant frequency, the amplitude of current or
voltage will be maximal [9]. Since the power of resistive load is determined by its current or
voltage, the power will be maximal at the resonance. As for wireless power transfer, it is one of
significant specifications to transfer power as much as possible. Then it is naturally to try to
maximize transmitted power with resonant phenomena. On the other hand, efficiency is another
significant specification on wireless power transfer. However, efficiency is defined as a ratio with
two different powers, and it cannot be concluded that efficiency is always maximal when either
power is maximal. Therefore, efficiency has no straightforward relation with resonance in
contrast with the relation between resonance and power.

In this paper, we consider another approach to control of the wireless power transfer
circuit based on maximum principle. We explore a typical for wireless power transfer sample of
the circuit, which can be formalized as the optimal control problem: the simplest problem, the
two point minimum time problem, the general problem, the problem with intermediate states, the
common problem, etc. [1,3,4,8]. Depending on objective function and constraints, we apply
corresponding maximum principle and obtain optimal process in the class of piecewise
continuous control functions. We examine and analysis it in comparison with resonant case.

2. Statement of the problem

Optimal control theory began to take shape as a mathematical discipline in the 1950°s and
is regarded as a modern branch of the classical calculus of variations, which is the branch of
mathematics that emerged about three centuries ago at the junction of mechanics, mathematical
analysis and the theory of differential equations. The calculus of variations studies problems of
extreme in which it is necessary to find the maximum or the minimum of some numerical
characteristic (functional) defined on the set of curves, surfaces, or other mathematical objects of
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a complex nature. The theory of optimal control absorbed all previous achievements in the
calculus of variations, and was enriched with new results and new content. The central results of
the theory — the Pontryagin Maximum Principle became widely known in the scientific and
engineering community, and is now widely used in various academic fields [1, 3, 6, 7, 8].

In this paper, we study a typical circuit for WPT depicted below [2]. Despite of the
placement of two coils in the figure, we assume they have a common central axis.

My Mo
Figure 1. A Wireless Power Transfer Circuit

The resistor R is supposed to represent an internal impedance of the power supply, and
R4 - the load. R2, R3, Ci1, C2 are parasitic factors of transmitting and receiving coils. This circuit is

mathematically modelled as the following system of state equations:

0 0 %l 0 0
. 110 0 0 & 1| O
X=Ax+Bu, where A=— 2 , B=— R
A -L, M, —(R+R)L, (Ry+R)M, Al L
M, -L (R+R)M, —(R,+R,)L -M,
A=LL -MM,.
Y
v
Here x=| ’ | is the state vector. v, V,, i, i, are corresponding voltage and amperage

(current). Control u is the input that we define as a piecewise continuous function with the range
in compact U. If we take U=/-1, 1], then sinusoidal input u =sin @¢, used in many applications,
is a particular case of such control. Both x = x(¢) and u =u(¢) are functions of time 7 €[0,¢]. ¢,

is fixed or not fixed moment of time.
The basic characteristic of the wireless power transfer circuit is its efficiency
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where A=+

1

1 J‘(u(t) —Ri,(t))i(t)dt and P, = ﬁjzf ()R, (t)dt are average power of input and
0 0

output accordingly. In terms of state variables the efficiency has the form
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4
I X, R,dt
0

n=1 .
I(u =R x,)x,dt
0

Then, depending on objective function and restrictions of the model, we can formulate different
optimal control problems. In particular, we have

Problem 1.

]foR4dt

0

n= — max,

4
I(u =R x;)x,dt
0

x=Ax+Bu, x(t,)=x", u(t)eU, t€[0,4,].

Problem 2.

4

jxf&dt—)max,

0

x=Ax+Bu,

x(ty)=x", u=Rx)x, <a,
ut)eU, te[0,4].

Problem 3.

X2 (t,) = max,
X=Ax+Bu,
x(t,)=x", u(t)eU, te[0,4].

Problem 4.

t, > min,
x=Ax+Bu,

4 f
x(t)) =x", Ifo4dt = ﬂI(” —Ryx;)xqdt,
0 0

ut)eU, t, 20,
and others.

3. Solution of the Simplest Problem

We consider problem 3. For fixed #, we classify it as the simplest problem [1]:

J =O(x(¢,)) > min
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x = f(x,u,t),
x(ty)=x’, 1
uelU, telt,t].

The pair x(¢),u(¢) that satisfies all conditions of the simplest problem except, possibly, the first
condition is said to be a process. A process x(¢),u(t) is regarded to be optimal if for any other
process X(t),u(t) , the following inequality holds

D(x(4)) < D(xX()) -

Function u(?) is called optimal control and x(t) - optimal trajectory. We seek optimal control in
the class of piecewise continuous on segment [#,,¢] functions. The goal consists in determining
the optimal process of the problem (1).

The necessary conditions of optimality of the process x(¢), u(¢) for (1) is given by
Pontryagin Maximum Principle [1, 4].

Theorem (Maximum Principle). Let x(¢), u(¢) be a solution of the simplest problem of
optimal control (1). Then there exists continuous solution (¢) of the conjugate Cauchy problem

v =—H (yv,x,u,t) 2
l//(tl) = _(I)x(ll)(x(t1 ))

such that H (y (¢),x(2),u(t),t) =m%xH (@), x(t),v,t), t,<t<t.

Here H(y,x,u,t)= Zl// ;f;(x,u,t) is Hamiltonian. Since mathematical model in the problem (1)
j=1
for wireless power transfer circuit is linear, then Hamiltonian becomes

H(y,x,u,t)=w" Ax+w Bu
and Cauchy problem (2) arrives at

y=—iy. o
w(t)=1(0,0,0,2x,(t,)) .

Solution /(¢) of this problem depends on x,(#,) and contains polynomial, exponential, sine and

cosine functions. General solution of the conjugate system, obtained by WolframAlpha program,
has the form

0=k _z be™w* —be"™ fw+ae™ gw
g 'S aw =3 f? =3 pw? + 2dhw—2gmw+ 2anw+ 2 fow—dfh + cgh + bmn — anp

ok Z —e™W e fn’ +e™ pw’ —de” hw+ e gmw—e™ fow+ de™ fh—ce”™ gh
2\ 4 —aw’ +3 fn? +3pw? —2dhw+ 2gmw—2anw—2 fow+ dfh — cgh —bmn + anp

Tk Z —be" [ +ae" g +be"w
T 4wt =3 =3 pw? + 2dhw—2gmw+ 2anw+ 2 fpw— dfh + cgh + bmn — anp
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k Z —ae™w —be" mw+ ae”™ pw+bce™h—ade™h
44w’ =3 fu? =3 pw’ +2dhw—2gmw+ 2anw+2 fpw—dfh+cgh+bmn—anp )’

0=k _Z —de" W’ +de" fw—ce” gw+bce™n—ade™n
V2 '\ S aw =3 fn? =3 pw + 2dhw—2gmw+ 2anw+ 2 fow—dfh + cgh + bmn — anp
de"m—ce™ p+ce™w
+hon| D —— 7 7
4w’ =3 fw" =3pw” +2dhw—-2gmw+ 2anw+ 2 fpw—dfh + cgh + bmn —anp

k Z e"w —e” fw? —e™ pw’ —e™ gmw+ ae™nw+e™ fow+ be™ mn —ae™ np
44w’ +3 /0 +3 pw —2dhw+ 2gmw—2anw—2 fpw+ dfh — cgh — bmn + anp

3

k Z ce™w +de™mw—ce™ pw
44w’ =3 fn? =3 pw? + 2dhw—2gmw+ 2anw+2 fpw—dfh +cgh+bmn—anp )

O =k z bne™w—ge™w
Vs "\ & 4w’ =3 fn? =3 pw? + 2dhw—2gmw+ 2anw+ 2 fpw— dfh + cgh + bmn — anp
kn Z dhe™ — pwe"™ +e™w?

T\ 4w =3 fn? =3 pw? + 2dhw—2gmw+ 2anw+ 2 fpw—dfh + cgh + bmn — anp

ey (Z bne™ — gwe"™ )

~ 4w’ =3 fn’ =3 pw’ + 2dhw—2gmw+ 2anw+ 2 fow— dfh + cgh + bmn — anp

B Z e"w — pe™w* + dhwe"
=4’ +3 v +3pw? —2dhw+ 2gmw—2anw -2 fow+dfh — cgh—bmn+anp )’

~ 4w’ +3 fw® +3pw? —2dhw+2gmw—2anw—2 fpw+ dfh — cgh —bmn + anp

_kzn(z che™ —mwe J

— 4w’ =3 fw* =3pw* + 2dhw—2gmw+ 2anw+ 2 fpw— dfh + cgh + bmn — anp

ik z ane™ — fwe"™ +w'e"™
T\ awt -3 =3 pw? + 2dhw—2gmw+ 2anw+ 2 fpw— dfh + cgh + bmn — anp

—e"W + fe"w? —anwe™
w0 =k (2 £ J

wo_ w_ 2
+k4[z ‘ chwe™ —me™w J

~ 4w’ =3 fn* =3 pw’ +2dhw—2gmw+2anw+ 2 fpw— dfh + cgh + bmn — anp
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Here a= L , b= M, ,Cc= M, ,d= b ,
lﬂLz _Mle Lle_Mle Lle_Mle Lle _Mle
1 L M
e SRR S £ R R
1 (1o T VIV, Lan_Mle
het e (R )= po(rr)
G LL,-MM, LL,-MM,

and k., k,, k,, k,are arbitrary constants. Summation is taken by parameter w that is a solution
of the algebraic equation

—w' + v’ + pw’ —dhw? + gmw® —anw® — fpw* + dfhw— cghw—bmnw + anpw+bchn—adhn = 0.
Optimal control u*(¢) derives from the following extreme problem:

w(t) Bv—> max, 0<t<y. 4)
Let U =[-1,1]. Then solving the problem (4), yields

I, ify"(©)B=0

, 0<r<y.
-1, ify"(6)B<0 '

u” (t) = sign(y" (1)B) = {

And optimal trajectory x”' () =3 {(sl —4)" (BS{u""’ (t)} +x° )} is the solution of the initial-
value problem

X = Ax+Bu™(t),

x(t,)=x".

Here 3{ /(#)}is the Laplace transform of the function f(7).

[llustrating example

We consider the wireless power transfer circuit with parameters [2]

elements values elements values
Ri 50Q L2 10 pH
R2 0.1Q Mi 0.5 uH
R3 0.1Q M2 0.5 uH
R4 50 Q Ci 1 nF
L1 10 uH C2 1 nF

If we take 7, =0 and ¢, =1 then Problem 3 arrives at the following simplest problem:
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xf (1) > max,

X =X
X, =X,
X, ==0.1x, +0.005x, —5.023x, +0.251x, + 0.1u

0
0
, x(0)= NE lu|<1, tef0,1].
%, =0.005x, —0.1x, +0.251x, —5.023x, —0.005u 0

We form Hamiltonian

H(y,x,u,t) =y x; +y,x, +;(=0.1x, + 0.005x, —5.023x, + 0.251x, +0.1u)
+1,(0.005x, —0.1x, +0.251x, —5.023x, —0.005u)

and conjugate initial-value problem (3)

v, = 0.1y, —0.005y, 0

v, ==0.005y, + 0.1y, 0
, > ()=

W, ==y, +5.023y, —0.251y, 0

W, ==y, —0.25ly, +5.023y, 2x,(1)

Its solution is
l//| (t) = X4 (1)(0“19664 1 ?0.01998471 00196786 0.0199915¢ COOO] 343e4-7520“
0.000104849¢°#4") 73 -

w, (£) = x,(1)(—0.0196641°" " —0.0196786¢""**'>' +0.000173343¢* 7" +
0.000104849¢°54%)

w3 (1) = x,(1)(0.00374268¢"" 7 —0.00414112¢" "' +0.00867081e* 7! —
0.00524645¢°23402)

w, () = x,(1)(=0.00374268¢" """ —0.00414112¢""** +0.00867081¢* ™! —
0.00524645 65.25402,)

Maximization of Hamiltonian yields

H(y,x,u,t)=...+y' ({)Bu —)mlalx, 0<t<1

IU
or
(0.1y,(£) - 0.005y, (£))u —> Iﬁalx’ 0<r<l.

Substituting ,(¢) and ,(¢) gives
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x,(1)(0.0003929814¢"%"%*7* —0.0003934064¢""*"* +0.00082372695¢* 7" —

0.00049841275¢°***) > max, 0<r<I.

|u|£1

Solving the latter extreme problem, we obtain

opit _ 17 if\x4(1)>0
wrO= -1, if x,() <0’

Note that we exclude the case x,(1) =0 as not usable. Optimal control takes boundary

values +1 or -1 and does not contain break points on interval 0 <¢<1. Optimal trajectory,
corresponding to u® (¢) is

x, (1) =¢e"""(0.00190911e*™"** —4.33681x107""¢**"" +0.00211237¢°** —
2.1684x1077 ™7 —8.67362x1077 " —6.50521x 1077 ™1 —
0.502112¢' —0.501909¢"*”* +1.11022x 107" +0.497888¢'*** +
0.502112¢"" +1.11022x107%¢" " +2.1684 %1077 ' **** +
2.1684x1077 77" —2.1684 %107 ")

x, ()= 100460 (~0.0019091 179 1 325261x1072e**17 4 0.00211237523% —
4.33681x107° 2% _1 0842 x 10718 531398 _

0.502112¢" +0.501909¢'"”* +1.66533x 107! —0.502112¢' % +
0.502112¢' % —1.11022x107'°€"*** +4.33681x 107" '*** +
2.1684X10719e14.7781 +4‘33681X10—19614.778r +2.1684X10—l9els.281)

x,(1) = "% (=0.0100305¢* ™" +8.67362x 107 ¢**1"7 +0.010038¢°>**" —
5.20417x107"% ™ +8.67362x 1077 +
0.010038¢'°%* +0.0100305¢'* " —2.60209x 107" '**** +0.010038¢' " —
0.010038¢'"™* —8.67362x107"7 ' —1.01644x107""* 7 +
6.77626x107"¢"***)

x, (1) = ¢ (0.0100305¢* ™" —8.67362x 107 ¢**'"" —0.010038¢° > +
3.46945x 107%™ +2.60209x 107%™ —8.67362x 1077 ™ +
0.010038¢'*”* —0.0100305¢"”* —8.67362x 107" ¢'**** +0.010038¢'*** —
0.01038¢'* +1.73472x107"%'*** —8.67362x107" ' **** —
6.77626x107'e'*77* —3.38813x107' ")

if x,(1)>0 and
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x,(t) =—e " (0.00190911* ™" —4.33681x107"&**'"7 +-0.00211237¢™ " —
2.1684x107"7 ™ —8.67362x1077 **1* —6.50521x 107" ™" —
0.502112¢"%% —0.501909¢' 7% +1.11022x107'° '™ +0.497888¢'*** +
0.502112¢" % +1.11022x107%€!*M% +2.1684x 107 ¥ +
2.1684x1077M 7% —2.1684x107" 5%

x, (t) = =% (=0.00190911e* ™" +3.25261x 107 *1" +0.00211237¢°** —
4.33681x1077 7" —1.0842x 107%™ —
0.502112¢'* +0.501909¢'*”* +1.66533x 107 ' —0.502112¢'** +
0.502112¢'% —1.11022x107'°'*™* +4.33681x107"7'*** +
2.1684x1077 e +4.33681x1077 "7 +2.1684x1077 ")

x, (1) =—e " (=0.0100305¢* ™" +8.67362x 107" ¢**"""" +0.010038¢>***" —
5.20417x107"% ™ +8.67362x 1077 " +
0.010038¢' +0.0100305¢'** —2.60209x10™'*¢'***" 1+.0.010038¢'***" —
0.010038¢'™*" —8.67362x 1077 ¢!*** —1.01644x 107" +
6.77626x107' ")

x, (1) =—e*%'(0.0100305¢* 7" —8.67362x 10" **""7 —0.010038¢™*"** +
3.46945x 107%™ +2.60209% 107%™ —8.67362x 107" ™ +
0.010038¢'*”* —0.0100305¢'°”* —8.67362x 107" ¢'**** +0.010038¢'*** —
0.01038¢'"%% +1.73472x107"% "% —8.67362x 107 '™ —
6.77626x107' ¢! —3.38813x107''**")

if x,(1) <0.

This solution has been obtained by WolframAlpha program. Objective function gets the
value x;(1)=1.36084x107 . Note that objective function, corresponding to control

ii(t) = sin(1.07x107)¢ that matches to maximum efficiency in resonance [2], gives the value less
than u” (¢) .

Conclusion

We considered the wireless power transfer circuit and represented it as the simplest
optimal control problem. Using Pontryagin maximum principle we obtained optimal control that
is more effective than solution corresponding to maximum efficiency in resonance.
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