Hub number of some wheel related graphs

B. Basavanagoud¹, Anand P. Barangi²

1,2 Department of Mathematics

Karnatak University, Dharwad - 580 003, Karnataka, India

1b.basavanagoud@gmail.com; ² apb4maths@gmail.com

Ismail Naci Cangul^{3*}

³ Department of Mathematics
Bursa Uludag University, 16059 Bursa, Turkey

³cangul@uludag.edu.tr

Abstract: A *hub set* in a graph G is a set $S \subseteq V(G)$ such that any two vertices outside S are connected by a path all of whose internal vertices are members of S. The minimum cardinality of a hub set is called *hub number*. In this paper, we give results for the hub number of some wheel related graphs.

1 Introduction

All graphs considered in this paper are non-trivial, connected, simple and undirected. Let G = (V(G), E(G)) = (V, E) be a graph with vertex set V and edge set E. |V| = n and |E| = m are respectively called the *order* and *size* of G. The *girth* of a graph G denoted by g(G) is defined as the length of the shortest cycle in a graph G. The *subdivision graph* S(G) of a graph G is the graph obtained by inserting a new vertex onto each edge of G. A path, a cycle and a complete graph of order G are denoted by G and G and G are respectively. For unexplained graph terminology and notations, refer to [3].

Suppose $S \subseteq V(G)$ and let $x, y \in V(G)$. An S-path between x and y is a path where all intermediate vertices lie in S. A set $S \subseteq V(G)$ is a hub set of G if it has the property that, for any $x, y \in V(G) \setminus S$, there is an S-path in G between x and y. The minimum cardinality of a hub set is called *hub number* and is denoted by h(G).

In 2006, Walsh have defined the hub number of a graph to study a network related problem, [6]. He also gave hub number of several classes of graphs and shown that the

Keywords: hub set, hub number, wheel graph.

²⁰¹⁰ Mathematics Subject Classification: 05C40, 05C69.

^{*} Corresponding Author.

hub number of any cyclic graph G is at least g(G) - 3. Continuing this work, Grauman et. al. gave the relationship between hub number, connected hub number and connected domination number of a graph, [2]. Further, Cauresma Jr. and Paluga obtained the hub numbers of join, corona and cartesian product of two connected graphs in [4]. Inspired by this, we obtain the hub number of some wheel related graphs in this paper.

2 Preliminaries

Let G_1 and G_2 be two graphs of order n_1 , n_2 and size m_1 , m_2 , respectively. The union of G_1 and G_2 is a graph denoted by $G_1 \cup G_2$ having vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$, [3]. It is obvious that $|V(G_1 \cup G_2)| = n_1 + n_2$ and $|E(G_1 \cup G_2)| = m_1 + m_2$. The join $G_1 + G_2$ of G_1 and G_2 is the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2 by an edge, [3].

The fan graph F_n for $n \geq 3$ is defined as the join of K_1 and P_{n-1} . The wheel $W_n = K_1 + C_{n-1}$ is a graph with n + 1 vertices and 2n - 2 edges, where the vertex of degree n - 1 is called the *central vertex* and all other vertices on the cycle C_{n-1} are called *rim vertices*.

The gear graph G_n is a wheel graph with a vertex added between each pair of adjacent vertices on the outer circle (rim). The helm H_n is a graph obtained from a wheel W_n by attaching a pendant edge to each rim vertex of W_n . A closed helm CH_n is the graph obtained from a helm by joining pendant vertices to form a cycle. The flower Fl_n is the graph obtained from a helm H_n by joining each pendant vertex to the central vertex c of the helm. The sunflower graph SF_n is a graph obtained from a wheel with central vertex c and an n-1-cycle $v_0, v_1, \cdots, v_{n-2}$ by adding n new vertices $w_0, w_1, \cdots, w_{n-2}$ such that w_i is joined by two end vertices v_i and v_{i+1} for $i=0,1,\cdots,n-2$ where i is taken modulo n-1

The friendship graph f_n is a collection of n triangles all having a common vertex. Friendship graph can also be obtained from a wheel W_{2n} with cycle C_{2n} by deleting alternating edges of the cycle. That is $f_n = K_1 + nK_2$. A web graph W(2,n) is the graph obtained by joining a pendant edge to each vertex on the outer cycle of the closed helm. W(t,n) is the generalized web with t cycles each of order n. The crown (or sun) graph CW_n is the corona product $C_n \circ K_1$ where $n \geq 3$. That is, a crown graph is a helm without central vertex.

The duplication of an edge e = uv by a new vertex v' in a graph G produces a new graph G' by adding a new vertex v' such that $N(v') = \{u, v\}$. Consider a wheel $W_n = C_{n-1} + K_1$ with v_1, v_2, \dots, v_{n-1} as its rim vertices and x as its central vertex. Let e_1, e_2, \dots, e_{n-1} be the rim edges of W_n which are duplicated by new vertices w_1, w_2, \dots, w_{n-1} , respectively. Let y_1, y_2, \dots, y_{n-1} be the spoke edges of W_n which are duplicated by the vertices u_1, u_2, \dots, u_{n-1} , respectively. The resultant graph is called duplication of the wheel denoted by DuW_n , [5]. In many sources, duplication of the wheel graph is also called the semi-total point graph of wheel. The definitions of these wheel related graphs and more can be found in [1].

In the next section, we obtain the hub number of these wheel related graphs. The following theorem given by Cuaresma et. al. is used in proving our results, [4].

Theorem 2.1. [4] For any connected graphs G and H,

$$h(G+H) = \begin{cases} 0 & \text{if G and H are complete,} \\ 1 & \text{if G is complete and H is non-complete,} \\ \min\{h(G), h(H), 2\} & \text{if G and H both are non-complete.} \end{cases}$$

Figure 1: Examples of some wheel related graphs

3 Hub number of some wheel related graphs

Theorem 3.1. Let F_n and W_n be fan graph and wheel graph of order n respectively. Then

$$h(W_n) = 1 = h(F_n).$$

Proof. The fan graph is $K_1 + P_{n-1}$ and the wheel graph is $K_1 + C_{n-1}$. Both are join of one complete graph and another non-complete graph. Thus, by case 2 of Theorem 2.1, we get the desired results.

Theorem 3.2. Let G_n be the gear graph of order 2n-1. Then

$$h(G_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

Proof. Let $x_1, x_2, x_3, \dots, x_{n-1}$ be the vertices on the rim of wheel graph with center vertex c. Gear graph is obtained by adding a new vertex on each edge on the rim. Let $S \subset V(G_n)$. We discuss the three cases of choosing the set S as shown in Fig. 2.

Case 1. If we choose the set $S = \{c, x_1, x_2, x_3, \dots, x_{n-1}\}$ as shown in Fig. 2 (a), then for any two vertices $x, y \in V(G_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus S is a hub set. This gives |S| = n.

Case 2. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 2 (b), then for two vertices $x, y \in V(G_n) \setminus S$ as marked in Fig. 2 (b), there is no S-path from x to y. Thus S is not a hub set.

Case 3. If we choose the set $S = \{c, x_1, x_2, x_3, \dots, x_{\lfloor \frac{n}{2} \rfloor}\}$ as shown in Fig. 2 (c), then for any two vertices $x, y \in V(G_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus S is a hub set. In this case we have $|S| = \left\lfloor \frac{n}{2} \right\rfloor + 1$.

Figure 2: Choosing minimum hub set in a gear graph

Theorem 3.3. Let H_n be the helm graph of order 2n-1. Then

$$h(H_n) = n - 1.$$

Proof. Let $x_1, x_2, x_3, \cdots, x_{n-1}$ be the vertices on the rim of wheel graph with center vertex c. Helm graph is obtained by attaching a pendant edge to each rim vertex of wheel graph. Let $S \subset V(H_n)$. We show three cases to choose the set S (as shown in Fig. 3).

Case 1. If we choose the set $S = \{x_1, x_2, x_3, \dots, x_{n-1}\}$ as shown in Fig. 3 (a), then for any two vertices $x, y \in V(H_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus, S is a hub set. In this case we have |S| = n - 1.

Case 2. If we choose the set $S = \{c, x_1, x_2, x_3, \dots, x_{n-1}\}$ as shown in Fig. 3 (b), then for two vertices $x, y \in V(H_n) \setminus S$ in Fig. 3 (b), there is an S-path from x to y whose all intermediate vertices are in S. Thus, S is a hub set. Here we have |S| = n.

Case 3. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 3 (c), then for any two vertices $x, y \in V(H_n) \setminus S$, there is no S-path from x to y. Thus S is not a hub set.

Figure 3: Choosing minimum hub set in helm graph.

Theorem 3.4. Let CH_n be the closed helm graph of order 2n-1. Then

$$h(CH_n) = n - 1.$$

Proof. Let $x_1, x_2, x_3, \dots, x_{n-1}$ be the vertices on the rim of wheel graph with center vertex c. A closed helm CH_n is the graph with central vertex c, obtained from a helm by joining pendant vertices to form a cycle. Let $S \subset V(CH_n)$. We discuss three cases of choosing the set S (as shown in Fig. 4).

Case 1. If we choose the set $S = \{x_1, x_2, x_3, \dots, x_{n-1}\}$ as shown in Fig. 4 (a) such that vertices of S form inner cycle. Then for any two vertices $x, y \in V(CH_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus, S is a hub set. This gives |S| = n - 1.

Case 2. If we choose the set $S = \{c, x_1, x_2, x_3, \dots, x_{n-1}\}$ as shown in Fig. 4 (b), then for two vertices $x, y \in V(CH_n) \setminus S$ as in Fig. 4 (b), there is an S-path from x to y whose

all intermediate vertices are in S. Thus, S is a hub set. This gives |S| = n.

Case 3. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 4 (c), then for any two vertices $x, y \in V(CH_n) \setminus S$, there is a S-path from x to y whose all intermediate vertices are in S. Thus, S is a hub set. Thus, |S| = n - 1. Therefore, this way of choosing the set S gives us the minimum hub set.

Figure 4: Choosing minimum hub set in closed helm graph.

Theorem 3.5. Let Fl_n be the flower graph of order 2n-1. Then

$$h(Fl_n) = 1.$$

Proof. Since the central vertex of a flower graph is adjacent to every other vertex, consider $S = \{c\}$. Then for any two vertices $x, y \in V(Fl_n) \setminus S$, there is an S-path from x to y whose intermediate vertices are in S. Therefore, this way of choosing S gives us the minimum hub set. Hence, |S| = 1. Therefore $h(Fl_n) = 1$.

Figure 5: Choosing minimum hub set in flower graph.

Theorem 3.6. Let SF_n be the sunflower graph of order 2n-1. Then,

$$h(SF_n) = \left\lceil \frac{n-1}{2} \right\rceil + 1.$$

-

Proof. The sunflower graph SF_n is a graph obtained from a wheel with central vertex c, an n-1-cycle $\{v_0, v_1, \dots, v_{n-2}\}$ and n-1 additional vertices w_0, w_1, \dots, w_{n-2} where w_i is joined to v_i and v_{i+1} for $i=0,1,\dots,n-2$ where i is taken modulo n-1. Let $S \subset V(SF_n)$. We discuss the three cases of choosing the set S as shown in Fig. ??:

Case 1. If we choose the set $S = \{v_0, v_1, \dots, v_{n-2}\}$ as shown in Fig. 6 (a), then for any two vertices $x, y \in V(SF_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus, S is a hub set. This gives |S| = n - 1.

Case 2. If we choose the set $S = \{c, v_0, v_1, \dots, v_{n-2}\}$ as shown in Fig. ?? (b), then for two vertices $x, y \in V(SF_n) \setminus S$ marked in Fig. 6 (b), there is an S-path from x to y. Thus S is a hub set and |S| = n.

Case 3. If we choose the set $S = \{c, v_0, v_1, \cdots, v_{\left\lceil \frac{n-1}{2} \right\rceil}\}$ as shown in Fig. ?? (c), then for any two vertices $x, y \in V(SF_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus S is a hub set. This gives $|S| = \left\lceil \frac{n-1}{2} \right\rceil + 1$.

Figure 6: Choosing minimum hub set in sunflower graph.

Theorem 3.7. Let W(2,n) be the web graph of order 3n-2. Then

$$h(W(2,n)) = n.$$

Proof. A web graph is the graph obtained by joining a pendant edge to each vertex on the outer cycle of the closed helm. W(t,n) is the generalized web with t cycles each of order n-1. Let $S \subset V(W(2,n))$. We study three cases to choose the set S as shown in Fig. 7.

Case 1. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 7 (a), then for two vertices $x, y \in V(W(2, n)) \setminus S$, marked in 7 (a), there is no S-path from x to y whose all intermediate vertices are in S. Thus S is not a hub set.

Case 2. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 7 (b), then for two vertices $x, y \in V(W(2, n)) \setminus S$ shown in 7 (b), there is no S-path from x to y. Thus S is not a hub set.

Case 3. If we choose the set $S = \{c, a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 7 (c), then for any two vertices $x, y \in V(W(2, n)) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus S is a hub set. This gives |S| = n.

_

Figure 7: Choosing minimum hub set in web graph.

Theorem 3.8. Let DuW_n be the duplication of the wheel graph of order 3n-2. Then

$$h(DuW_n) = n - 1.$$

Proof. Let $S \subset V(DuW_n)$. We show three cases to choose the set S (as shown in Fig. 8). Case 1. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 8 (a), then for two vertices $x, y \in V(DuW_n) \setminus S$, there is a S-path from x to y whose all intermediate vertices are in S. Thus, S is a a hub set. Therefore $h(DuW_n) = n - 1$.

Case 2. If we choose the set $S = \{c, a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 8 (b), then for any two vertices $x, y \in V(DuW_n) \setminus S$ there is a S-path from x to y. Thus S is a hub set. Therefore, $h(DuW_n) = n$.

Case 3. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 8 (c), then for two vertices $x, y \in V(DuW_n) \setminus S$ marked in Fig. 8 (c), there is no S-path from x to y whose all intermediate vertices are in S. Thus S is not a hub set.

Figure 8: Choosing minimum hub set in duplication of the wheel graph.

Theorem 3.9. Let CW_n be the crown graph of order n. Then

$$h(CW_n) = n - 1.$$

Proof. Let $S \subset V(CW_n)$. We now consider three cases of choosing the set S as shown in Fig. 9.

Case 1. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 9 (a), then for any two vertices $x, y \in V(CW_n) \setminus S$, there is an S-path from x to y whose all intermediate vertices are in S. Thus S is a hub set which gives |S| = n - 1.

Case 2. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{\lfloor \frac{n-1}{2} \rfloor}\}$ as shown in Fig. 9 (b), then for two vertices $x, y \in V(CW_n) \setminus S$ marked in Fig. 9 (b), there is no S-path from x to y. Thus S is not a hub set.

Case 3. If we choose the set $S = \{a_1, a_2, a_3, \dots, a_{n-1}\}$ as shown in Fig. 9 (c), then for two vertices $x, y \in V(CW_n) \setminus S$, marked in Fig. 9 (c), there is no S-path from x to y whose all intermediate vertices are in S. Thus S is not a hub set.

Figure 9: Choosing minimum hub set in crown graph

Theorem 3.10. Let f_n be the friendship graph of order 2n + 1. Then

$$h(f_n) = 1.$$

Proof. The proof follows from the fact that in any friendship graph, the central vertex is adjacent to all other vertices. Therefore choosing $S = \{c\}$ gives the desired result. \square

Figure 10: Choosing minimum hub set in friendship graph.

Acknowledgments:

B. Basavanagoud is supported by University Grants Commission (UGC), Government of India, New Delhi, through UGC-SAP DRS-III for 2016-2021: F.510 / 3 / DRS-III /2016 (SAP-I). A. P. Barangi supported by Karnatak University, Dharwad, Karnataka, India, through University Research Studentship (URS), No.KU/Sch/URS/2017-18/471, dated 3rd July 2018.

References

- [1] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, **DS6** (2018), 502 pages.
- [2] T. Grauman, S. G. Hartke, A. Jobson, B. Kinnersley, D. B. West, L. Wiglesworth, P. Worah, and H. Wu, The hub number of a graph, *Information processing letters*, 108 (4) (2008) 226-228.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
- [4] E. C. Cuaresma Jr., R. N. Paluga, On the hub number of some graphs, *Annals of studies in Science and Humanities*, **1** (1) (2015) 17-24.
- [5] S. K. Vaidyaa, M. S. Shukla, b-Chromatic number of some wheel related graphs, Malaya J. Mat., 2 (4) (2014) 482-488.
- [6] M. Walsh, The hub number of a graph, Int. J. Math. Comput. Sci., 1 (1) (2006) 117-124.