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ABSTRACT. In this paper, we first consider some operators including
symmetric functions. From those operators, we obtain some new gen-
erating functions of k-Fibonacci numbers and k-Pell numbers of third
order and Chebyshev polynomials of the first and the second kind.
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1. INTRODUCTION AND PRELIMINARIES

In the last years, there is huge interest of natural science in the appli-
cations of Fibonacci and Lucas numbers. The sequences of the classical
Fibonacci F),, Lucas L,, and generalized Fibonacci G,, are defined for n > 2
by the recurrence relations [38]

Fo=F,1+F, 2, Ln=Lp_1+Lp2 and Gp=Gnp_1+ Gn—2»
with inital conditions, respectively,
Fo=1 Fi=1; Lp=2,L1=1; Go=a, G1=0b, (aeR, beR).

For the generalizations of Fibonacci and Lucas sequences, one can look
t [14]. Also, for useful applications of these numbers in science and nature,
we refer the interested readers to see the references [19, 20, 21, 30].
From the relation

F, 1++5

am 2
it appears in many research areas, particularly in Physics, Engineering, Ar-
chitecture, Nature and Art. In [17], Gulec and Taskara derived some new
properties of Fibonacci and Lucas numbers with binomial coefficients.

As a generalization of the Fibonacci sequences, Falcon and Plaza, in [14,
15], introduced k-Fibonacci sequence, denoted by {Fk,n};l“;o. They also
studied not only new but also interesting properties of these numbers. Also,
from a geometric point of view, they gave 3-dimensional k-Fibonacci spirals.

Definition 1.1. [38] Let k be a positive real number. Then, the recurrence
relation of generalized k-Fibonacci sequence {Gyn}, oy is defined by

Gk,n+1 = ka,n + Gk,n—la n = 17

with initial conditions Gro=a, Gp1 =0b, (a,b € R).
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Generalized k-Fibonacci number is called to each element of Generalized
k-Fibonacci sequence. Taking a = 1, b = 1 and a = 2, b = 1 gives
k-Fibonacci sequence and k-Lucas sequence, respectively. A few special
values for Generalized k-Fibonacci sequence{G, }, oy are listed below:

i. If £ = 1, then we have generalized Fibonacci sequence

{Gin}={a, b, a+b, a+2b, 2a+3b,...}.
e Putting a = 1, b = 1 the generalized Fibonacci sequence reduces to
Fibonacci sequence known as F, = {1,1,2,3,5,...}.
e Substituting a = 2, b = 1 yields Lucas sequence given by L, =
{2,1,3,4,7,11, ...} .
ii. If k = 2, then we have generalized Pell sequence [27, 38|
{Gan} ={a, b, a+2b, 2a + 5b, ba + 12b, 12a + 290, ...} .

e Taking a = 0, b = 1 gives Pell sequence given by P, = {0,1,2,5,12,29, ...} .
e In the case when a = 2 and b = 2, it reduces to Pell-Lucas sequence
known as P, = {2,2,6,14,34,82,...} .

Definition 1.2. [22] Let k and n be two positive integers and {ay, az, ..., an }
are set of given variables. Then, the k-th elementary symmetric function
e (a1, ag,...,ay,) is defined by

er (a1, a2,...,an) = Z a?a?...af{‘, (0<k<n),
t1+i2+...+in=k
with i1,19,...,9, = 0 or 1.
Definition 1.3. [22] Let k and n be two positive integers and {a1, az, ..., an}

are set of given variables. Then, the k-th complete homogeneous symmetric
function hy, (a1, a2, ..., a,) is defined by

hi (a1, a2,...,an) = Z aﬁla?...ai{‘, (0<k<n),
i1+ig+...+in=k
with i1, 2, .y in > 0.
Remark 1.4. Set eg (a1,a9,...,an) = 1 and hg (a1,a2,...,a,) = 1, by usual
convention. For k < 0, we set ey, (a1, a,...,an) =0 and hy (a1, a2,...,a,) =
0.

Definition 1.5. [2] Let A and B be any two alphabets. We define Sy, (A — B)
by the following form

(o)

E(-t)H(t)=> S.(A-B)t",
n=0
with H (t) = I;IA(I —at)™, E(—t) = bgg(l — bt).

Remark 1.6. S, (A—B)=0 forn<O0.
Remark 1.7. Let A = {a1,a2,...,an} an alphabet, we have
hi(al, a2, ...,an) = Sk (a1 + a3+ ... + ap) .

Corollary 1.8. Given an alphabet A = {aj,aq,...,a,}, we have
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1
h = ———.
Z k:(alaa27 7an) H (1 — at)
acA acA

Definition 1.9. [5] Given a function f on R", the divided difference oper-
ator is defined as follows

() = G(T1, ey Tiy Tig 1y o Tr) — G (X5 ooy Ti 1, Tig 1, T, Tig2..-Try)
T — Tipl '

0

LTiTi+1

Definition 1.10. [7] The symmetrizing operator (5’;1(12 is defined by

()k

aijaz

(g) _ alfg(al) - agg(a2)7 (k c N)
al — a9

Example 1.11. For g(aj) = a; we have
5§1a2 (g) = hk(alaa'Q)’ (k € N) .

In this paper, we derive new generating functions of the products of some
well-known numbers and polynomials. In Sect 1, we give some more useful
definitions from the literature which are used in the subsequent sections. In
Sect 2, we provide some new theorems by making use of the symmetrizing
operator defined in this paper. In Sect 3, we give some new generating
functions of k-Fibonacci numbers of third order, k-Pell numbers of third
order and Chebyshev polynomials of the first and the second kinds which
were studied in great details by Kim et al. [31, 32, 33, 34, 35].

2. Main Results

In this section, we provide some new theorems by using the symmetrizing
operator. We now begin with the following theorem.

Theorem 2.1. Let the alphabets A = {aj,a2},B = {b1,b2} and C =
{c1,c2} be given, we have

(1) > hn (ar, a2) by (b1, b2) by (c1, 02) "

n=0

[T (1 — abieqt) H (1 — abaeqt)

aeA

XZ:O(— )" €n (a1, a2) hy—2 (b1, ba) ch "
I (1 —abieat) [T (1 — abseot)

acA acA
XZ (=1)" ey, (a1, a2) hy_2 (by, bo) 17
b1bo

x<§°;( 1) ep (ar, az) et )(

S (=1)"en (a1, a2) by} >

M8o

"en (a1, a2) by ct™
0

n

309
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o0 oo
Proof. Let Y hy (a1,a2) bEcit™ and > (—1)" ey, (a1, a2) bECH™ be two se-

n= 0 n—O
quences as Zh (a1, a2) bycit™ x Z "ey (a1,a2) bEc™ = 1. On one
n=0

hand, since g (by,c1) = Z hy, (a1, a2) b c}t™, we have
n=0

56162 6b1b2.g(b1) Cl)
oo oo
> hy (a1, a2) b;”'lc’ft" — S hyp(a1,a2) bg"'lc?t"
- 5 n=0 n=0
“e by — b2

n+1 bn+1
- C]Cg Zh ai, a2) 1 ntn
= 50102 (Zhn (0,1, CLQ) h'n (bla b2) c?tn>

n=0

32 o (@1,02) b (b, bo) €517 = 32 b (@1,02) e (b1, o) 5187
Ccl1 —C2
[e e}
= > hn(a1,a2) by (b, b2) hn(cr, c2)t™,
n=0
which is the left hand side of (1). On the other hand, since
1

g(bi,c1) = =
> (=1)"en (a1, ag) b citr

n=0

1

6616261711)29 (bla Cl) = 5C1025b1b2 o0

> (=1)"en (a1, a2) bcytn

n=0

S (—1)"en (a1, a2) by~ epen
biby | "3
X (—1)" en (ar, a) by~ 'eft”
n=

(b1 — by) (20 (=1)" en (a1, az) b?c?t”)
X ( ni:;ﬂ (—1)"en (a1, a2) bggttﬂ)

60102

00
—b1by Z (71)" en (al, CLQ) hp_o (bl, bg) C?tn

n=0

- 63162 o) )
(z (—1)en <a1,a2>b?c?tn) (z (=1)" e (a1, a2) bSc?tn)
0 n=0

n=
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(—1)” €en ((1,1, GQ) hp_o (bl, bg) CSL—th

ng

biby
‘1= 2 <§ (-1)"en (al,ag)bncgtn> (f (-1)"en (al,az)bSCSt”>

n n=0

=0
Z( 1)"en (a1,a2) hy_s (b1, ba) ¢ Hem

_ <n§o (1) en (a1, a2) b?c?tn) <n§o (=1)" en (a1, a2) bSc’ft")

Using the fact that > (—1)" e, (a1, a2) bPct™ = ] (1 — abicit), then
n=0 acA

5610261711)29 (b1> Cl)
IT (1 —abieit) T (1 — abacyt)

aeA acA

XZ( 1)" e, (a1, a2) hyp—2 (b1,b2) c§ ntlyn
- H (1 —abicat) H (1 — abacat)

acA

X Z (=1)"en (a1,a2) hnz (b1, bg) f 1"
b1b2 n=0

a-e (é)(_l)n en (al,ag)b’fc?t”> (20(—1)" én (al,az)bgc?t”)
X (f (—1)" en (a1, a2) bi’cQt") (f (—1)" en (a1, a2) bgcgt">

This completes the proof. O

Theorem 2.2. Given three alphabets A = {a1,a2}, B = {b1,b2} and C =
{e1, catwe have

o0
(2) Zhn (@1,a2) hn_1 (b1,b2) hn_1 (c1, c2) t"

n=0

H (1 — a,b1(21t) HA (1 — (J,b201t)

aEA
X Z ( ) €n (GI;GQ) hn—1 (bl,bg) Cgtn

- H (1 —abieat) [T (1 — abaeat)

aeA acA

X Z (=1)" en (a1,a2) hn—1 (b1, b2) cit"

(- (5 0 enlanan)tiqer) (£ (1" e araaticier)

n=

<Z::TE_ 1)" en (a1, a2) by cht" ) (§ (—1)"en (al,ag)bgcgt">

n=0

Proof. The proof is similar to the proof of theorem (2.1), but now using the
divided difference operator O, c, Ob; b, - O

Theorem 2.3. Given three alphabets A = {ai,a2}, B = {b1,b2} and C =
{c1,ca} we have
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o0
(3) > i (a1, a9) by (b, b2) hno1 (c1, e2) "
n=0

IT (1 —abient) TT (1 — abacyt)
aEA acA

X Z (—1)" en (a1, a2) hy_z (b1, b2) 51"
- H (1 —abieat) [] (1 — abaeat)

acA
X Z (—=1)"en (a1,a2) hn—2 (b1, b2) ™
_ b " n=0
(Cl - 02) n n n - n N
(—1)"ep (a1, a2) bic > (=1)"en (a1, a2) bicit
n= O n=0
x (z 1 (o) e ) (55 (1) (an,a0) b
n=0 n=0
Proof. Let Y hy (a1,a2) bcit™ and S (—1)" ey, (a1, a2) U™ be two se-
n= 0 n 0
quences as Zh (a1, ag) bycit™ x z (—1)"en (a1, a2) b¥cit™ = 1. On one
n=0

hand, since g (b1,c¢1) Z hy (a1, a2) b cit", we have

clcg6b1b;>g(b1> Cl)

o0
nin
= 0102 5b1b2 Z aly a bl C1

Mz

oo
hy (a1, a2) b?“ci‘t” — 3" hyp(a1,a2) bgﬂc’ft"

n=0

= acl co

b1 — ba

bn+1 bn+1
= 0102 Zh (al,ag)—bz ntn
o0
= Oeies (Zhn (a1, a2) hn (b1, b2) cf ")

n=0

oo o0
Z hn (G‘l) GQ) hn (bla bQ) c?tn - Zohn (a17 GQ) h‘l’l (b17 b2) Cgtn
n—=

n=0

Ccl1 —C2
= Zh (al,G,Q bl,b2) hn—l(clch)tna

which is the left hand side of (3). On the other hand, since
1
g (blﬂ Cl) = [e]
> (=1)"ep (a1, a2) blrctn

n=0
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1

8c1c25b1bgg (b17 Cl) = 801C25b162 0
> (=1)"en (a1, a2) by citn

n=0

(—1)"en (a1, a2) by~ 'eft”

108

b1bo 0
- 20 (—1)" ey (a1, a2) by tepn
aclcg =

=) (£ (1" en ) et

n=0

x ( 3 (=1)" ep (a1, az) bgd;tﬂ)

n=0

b1 > (—l)n en (a1, a2) hp—2 (b1,b2) ct”

n=0
- aclcz

(fﬁ (—1)"e, (al,a2)b?c?t") (nijo(—l)”en(al,ag)bg‘c?t”>

n=0

b1by ZO (=1)"ep (a1, a2) hp—2 (b1, ba) cyt"

€1 —C2 <§ (—1)" en(al,ag)b’fcgt"> <§ (—1)" en (a1, a2) ’2’03’5">

n=0 n=0

[o o)
> (—=1)"en (a1,a2) hn_z (b1, b2) it
n=0

(£ C0rentanabige ) (£ 17 a0 biepre)

n=0

Using the fact that > (=1)" e, (a1,a2) bPct™ = ] (1 — abicit), then
n=0 acA

aclcg5b1bzg (b17 cl)
H (1 — ablclt) H (1 - ab2clt)

ogGA acA
X Zo (—=1)"ep (a1,a2) hp—2 (b1, bo) c5t™
—TI (1 —abieat) [T (1 — aboeot)

acA acA
X ZO (—=1)"ep (a1, a2) hp—2 (b1, b2) cft™

bib
(611—262) ) (20(_1)71 én (al,az)b{‘c?t”> (20(_1)71 én (al,az)bg‘c?t”>
X (ﬁo(—l)" én (al,ag)b?cgt") <;§0(—1)" en (ay,as) 3031?")

This completes the proof. 0
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3. Application of Theorems

We now consider the previous theorems in order to derive a new generating
functions of the k-Fibonacci numbers of third order, the k-Pell numbers of
third order and Chebyshev polynomials of the first and the second kind.

Theorem 3.1. Given three alphabets A = {a1,a2}, B = {b1,b2} and C =
{c1, catwe have

(4) Zhnfl (a1,a2) hn_1 (b1,b2) hn_1 (c1,c2) t"
n=0

IT (1 —abiert) TT (1 — abacat)

acA acA
0
X Z (—1)" en (al, a2) hp_o (bl, bg) Cg+1tn+1
n=0

=TI (1 = abicat) TT (1 — abacat)

acA acA
X E (—1)” €n (al, az) hn_z (bl, bg) C?+1tn+1
_ b1ba n=0
1= (2 (1) e, <a1,a2>b?c?t”) (Z (1) e, (al,az)bE‘C?t">

n=0 n=0

o0

x (z (—1)" e (a, az) B ) (Z (=1)" e (a1, az) bl )
n=0 n=0

Case 3.2. By replacing aa by (—aa), ba by (—ba) and ca by (—c2), taking
arag = biby = cico =1 and a1 — ag = by — by = ¢1 — co = k in theorem 2.1,
we have the following theorem.

Theorem 3.3. We have the following a new generating function for the
cubes of k-Fibonacci numbers as :

o0 N
} : 3 o D FenFeanFrn
(5) Fk,nt - D ’
n=0 Fk,an,an,n

with
NpgnFenFrn = 1— (3K%+3)¢% — 2K°¢% + (3k% + 3)t* — 15,
Dy FonFron = 1—kt— (K" + (2+K)(2k* 4 2))* — k*(3k* + 5)t3

+(3k* + 12k2 — k5 4 6)t* + K3(3k% 4 5)¢°

—(k* + (2 + E%) (2K + 2))t0 + k34T 8.
By taking k =1 in the identity (5) we obtain the generating function of the
cubes of Fibonacci numbers as:

et 2
1-2t—t¢

> Fatt = } e

— 1—3t—6t2+3t3 4+t

Foata in [13] give the formula (6) which is obtained by replacing a; by
2a1, a2 by (—2a2), by by 2b1, by by (—2b2), ¢1 by 2¢;1 and ¢ by (—2¢2) and
4asaq = 4b1by = 4c1ca = —1 in the theorem 2.1

[oe]
N
(6) > Un (a1 — a2) Up (by — by) Up (1 — c9) t" = =2ntn

- b
n=0 Dy,v,U,
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with

Nu,.v,.U,

Dy,v,.u,

which represents a generating function of the Chebyshev polynomials of the
second kind.

By replacing ae by (—ag2), by by 2b1, by by (—2bs),c1 by 2¢; and cg by
(—2c¢2), taking a; — ag = k, ajas = 1 and 4b1bs = 4cica = —1 in theorem

1—(4d(a1 —a2)? +4(by — b2)? +4(c; — c2)? — 3)2

+16 (a1 — ag) (b — by) (¢1 — ¢2) 2 — (4 (a1 — ap)?

+4 (b — by)® +4(cr — ea)® = 3)tt + 45,

1—8(a; — ag) (b1 — ba) (¢c1 — c2) t + (16 (a1 — ag)?

(c1 — 2)? + 16 (a1 — ag)? (b1 — bo)? + 16 (by — by)*

(c1 — 2)? —8(ag — az)? — 8(by — by)? — 8(c1 — ¢2)? + 4)t2
—(32(a1 — ag)® (b1 — ba) (1 — c2) + 32 (by — bo)® (a1 — ag)
(¢1 — ) +32(c1 — 2)? (a1 — ag) (by — by) — 40 (a; — ag)
(b — bo) (e1 — e2))t® + (16 (a1 — a)* + 16 (by — by)*

+16 (¢1 — c2)* — 16 (a1 — ag)® — 16 (b1 — ba)? — 16 (¢1 — ¢2)*
+64 (a1 — a2)” (b — ba)* (c1 — c2)* + 6)t" — (32 (a1 — ap)?
(by — ) (¢1 — e2) 4 32 (b1 — bo)? (a1 — az) (¢1 — ¢2)
+32(c1 — 2)® (a1 — ag) (by — by) — 40 (a1 — az) (by — by)
(c1 — )t + (16 (a1 — ag)? (by — by)* + 16 (a1 — ag)?

(c1 — 2)? +16 (by — by)* (1 — ¢2)* — 8 (a1 — ap)?

—8(by — bp)* — 8(c1 — ¢2)> +4)t — 8 (a1 — ag) (b — by)
(c1 —c)t” + 18,

2.1, we have the following theorem.

Theorem 3.4. We have the following a new generating function for the
product of k-Fibonacci numbers and Chebyshev polynomials of the second

kind as :
> Np, . .UnU
F b1 —b — )t =
(7) nz::() knUn (b1 — b2) Uy (c1 — ¢2) Dryonts,”
with
Np 0, = 1= (=4(b1 — b2)* — 4(c1 — c2)* + k? + 3)t?

—8k (b1 — by) (c1 — ) 12 + (=4 (by — by)?
—4(c; — cg)? + K2+ 3)t* — 15

315
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DFk,nUnUn = 1-—4k (b1 - bg) (Cl — CQ)t - (—4]62 (Cl — 02>2

(=244 (b — b2)?)(—k* + 4 (c1 — c2)? — 2))¢?

—4k (b — b) (c1 — c2) (K — 4 (b1 — b2)* — 4 (1 — ¢2)® + 5)¢°
+(16 (b — bp)* + 16 (¢1 — c2)* — 16 (by — bo)? — 16 (¢ — ¢3)?
—16k2 (b1 — b2)? (c1 — c2)? + k* + 4K% + 6)¢*

+4k (by — ba) (1 — c2) (K — 4(by — b)) — 4 (¢ — ¢2)?

+5)t° — (=K (1 — e2)? + (=2 + 4 (b — b2)?)(—K?

+4 (c1 — 2)? — 2)t5 + 4k (by — by) (1 — e2) &7 + t5.

Foata in [13] gives the formula (8) which is obtained by taking £ = 1 in
the identity (7)

(8)

with

NE, U Un

Dg,u,u,

_ Np,u,u,

> FuUn (bt — b2) U (c1 — c) " = 5 ,
FrUnUpn

n=0

1+ (4(by — bo)? +4(c1 — c2)* — 4)t2 — 8(by — ba) (1 — ¢) 1
—(4(by — b)? +4(c1 — c2)? — 4)t* — 15,

1—4(by —by) (1 — o) t+ (12(by — bp)? + 12 (c1 — ¢2)?

—16 (by — ba)? (1 — c2)? — 6)t% — (24 (by — by) (c1 — ¢2)
—16 (b1 — bg)3 (1 — ¢2) — 16 (¢c1 — ¢2)3 (b — by))t?

+(16 (by — b2)4 + 16 (c1 — 02)4 — 16 (b; — b2)2 —16(c1 — 62)2
—16 (by — b3)? (1 — c2)? + 11)t* + (=16 (by — by)® (e1 — c2)
—16 (1 — c2)® (b1 — be) + 24 (b1 — b2) (c1 — €2))t°

+(12(by — b2)? + 12 (¢1 — 2)? — 16 (by — by)? (¢1 — ¢2)* — 6)1F
+4(by — by) (c1 — o) t7 + 15,

which represents a generating function of the product of Fibonacci numbers
and Chebyshev polynomials of the second kind.

By replacing ¢; by 2c1, ¢2 by (—2c¢2), ba by (—b2) and a2 by (—a2), taking
4cica = —1, bibe = ajag = 1 and by — bs = a1 — ag = k in theorem 2.1, we
have the following theorem.

Theorem 3.5. For n € N, a new generating function of the product for
squares of k-Fibonacci numbers and Chebyshev polynomials of the second
kind is given by

(9)

N
F . Un

o0
> FEUn(cr — ) t" = D ;
n=0 FI?,nUn
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with
NFI?,nU" = 1+ (2k2 —4(c; — 62)2 + 3)t2 + 4k? (c1 — c2) #3
+(2k% — 4 (c; — ) + 3)t* + 15,
Dpz y, = 1- 2k% (1 — ca)t — (4k2 (c1 — 2)® + (2 + K?) (4 (c1 — c2)?

—k? — 22 — 2k2 (1 — ¢2) (4 (c1 — e2)* — 2% — B)E3 + (2k*
+16 (¢1 — e2)* — 16 (c1 — e2)? + 8K + 4k* (¢1 — e2)* + 6)t
—2k? (1 — ¢2) (4 (1 — e2)* — 22 — )5 — (4k? (¢c1 — e2)?

+ (k2 +2) (4(c1 — c2)® — K2 = 2))t6 — 2k (c1 — o) t7 + ¢,

Foata in [13] gives the formula (10) which is obtained by taking & = 1 in
the identity (9)

o n_ Nrzu,
(10) T;OFnUn (CI - 62)t - DF%Un’
with
Nppp, = 1—2(c1 —co)t+ 4t —2(c; — co) t* + 4.
Dpay, = (1+42(ci—c)t+t*)(1—6(c1 —ca)t

H(T+4(c1 — 2))t2 — 6 (c1 — ) 13 + tY),

which represents a generating function of the product for squares of Fi-
bonacci numbers and Chebyshev polynomials of the second kind .

Proposition 3.6. For n € N, a new generating function of the product for
squares of k-Fibonacci numbers and Chebyshev polynomials of the first kind
s given by

- 2 n NFI? nTn
(11) > FETn(er—c)t" = Fop—
n=0 szr,nT"
with
Np2 7, = 1+ (1 —2(c; — 2)2Kk)t8 + k% (1 — e2)t° + (8(c1 — e2)?

—8(61 — 02)2 + 2k2 + 3)t4 + (—4k2 (Cl — 62)3 + 4k2 (61 — 62))t3
+(—4k2(cl — ) — 6(c1 — 02)2 + 2k% 4 3)t% — k2(cl — co)t.

D = D .
2 Tn F2,Un
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Proof. We have

ZFk wIn (c1 — c2) t"
= ZFM (2¢1,[~2¢2]) — (1 — ¢2) b1 (2¢1, [—2¢9])) £°

= ZF,M (2e1, [~2¢2])t" = (1 — c2) > Ff phno1 (201, [-22]) "

n=0
= ZF,?,nUn(cl — o)t — (1 — c2) > Fi b (201, [~2c2]) £,
n=0 n=0
By replacing ¢1 by 2¢1, ¢a2 by (—2c¢2), ba by (—b2) and a2 by (—a2), taking
dereg = —1, biby = ajag = 1 and by — be = a1 — as = k in Theorem (2.3),
we have

> F b1 (201, [-2c2)) £
n=0
k2t — 2(61 — Cg)(—QkQ — 1)t2 + 4k2(61 — 02)2t3
—2(c1 — ea)(4 (1 — e2)? — 2t — K285 4+ 2 (¢; — ) 10

Dgz 1, ’
with
DFI?,nT" = DFI?,nU"’
then
[ee]
ZFI?,nTn (e1 —e2) t"
n=0
NFI?HU"
= =— — (c1 — ¢2)
Dpz v,
k%t —2(cy — co)(—2k? — 1)t + 4k>(c; — co)*t?
—2(c1 — ) (4 (1 — e2)? — 2t — K285 4+ 2 (¢) — ) 8
Dgz v,
B NF,?,nTn
l)Fl?,nU""7
with
Npz g, = 14+ (1=2(c1 — 2)*)t* + K (c1 — e2)t® + (8(e1 — e2)*

—8(c1 — c)? + 2% + 3)t1 + (—4k?(c1 — c2)?
+4k%(c1 — e2)) 2 + (2(c1 — o)} (—2k% — 1) + 2k
—4(e1 — 2)? +3)2 — K2 (c1 — ep)t.
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Foata in [13] gives the formula (12) which is obtained by taking £ =1 in
the identity (11)

(12) ZF Th(cp — o)t =

=0

F2Tn
Dz,
with
FXT, = 1-3(c1—c)t+ (@ —4(c1 — )+ (d(c1 — 2)®
— (1 — )t + (1= 2(e1 — e2) ).
Dga27, = Dpzy,,
which represents a generating function of the product for squares of Fi-

bonacci numbers and Chebyshev polynomials of the first kind.

Proposition 3.7. Forn € N, the new generating function of the product of
k-Fibonacci numbers and Chebyshev polynomials of the first and the second
kind is given by

Npy, T,
13 FunUp (b1 — b c1 —co)t" =
(13) nE—:o ke;nUn (D1 — b2) Ty, (c1 — c2) Dry ot
with
Ng, .u.1, = 1+ (—1 +2(c1 - 02)2) t8 + 2k (1 — c2) (b1 — bo) 7

+(=4 (b — b2)? +8(c; — c2)* — 8(c1 — ¢2)* + k2 4 3)t!
+(—8K (by — b2) (¢c1 — c2) + 8k (1 — c2)® (by — bo))t?
+(4(b1 — b2)? +6(c1 — e2)> =3 —k? —8(cy — ¢2)? (by — bo)?
+2k? (c1 — 02))252 — 2k (¢1 — ¢2) (by — ba) t.

Dp, v, = DF, ,U.U,-

Proof. We have

ZFk 2Un (b1 — bg) (01 — Cg)t

n=0
- hn (21, [~2¢2))

n=20: knUn (b1 = b2) ( —(e1 = e2) b1 (2¢1, [—2¢2))
= ZFk,nUn (b1 — b2) hn (21, [—2¢2]) t"

n=0

—(c1 — ) ZFk,nUn (b1 — b2) hy—1 (2¢1, [—2¢2]) "

n=0

o0
= Y FinUn (b1 = bo) Un (1 — e2) t"

n=0

o0
— (01 — CQ) ZFk,nUn (b1 - bQ) hp_1 (261, [7202]) t".
n=0
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By replacing ¢1 by 2¢1, c2 by (—2¢2), by by 2b1, by by (—2b2) and ag by
(—a2), taking 4cjco = —1,4b1by = —1, ajag = 1 and a1 —ag = k in Theorem
(2.3), we have

> FinUn (b1 — b2) hn_1 (2c1, [~2c2)) " =

n=0
2k (b1 - bQ)t -2 (Cl — CQ) (—4 (b1 — b2)2 + R4+ ].) 12
—8k (Cl — 02)2 (bl — bg) t3 + (=8 (01 — 02)3 +4 (61 — CQ)) t4
—2k (by — bo)t° —2(cy — c2) b

Dp, ,U.T,
with
Dp, ,u,1. = DFy UnUs>
then
= n NEULU,
> FinUn (by = b2) T (c1 — e2) " = H (e - o)
n=0 Fk,nUnUn
2k (by — ba) t — 2 (c1 — ) (—4 (by — by)? + k2 + 1)t2
—8k (1 — ¢2)* (b1 — b2) 13 + (=8 (c1 — ) + 4 (¢1 — ¢))t?
—2k (b1 — bg) t5—2 (01 — 02) 16
X
Dr, U0,
_ NFk,nUnTn
DFk,nUnUn,
with
NFk,nUnTn = 1+ (71 +2 (Cl — 02)2) 6 + 2k (01 — 02) (b1 — bQ) 0

+(=4(by — b2)? +8(c1 — 2)* — 8(c1 — c2)? + k2 + 3¢t
+(—8k (b1 — b2) (c1 — c2) + 8k (c1 — c2)® (b1 — b2))t® +
(4(by — b2)*> +6(c1 — c2)® —3— k> —8(c1 — 2)? (b — by)?
+2k% (¢1 — e2)H)t% — 2k (¢1 — ¢2) (by — b) t.

O

Foata in [13] gives the formula (14) which is obtained by taking k£ =1 in
the identity (13)

Ng,u,.1,

14 F,U, (by — b)) T}, (c1 — )t = ,
(14) > (b1 = b2) T (c1 — c2) Drot

n=0
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with
Nev,, = 1—2(b1—bo)(c1 —ca)t+ (4(by — b2)* +8(c1 — e2)?
—8(c1 — )2 (b1 — ba)? — 4)t2 + (=8 (c1 — ¢2) (b1 — by)
+8(c1 — ¢2) (b — ba))t® + (8 (c1 — e2)* — 8 (c1 — ¢2)?
—4(by — )2+ 4)t* +2(c1 —c2) (b1 — bo) t°
+(2(e1 — e2)® = 1)EE.
Dg,v,1, = DF,u,U,-

Case 3.8. By replacing az by (—a2), ba by (—b2) and ca by (—c2), taking
arag =1, biby = cico =k and a1 — as = k, by — by = ¢1 — co = 2 in theorem
2.2, we obtain the following theorem.

Theorem 3.9. For all n € N, a new generating function of the product of
k-Fibonacci numbers and the squares of k-Pell numbers is given by

(15) iFk 2 = Nbion i
= o Dp.r2, 7
with
Npp2, = kt+4t? — k% (24 k) £ — ak%" + k% (8K + k2) £° — 4k™10.
Dgp p,, = 1—4kt— (43 + (2k + 4) (K* + 2k + 4)) t* — dk(k* + 8k

+5k)t% + (32k% + k® + k* (4k* + 32k — 16k%) + 6k)t*
+4k3 (K* 4 8k + 5k?) 17 — (4k7 + k* (2k + 4) (K> + 2k + 4))t°
+4KTET + K55

By replacing a; by 2a1, ag by (—2az2), ba by (—ba) and ca by (—c2), taking

4dajas = —1, bijby = c1co = k and by — by = ¢1 — c2 = 2 in theorem 2.2, we
obtain the following theorem.

Theorem 3.10. For n € N, a new generating function of the product of
squares of k-Pell numbers and Chebyshev polynomials of the second kind is
given by

(16) iP,?nUn (a1 —a9)t" = NP’?’"U" ,
n=0 , DPI?,nU"
with
NPI?,nUn = 2(a; —a2)t— 4% — 2k (a1 —a2) (4 (a1 — a2)2 — 2)t3
+16k2 (a1 — ag)® t* + 2k> (a) — ag) (8k + E2)t° + 4K*5.
Dpp y, = 1-8(a1—az)t—(16k (a1 — a2)? + (2k 4 4)(4k (a1 — ag)?

—2k — ANt — 8 (a1 — ag) (4k? (a1 — ag)? — 8k — 5K2)t3
+(32k% 4+ 16k* (a; — ag)! — K*(16K? (a1 — ag)? — 32k

—64 (a1 — a2)?) 4 6k*)t* — 8k? (a1 — ag) (4k? (a1 — ag)?
—8k — 5k2)t° — (16k° (a1 — ag)® + k*(2k + 4)(4k (a1 — az)?
—2k — 4))t® — 8kS (a1 — ag) t7 + K315
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Putting k = 1 in the relationship (16) we obtain a new generating function
of the product of squares of Pell numbers and Chebyshev polynomials of the
second kind:

Kt 2 n Npzy,
ZPnUn (a1 —ag)t" = =22,
n=0 DP%U"
with
Npay, = 2(a1 —ag)t— 412 = 2 (ay — a2) (=2 + 4 (a1 — ag)?)t>
+16 (a1 — ag)? t* 4+ 18 (ay — ag) t° + 415
Dpay, = 1-8(a1—az)t— (40(ar — az)® — 36)t* — 8 (a1 — ag)

(4 (a1 — ag)? — 13)t3 + (70 + 16 (a1 — a2)* + 48 (a1 — ag)?)t*
—8 (a1 — az) (4 (a1 — az)* — 13)t° — (40 (a; — ag)? — 36)t°
—8(ay — ag)t” +15.

Case 3.11. By replacing az by (—a2), ba by (—b2) and ca by (—c2), taking

ajag = biby = cico =k and a1 — ag = by — by = ¢y — co = 2 in theorem 3.1,
we obtain the following theorem.

Theorem 3.12. We have the following a new generating function for the
cubes of k-Pell numbers as

a7 S ettt
n=0 kyn Tk Th,n
with
Np, o PonPrn = t— (1267 + 3K3)t3 — 16K3" + (12> + 3K5)t5 — k¢
Dp, PonPen = 1—8t— (16k+ (2k + 4)(8k + 2k%))t* — 8(12k* + 5k%)

+(48Kk* 4 k3(48K? — 64) + 6k5)tt + 8K3(12k2 + 5K3)t°
— (167 + K®(2k + 4) (8K + 2k2))t0 + 8k%7 + k1248,

Mansour in [26] gives the formula (18) which is obtained by taking k£ = 1
in the identity (17)

> t(1—4t—1t2)
1 P3tn =
(18) 7;) " (1+2t—t2)(1— 14t — t2)’

representing a generating function of the cubes of Pell numbers.
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