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Abstract: A hub set in a graph G is a set S C V(G) such that any two vertices outside
S are connected by a path all of whose internal vertices are members of S. The minimum
cardinality of a hub set is called hub number. In this paper, we give results for the hub
number of some wheel related graphs.

1 Introduction

All graphs considered in this paper are non-trivial, connected, simple and undirected. Let
G = (V(G), E(G)) = (V, E) be a graph with vertex set V' and edge set E. |V| = n and
|E| = m are respectively called the order and size of G. The girth of a graph G denoted
by g(G) is defined as the length of the shortest cycle in a graph G. The subdivision graph
S(G) of a graph G is the graph obtained by inserting a new vertex onto each edge of
G. A path, a cycle and a complete graph of order n are denoted by PB,, C, and K,,
respectively. For unexplained graph terminology and notations, refer to [3].

Suppose S C V(G) and let z,y € V(G). An S-path between z and y is a path where
all intermediate vertices lie in S. A set S C V(G) is a hub set of G if it has the property
that, for any z,y € V(G) \ S, there is an S-path in G between z and y. The minimum
cardinality of a hub set is called hub number and is denoted by h(G).

In 2006, Walsh have defined the hub number of a graph to study a network related
problem, [6]. He also gave hub number of several classes of graphs and shown that the
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hub number of any cyclic graph G is at least g(G) — 3. Continuing this work, Grauman
et. al. gave the relationship between hub number, connected hub number and connected
domination number of a graph, [2]. Further, Cauresma Jr. and Paluga obtained the hub
numbers of join, corona and cartesian product of two connected graphs in [4]. Inspired
by this, we obtain the hub number of some wheel related graphs in this paper.

2 Preliminaries

Let GG and G5 be two graphs of order ny, no and size my, mo, respectively. The union of
G and G5 is a graph denoted by G U G5 having vertex set V3 U V5 and edge set £y U Es,
[3]. It is obvious that |V (Gy U G2)| = ny + ny and |E(Gy U G2)| = my + me. The join
Gy + Gs of G1 and G is the graph obtained from G; U Gy by joining each vertex of G
with every vertex of G by an edge, [3].

The fan graph F, for n > 3 is defined as the join of Ky and P,_;. The wheel W,, =
K + C,_ is a graph with n + 1 vertices and 2n — 2 edges, where the vertex of degree
n — 1 is called the central verter and all other vertices on the cycle C,_; are called rim
vertices.

The gear graph G, is a wheel graph with a vertex added between each pair of adjacent
vertices on the outer circle (rim). The helm H, is a graph obtained from a wheel W,
by attaching a pendant edge to each rim vertex of W,,. A closed helm C'H, is the graph
obtained from a helm by joining pendant vertices to form a cycle. The flower Fl, is the
graph obtained from a helm H,, by joining each pendant vertex to the central vertex ¢ of
the helm. The sunflower graph SF, is a graph obtained from a wheel with central vertex

c and an n — 1-cycle vy, vy, - -+ ,v,_2 by adding n new vertices wg, wy, - - - , W,_o such that
wj is joined by two end vertices v; and v; 1 for i = 0,1,--- ,n— 2 where ¢ is taken modulo
n — 1.

The friendship graph f, is a collection of n triangles all having a common vertex.
Friendship graph can also be obtained from a wheel W5, with cycle Cy, by deleting
alternating edges of the cycle. That is f, = K1+ nKs. A web graph W(2,n) is the graph
obtained by joining a pendant edge to each vertex on the outer cycle of the closed helm.
W (t,n) is the generalized web with t cycles each of order n. The crown (or sun) graph
CW, is the corona product C,, o K7 where n > 3. That is, a crown graph is a helm without
central vertex.

The duplication of an edge e = uv by anew vertex v in a graph G produces a new graph
G’ by adding a new vertex v’ such that N(v") = {u,v}. Consider a wheel W,, = C,,_1 + K
with vy, vg, -+ ,v,_1 as its rim vertices and x as its central vertex. Let ey, es, -+ ,€,_1
be the rim edges of W,, which are duplicated by new vertices wy, ws, -+ ,Wy,_1, respec-
tively. Let 4y, 42, -+, ¥n_1 be the spoke edges of W,, which are duplicated by the vertices
Uy, Us, - -+, Up_1, respectively. The resultant graph is called duplication of the wheel de-
noted by DuW,,, [5]. In many sources, duplication of the wheel graph is also called the
semi-total point graph of wheel. The definitions of these wheel related graphs and more
can be found in [1].
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In the next section, we obtain the hub number of these wheel related graphs. The
following theorem given by Cuaresma et. al. is used in proving our results, [4].

Theorem 2.1. [4] For any connected graphs G and H,

0 if G and H are complete,
MG+ H)=41 if G is complete and H is non-complete,
min{h(G),h(H),2} if G and H both are non-complete.

VR e

Fan Graph, Fy

Wheel Graph, W Gear Graph, G
Helm Graph, Hg Closed Helm, C'Hq Flower Graph, Flg
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Figure 1: Examples of some wheel related graphs
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3 Hub number of some wheel related graphs
Theorem 3.1. Let F,, and W, be fan graph and wheel graph of order n respectively. Then
h(W,) =1=h(F,).

Proof. The fan graph is K| + P,_; and the wheel graph is K; + C,_;. Both are join of
one complete graph and another non-complete graph. Thus, by case 2 of Theorem 2.1,
we get the desired results. O

Theorem 3.2. Let G, be the gear graph of order 2n — 1. Then

n
h(G,) = H + 1
2
Proof. Let x1, 29,23, -+ ,2,_1 be the vertices on the rim of wheel graph with center vertex

c. Gear graph is obtained by adding a new vertex on each edge on the rim. Let S C V(G,,).
We discuss the three cases of choosing the set S as shown in Fig. 2.

Case 1. If we choose the set S = {c¢, 1, 22,23, -+ ,2,_1} as shown in Fig. 2 (a), then for
any two vertices x,y € V(G,) \ S, there is an S—path from z to y whose all intermediate
vertices are in S. Thus S is a hub set. This gives |S| = n.

Case 2. If we choose the set S = {aj,as,as, -+ ,a, 1} as shown in Fig. 2 (b), then for
two vertices z,y € V(G,) \ S as marked in Fig. 2 (b), there is no S—path from z to y.
Thus S is not a hub set.

Case 3. If we choose the set S = {c, z1, x9, 23, - - ’xL%J} as shown in Fig. 2 (c), then for
any two vertices z,y € V(G,) \ S, there is an S—path from z to y whose all intermediate
vertices are in S. Thus S is a hub set. In this case we have |S| = |2 + 1. |

Figure 2: Choosing minimum hub set in a gear graph
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Theorem 3.3. Let H,, be the helm graph of order 2n — 1. Then
h(H,)=n—1.

Proof. Let x1, 29,23, - ,x,_1 be the vertices on the rim of wheel graph with center vertex
c. Helm graph is obtained by attaching a pendant edge to each rim vertex of wheel graph.
Let S € V(H,). We show three cases to choose the set S (as shown in Fig. 3) .

Case 1. If we choose the set S = {x1,x9,23, - ,Z,_1} as shown in Fig. 3 (a), then for
any two vertices z,y € V(H,) \ S, there is an S-path from x to y whose all intermediate
vertices are in S. Thus, S is a hub set. In this case we have |S| =n — 1.

Case 2. If we choose the set S = {c,z1, 29,23, - , 2,1} as shown in Fig. 3 (b), then
for two vertices x,y € V(H,) \ S in Fig. 3 (b), there is an S-path from z to y whose all
intermediate vertices are in S. Thus, S is a hub set. Here we have |S| = n.

Case 3. If we choose the set S = {a1,as,as, -+ ,a,_1} as shown in Fig. 3 (¢), then for
any two vertices x,y € V(H,) \ S, there is no S-path from x to y. Thus S is not a hub
set. O

Figure 3: Choosing minimum hub set in helm graph.

Theorem 3.4. Let CH,, be the closed helm graph of order 2n — 1. Then
h(CH,)=n-1.

Proof. Let x1,x9,x3, - ,x,_1 be the vertices on the rim of wheel graph with center vertex
c. A closed helm C'H, is the graph with central vertex ¢, obtained from a helm by joining
pendant vertices to form a cycle. Let S € V(CH,). We discuss three cases of choosing
the set S (as shown in Fig. 4) .

Case 1. If we choose the set S = {x1,22,23, -+ ,,_1} as shown in Fig. 4 (a) such that
vertices of S form inner cycle. Then for any two vertices x,y € V(CH,) \ S, there is an
S-path from z to y whose all intermediate vertices are in S. Thus, S is a hub set. This
gives |S| =n— 1.

Case 2. If we choose the set S = {c, 1,292,253, - ,x,_1} as shown in Fig. 4 (b), then
for two vertices z,y € V(CH,)\ S as in Fig. 4 (b), there is an S—path from z to y whose
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all intermediate vertices are in S. Thus, S is a hub set. This gives |S| = n.

Case 3. If we choose the set S = {a1,as,as, - ,a,_1} as shown in Fig. 4 (c), then for
any two vertices x,y € V(CH,) \ S, there is a S-path from x to y whose all intermediate
vertices are in S. Thus, S is a hub set. Thus, |S| = n — 1. Therefore, this way of choosing
the set S gives us the minimum hub set. O

Figure 4: Choosing minimum hub set in closed helm graph.

Theorem 3.5. Let Fl, be the flower graph of order 2n — 1. Then
h(Fl,) = 1.

Proof. Since the central vertex of a flower graph is adjacent to every other vertex, consider
S = {c}. Then for any two vertices z,y € V(Fl,) \ S, there is an S—path from = to
y whose intermediate vertices are in S. Therefore, this way of choosing S gives us the
minimum hub set. Hence, |S| = 1. Therefore h(F1I,) = 1. O

Figure 5: Choosing minimum hub set in flower graph.

Theorem 3.6. Let SF, be the sunflower graph of order 2n — 1. Then,

h(SF,) = {"; 1} +1.
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Proof. The sunflower graph SF, is a graph obtained from a wheel with central vertex

¢, an n — l-cycle {vg, vy, -+ ,v,_2} and n — 1 additional vertices wg, w1, - -+ , w,_o where
w; is joined to v; and vy for i = 0,1,--- ,n — 2 where 7 is taken modulo n — 1. Let
S C V(SF,). We discuss the three cases of choosing the set S as shown in Fig. ?7:

Case 1. If we choose the set S = {vg,v1,- -+ ,v,_2} as shown in Fig. 6 (a), then for any

two vertices z,y € V(SF,)\ S, there is an S—path from z to y whose all intermediate
vertices are in S. Thus, S is a hub set. This gives |[S| =n — L.

Case 2. If we choose the set S = {c,v,v1, -+ ,vn_2} as shown in Fig. ?? (b), then for
two vertices z,y € V(SF,) \ S marked in Fig. 6 (b), there is an S—path from z to y.
Thus S is a hub set and |S| = n.

Case 3. If we choose the set S = {c, vg, v, - ,'U|'nT71"} as shown in Fig. 7?7 (c), then for
any two vertices z,y € V(SF,)\ S, there is an S-path from x to y whose all intermediate
vertices are in S. Thus S is a hub set. This gives [S| = [231] + 1. O

(a) (b) (c)

Figure 6: Choosing minimum hub set in sunflower graph.

Theorem 3.7. Let W(2,n) be the web graph of order 3n — 2. Then
h(W(2,n)) = n.

Proof. A web graph is the graph obtained by joining a pendant edge to each vertex on
the outer cycle of the closed helm. W(t,n) is the generalized web with ¢ cycles each of
order n — 1. Let S € V(W(2,n)). We study three cases to choose the set S as shown in
Fig. 7.

Case 1. If we choose the set S = {a1,as,as3,--- ,a,_1} as shown in Fig. 7 (a), then for
two vertices z,y € V(W (2,n))\ S, marked in 7 (a), there is no S—path from z to y whose
all intermediate vertices are in S. Thus S is not a hub set.

Case 2. If we choose the set S = {aj,a9,as, -+ ,a,_1} as shown in Fig. 7 (b), then for
two vertices z,y € V(W (2,n)) \ S shown in 7 (b), there is no S—path from z to y. Thus
S is not a hub set.

Case 3. If we choose the set S = {c¢,a1,as,a3, -+ ,a,_1} as shown in Fig. 7 (c), then
for any two vertices x,y € V(W (2,n)) \ S, there is an S-path from z to y whose all
intermediate vertices are in S. Thus S is a hub set. This gives |S| = n. O
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Figure 7: Choosing minimum hub set in web graph.

Theorem 3.8. Let DuW,, be the duplication of the wheel graph of order 3n — 2. Then
MDuW,) =n— 1.

Proof. Let S C V(DuW,,). We show three cases to choose the set S (as shown in Fig. 8).
Case 1. If we choose the set S = {a1,as,as3,--- ,a,_1} as shown in Fig. 8 (a), then for
two vertices z,y € V(DuW,) \ S, there is a S—path from x to y whose all intermediate
vertices are in S. Thus, S is a a hub set. Therefore h(DuW,,) =n — 1.

Case 2. If we choose the set S = {c,a1,a,a3,-- ,a,_1} as shown in Fig. 8 (b), then
for any two vertices x,y € V(DuW,,) \ S there is a S—path from z to y. Thus S is a hub
set. Therefore, h(DuW,,) = n.

Case 3. If we choose the set S = {ay,as,as, - ,a,_1} as shown in Fig. 8 (¢), then for
two vertices x,y € V(DuW,,) \ S marked in Fig. 8 (c), there is no S—path from z to y
whose all intermediate vertices are in S. Thus S is not a hub set. O

Figure 8: Choosing minimum hub set in duplication of the wheel graph.

Theorem 3.9. Let CW,, be the crown graph of order n. Then

hCW,) =n — 1.
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Proof. Let S C V(CW,). We now consider three cases of choosing the set S as shown in
Fig. 9.

Case 1. If we choose the set S = {aq,as,as,--- ,a,_1} as shown in Fig. 9 (a), then for
any two vertices x,y € V(CW,,)\ S, there is an S—path from z to y whose all intermediate
vertices are in S. Thus S is a hub set which gives |S| =n — 1.

Case 2. If we choose the set S = {ay, as,as, - ,aLanlJ} as shown in Fig. 9 (b), then for
two vertices z,y € V(CW,,) \ S marked in Fig. 9 (b), there is no S—path from z to y.
Thus S is not a hub set.

Case 3. If we choose the set S = {a1,as,as, -+ ,a,_1} as shown in Fig. 9 (¢), then for
two vertices z,y € V(CW,,) \ S, marked in Fig. 9 (c¢), there is no S—path from z to y
whose all intermediate vertices are in S. Thus S is not a hub set. O

Y

(a) () (c)

Figure 9: Choosing minimum hub set in crown graph

Theorem 3.10. Let f, be the friendship graph of order 2n + 1. Then

h(fn) = 1.
Proof. The proof follows from the fact that in any friendship graph, the central vertex is
adjacent to all other vertices. Therefore choosing S = {c} gives the desired result. O

(a) ®) ()

Figure 10: Choosing minimum hub set in friendship graph.
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