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SYMMETRIC IDENTITIES OF TYPE 2 BERNOULLI AND
EULER POLYNOMIALS UNDER S3

SANG JO YUN?, JIN-WOO PARK?, AND JONGKYUM KWON?

ABSTRACT. In this paper, we give some identities of symmetry for the
type 2 Bernoulli and Euler polynomials under symmetry group of degree
3 arising from the p-adic g-integral on Zj.

1. INTRODUCTION

For a long time, special functions have been considered the particular
province of pure and applied mathematics, and many special functions have
been appeared as solutions of differential equations or integrals of elementary
functions (see [1]). The Bernoulli polynomials and the Fuler polynimials are
defined by the generating functions to be
" 2

= me””t, [t| < 2,

(1) iB (@) = ot ang iE (@)

— "l et -1 —~ "
respectively (see [9, 10]). In the special case, if we put z = 0, then B, =
B, (0) and E,, = E,,(0) are called the Bernoulli numbers and Euler numbers,
respectively.

The Bernoulli and Euler numbers are very important roles in the pure
and applied mathematics, and have been generalized by many researchers
(see [2, 10, 11, 12, 13, 14, 15]). In particular, Kim and Kim [2, 4] defined
type 2 Bernoulli and Euler polynomials as follows

t b e tn 2 b e tn
Tt __ — Tt i
@) et an(x) nl erett Zen(x)n!,
n=0 n=0
respectively, and found relations between some special functions or num-
bers and those polynomials. In the special case x = 0, b,(0) := b, and

en(0) := e, are called the type 2 Bernoulli numbers and type 2 Fuler num-
bers respectively.
Also, Kim and Kim defined type 2 Changhee polynomials as follows

2 xr __ - * tn
(3) (1 +t) — (1 +t)71 (1 + t) - nZ:OChn(x)mv

where x = 0, Ch}, = Ch%(0) are called the type 2 Changhee numbers.
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Now, we observe
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On the other hand,
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Therefore, by (6) and (7), we obtain the following result.
(®) Chi, = 3" BiSiln, k), (see [4).
k=0
Also, we obtain the inversion formula of (8)

(9) en =Y _ChiSy(n,k), (see [4]).
k=0

In this paper, we give some identities of symmetry for the type 2 Bernoulli
and Euler polynomials under symmetry group of degree 3 arising from the
p-adic g-integral on Zj,.

2. TYPE 2 BERNOULLI POLYNOMIALS

For a given prime number p, Z,, Q,, and C, denote the ring of p-adic
integers, the field of p-adic rational numbers, and completion of an algebraic

closure of Qp, respectively. The p-adic norm is normalized as |p[, = %.
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Let UD(Z,) be the space of uniformly differentiable functions on Z,. The
bosonic p-adic integral on Z, are defined as follows:

1) = [ f@dole) = Jim_f@y (+0"7,)

(10) pN -1
= Jim e 3 @)
(see [3, 5, 6]). By (10), we have
n—1
(11) I(fa) = Io(f) = f'(a),
a=0

where f, = f(z + n) for each positive integer n (see [3, 5, 6]).
If we put f(y) = ev+2+Dt then by (11),

Zb (:z:
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and so
k—1 1

(14) 2 +1) = [ (bk+1(2n) — bi41)

Il
<)

for each nonnegative integer k (see [7]).
In addition, by the definition of type 2 Bernoulli polynomials, we get

S~ (Sons) (5)

(15)

By (12) and (15), we have

k

-5 (o 2o

m=0

1
(16) bk(x):§/ 2y + 2+ 1)*duo(y
Zp

The equation (11) yields the following:

n—1
(17) / 6(2(w+n)+1)td‘u0(qj) — / e(2z+1)tdlu0($) _ QtZ e(2a+1)t
Zy Z,

a=0
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y (11) and (17), we get

2nt [, e@rHDdp(x)
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ZP ZP
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If we put Ti(n) = >.0'_,(2a + 1)* for each nonnegative integer n, then, by
(16) and (17), we get

w1w2w3lzpe(21‘+1)tdﬂo(z.) wiwawz—1
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00 WlwWow3z— 1 4

n
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where w1, we, w3 are positive integers.

From now on, we consider the following equation for finding the symmetric
properties of type 2 Bernoulli polynomials under symmetric group of order
3.

(20)
I(w1, w2, ws)

(28 im wierwmwzss i ) g (1) dpo (w2) dpo ()

2
(fzpe2wlw2w3wtdﬂo(x))
From (12), (19) and (20), we have

(21)
I(wl, wg,wg)

- (w1w2w3)2 prprpre
2
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n=0 n=0
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By (20), we know that I(w,(1), W (2), Ws(3)) have the same value for each
o € S3, and thus, by (21), we obtain the following theorem.

Theorem 2.1. Let wy,ws, w3 be positive integers. For each o € S3 and
each nonnegative integer n,

ZZ( )( > Wo(2)Wo(3)T) Wh(1)Whiz) Weia)'

m=0 [=0
X Tnem(We)Wo(2) — 1) Tm—t(We(yWe 3y — 1)

have the same value.
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If we put = 0 in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let wy,ws, w3 be positive integers. For each o € S3 and
each nonnegative integer n,

n m n m o
Z Z (m> (l >blwé(1)w:l(2)lwo.(33nTn~m(wo'(1)wo’(Z)_1)Tm—l(wa(1)wa(3)_1)
m=0 [=0
have the same value.

From (21), we get
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o0
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1 1
By (20) and (22), we obtain the following theorem.

Theorem 2.3. For each positive integers wy, wq, ws, each o € S3 and each
nonnegative integer n,

Wo(1)We (3) —1 Wo(1)Wa(2)—1
Wo(2)

> Y W) We@Wo(3bn (wamwa(s)x + @+ ) ——+(2m+1)

1=0 m=0 Wo (1)

have the same value.

In the special case of the Theorem 2.3, if we put x = 0, then we obtain
the following corollary.

Corollary 2.4. For each positive integers wy, wa, ws, each o € S3 and each
nonnegative integer n,

Wo(1)We(3)~1 Wo(1)We(2) —1

n Wo (2) W (3)
Z Z W (1) Wo(2) We (3) bn @l+1)—/=+(2m+1)—=

1=0 m=0 Wo(1) W (1)

have the same value.

411



412 S.J. Yun, J. W. Park and J. Kwon

3. TYPE 2 EULER POLYNOMIALS

Let p be given as a fixed odd prime number, and let C(Z,) be the set of
all continuous functions on Z,. The fermionic integral on Z, is also defined
by Kim to be

pN—1
| f@)dp(x) = lim > f@)poa (x+pNZp)
(23) ! v=0

= lim Y f(z)(=1), (see [5, 6, 7, 14]).
=0

N—oo

By (23), we know that

(24) Ia(fn) + (1) T (f) =2> f (=1 1!

where f, = f(z +n) and n is a positive integer.
If we put f(y) = e¥*t7+1)  then
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Note that, by the definition of the type 2 Euler polynomials,
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where n is a positive integer. By (26), we have

n—1

(27) > (=R 1)k =

=0

(ex(2n) —ex),

N —

where k a nonnegative integer and n is a positive integer.
From the equation (24), we have

(28) /Ze(2y+2n+1)tdﬂ_1(y)+/Z B | _22 (L4111
P P

where n is a positive odd integer. Hence, if we put Ry(n) = > o(—1) (20 +
1)k, then

2fZ e(2m+1)td‘u71(x)
29 / e(2y+2n+1)tdp,7 y +/ 6(2y+1)tdlu,7 y) = P
( ) 7, 1( ) 7, 1( ) fZPBantduil(x)
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and
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where n is a positive odd integer.
From now on, we assume that wi, wows are positive even integers, and let
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_.[Zpprpre(z(wlml+w2w2+w3x3)+w1w2w3m+w1w2w3)tdufl(1‘1)d,u71(132)dp,1(13)

2
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By (29) and (31), we have
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By (31), we know that J(w,(1), Ws(2), Ws(3)) have the same value for each
o € S3, and thus, by (32), obtain the following theorem.

Theorem 3.1. Let wi,ws,ws be positive even integers. For each o € S3
and each nonnegative integer n,

. ¢ n m l m—1 n—m
> Wo(1) W) "™ We(3)" "€l (Wo(2)Wo(3)T)
m l
m=0 [=0
X Ry (Wo(1)We(2) = 1) Rin—t (Wo(1)Wo(3) — 1)
have the same value.

As a special case of the Theorem 3.1, if we put z = 0, then we obtain the
following corollary.

Corollary 3.2. Let wi,ws, w3 be positive even integers. For each o € Ss
and each nonnegative integer n,

n m n m - -
> (m> (l )elwa(l)lwcr@)m "Wo(3)" " R (Wo(1)Wa(2) = 1) Bt (Wo(1)Wo(z) — 1)

m=0 [=0
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have the same value.

From (31), we note that

(33)
J(w1 y wgwg)
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Z
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By the (31) and (33), we obtain the following theorem.

Theorem 3.3. For each positive integers wi,ws, w3, each o € S3 and each
nonnegative integer n,

Wa(1)We(3) W (1)Wo(2)

m n Wy (3
(=)™ w, ) en (%(2)%(3) + (20 + 1) L 4 2m + 1)~ ))

=0 m=0 wa(l) Wo (1)

have the same value.
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