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Abstract

Polynomials corresponding to graphs and their roots have many applications including the
energy defined algebraically by means of the adjacency matrix which is defined asa 0 — 1
matrix according to the neighbouring relations of vertices. In literature, many notions depend
on the adjacency matrix and the characteristic polynomial of the adjacency matrix is used in
the definition of the energy of the graph. Recently, some other matrices are used in obtaining
characteristic polynomial. In this work, two important matrices, edge-Zagreb and Laplacian,
are used to study the characteristic polynomial by means of rather unusual algebraic way of
using elementary subgraphs

1 Introduction

I'2 Let G be a graph with vertex set V(G) = {v1,--- ,v,} and edge set E(G) = {e1,--- ,en}.
The degree of a vertex v is denoted by d(v). If there is an edge e between two vertices v; and v,
then these vertices are called adjacent and this situation is shown as e = v;v;. Also in this case,
e is said to be incident to the vertices v; and v;. A subgraph of a graph G is a graph H such that
V(H) CV(G), E(H) C E(G). If V(H) = V(G), then H is called a spanning subgraph of G.
A component of G is a maximal connected subgraph of G. If the graph has no multiple edges and
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nor loops, then it is called simple. In this paper, all considered graphs are simple.

Recently people are intensively interested in graph theory to make easier some real life diffi-
culties. Instead of running out of time, manpower, money, we can use graph theoretical methods.
Graph theory increasingly used not only for mathematical researh but also in theoretical physics,
operational research, electirical engineering, organic chemistry, and so forth. Other branches of
science take advantages of graph theory. Here we study properties of graphs by means of some
corresponding matrices. A lot of matrices are defined with respect to any given graph. The best
known matrix is vertex adjacency matrix, which briefly will be called as the adjacency matrix. In
addition to adjacency matrix, there are edge adjacency, edge-Zagreb adjacency, Laplacian adja-
cency and incidency matrices, etc. These matrices are as important as the adjacency matrix and
they play a substantial role in several research areas related to several other types of graph energy.
For example, the intermolecular energy of a chemical compound which is the sum of the absolute
values of the eigenvalues of the adjacency matrix can be obtained by mathematical calculations by
means of a graph that is modelling corresponding chemical compound, see [3, 4, 6, 10].

The spectral graph theory takes care of spectral properties of a given graph G by studying
matrices, eigenvalues, eigenvectors for G. E. Hiickel is the first man that defined the energy of a
graph while searching for a method to obtain approximate solutions of Schrédinger equation for
a class of organic molecules. In Physics and Chemistry, this equation has a significant inherently
constitute a sub-area of graph theory. In chemistry, we make use of graphs very often. Hence
calculation of the energy of any molecule has high importance in Chemical Graph Theory.

Mathematically, it is shown that the energy of a graph G which is used in modelling a molecule
is defined as the sum of absolute values of all eigenvalues of the adjacency matrix A(G) of G which
is an n x n matrix A = [a;;] defined by

0 — 1, if v; andvj are adjacent
Y71 0, otherwise.

The rest of the paper is designed as follows: Similarly to the adjacency matrix, in the second
section, we give the definition of edge-Zagreb adjacency matrix and find some spectral properties of
it. The idea of edge adjacency similarly to the classical vertex adjacency is studied in [13]. In [12],
sum-edge characteristic polynomials of graphs have been obtained. In [15], the authors studied
the edge-Zagreb spectral radius and edge-Zagreb energy of graphs in a different manner than the
way we follow here. Also in the third section, we recall the definition of Laplacian adjacency
matrix and calculate the spectral properties as in Section 2. Some results on Laplacian energy was
obtained in [7]. For subdivision graphs with a fixed given chromatic number, the maximal energy
was determined in [8].
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2 Edge-Zagreb adjaceny matrices, determinants and characteristic
polynomials

In this part, we study the edge-Zagreb adjacency matrices, their determinants and edge-Zagreb
characteristic polynomials. During the calculations, we use permutations that are used in the de-
terminant definition.

Here we start with the definition of edge-Zagreb adjacency matrix of a graph G.

Definition 2.1. [9] [14] Let G be a graph with the vertex set V(G) and the edge set E(G) that
have n and m elements, respectively. The edge-Zagreb adjacency matrix ZM (G) = (zijlaxn of G
is defined by

o d(vs)d(vj), if the vertices v; and v; are adjacent
K 0, otherwise ’

Let M be any matrix with dimension n X n. The characteristic polynomial of M is equal
to |zI — M|. Analogously, the edge-Zagreb characteristic polynomial of a graph G is equal to
|z — ZM(G)|. We denote it with P&*(z).

We call a subgraph as an elementary subgraph if every component of it is either an edge or a
cycle, [1]. An elementary subgraph is called a spanning elementary subgraph if the set of vertices
of the subgraph is the same with the vertex set of the graph G itself. c_(H) and ¢,(H) are defined
as the number of components in a subgraph H that are edges and cycles, respectively.

Definition 2.2. [5] Let A = [aij]nxn be a matrix. The determinant of the matrix A is defined by

|A| = Z(i)alﬂlaz(’? crrQ20y,

where the summation is taken over all permutations 1,03, -+ ,0n of the set S = {1,2,--- ,n}.
Since we calculate this summation for all permutations and S has n! permutations, |A| has n!
terms. Let us express the formula for edge-Zagreb adjacency matrix:

Let ZM(G) = [zij]nxn be the edge-Zagreb adjacency matrix of G as above.

|ZA[(G)| = Z Sgn(g)zla(l)z2a(2) * " Zng(n)

where the summation is over all permutations of the set S. sgn(c) is +1, —1 if o is even permuta-
tion, if o is odd permutation, respectively. It is denoted by sgn(c) = (=1)", r is the number of
transpositions that o has them, when o is written as a product of transpositions.

We can now give the following result which can be proven similarly by a method given in [2].
We define v; and v; as two adjacent vertices in a cycle component of corresponding spanning ele-
mentary subgraph of G. Also, we define u; and u; as two adjacent vertices in an edge components
of corresponding spanning elementary subgraph of G.
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Theorem 2.1. Let G be any graph with vertex set V(G) = {v1,--- ,vn} and edge set E(G). Let
Z M (G) be the edge-Zagreb adjacency matrix of G. Then

1ZM(G)| =) (—1)r—e-(H)=eolH)geolH) H [d(u;)d(u;))? H [d(v;)d(v;)]

HI=1 i,5=1
j>i i>i

where the summation is taken over all spanning elementary subgraphs H of G.

When calculating the latter product in Theorem 2.1 corresponding to cycle components, we
consider only one of the edges v;v; and v;v; because of Definition 2.2. Also if either one of
the cycle components or edge components does not exist in the spanning elementary subgraph,
we exclude the corresponding product in the statement of Theorem 2.1. We consider both of the
edges u;u; and uju; by using Definition 2.2 and therefore the square appears in the first product
corresponding to edge components.

Proof. We know that

1ZM(G)| = 59n(0)215(1)220(2) ** * Zno(n)

by the Definition 2.2. Let us deal with the term 215(1)225(2) * * * Zno(n) that is nonzero as other
terms are zero due to the non-adjacency, or they do not correspond to any spanning elementary
subgraphs because of the deficiency of some vertex. Since the components of spanning element-
ary subgraphs are allowed to be either an edge or a cycle, some of these terms correspond to
2-dimensional cycles that are edges and some of these terms correspond to k—cycles. In the
|ZM (G)|, every nonzero term results from any spanning elementary subgraph H of G. Let us
assume that 214(1)22¢(2) * * * Zno(n) COTresponds to a spanning elementary subgraph H of G, then
by the definition of ZM (G) we know that entries are the products of the degrees of vertices, and
as every permutation can be written in terms of transpositions, we get

> IT (dCus)d(uy)i? [ ld(vi)d(v;)-

i,j=1 ij=1
i>i i>i

It is clear that every cycle can be linked to cyclic permutations in two different ways, giving a
contribution 2¢°(#) to the required determinant.

Since any cycle can be written as a product of transpositions and as any edge has the form (j),
we have sgn(o) = (=1)"¢-(H)=c(H) Ag a result, we have

1ZM(G)| =) _(—1)e (H)meelHgee ) ﬁ [d(us)d ()] f[ [d(vi)d(vs)]-

i,j=1 ij=1
i>i i>i
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The following result will be needed:

Theorem 2.2. [11] Let A be a square matrix of dimension n. Let the characteristic polynomial of
Abe P(z) = 2" +c12™ ' +caz™ 2+ - +cy. Thenc, = (—=1)% Y (all kx k principal minors).

We can now give the formula for the coefficients of the edge-Zagreb characteristic polynomial
of any graph G. Let us denote the edge-Zagreb characteristic polynomial of G by P& (z) =
" 4+ c1z™ ! + cpz™ 2 + - .- + ¢,. Then we have

Theorem 2.3. Let G be any graph of order n and let P& (x) be the edge-Zagreb characteristic
polynomial of G as above. Then the coefficients of this characteristic polynomial are given by

cp =y (=1)e-(realmge®) ﬁ [d(us)d(uz))® ﬁ [d(v:)d(v;)]-

i,5=1 ij=1
J>i g>t

Here the summation is taken over all elementary subgraphs H of G with k vertices.

Note that v;, vj, u;, and u; are defined as in Theorem 2.1, but instead of the statement spanning
elementary subgraph, here we have elementary subgraph.

Proof. By Theorem 2.2, ¢z = (—1)¥ 3 (all k x k principal minors) and by Theorem 2.1, we get

ex = (=1)* Y (—1)Fe- () meelHgeelH) H [d(us)d(us))® ﬁ[d(vi)d(vj)]

i,j=1 i,j=1
i>i J>i
and hence
n n
ok = (=1)e- (el TT (d(u;)d(u;)]* T] (d(vid(v))),
where the summation is taken over all elementary subgraphs H of G with k vertices. a

We can now prove the following result by means of [1].

Theorem 2.4. Let us take any graph G with |V(G)| = n. Let P& (x) be as above. Assume that
c1 =c3 = -+ = co+1 = 0. Then there is no odd cycle with 2j + 1 edges where j = 1,2, --- .
Also, let G be any regular graph and let the number of 2t + 3 cycles in G be a(G). So we get

_ —C2t+3
a6l =3 [T [dws)d(w,)]

In the above formula, vertices w;, w; are adjacent in one of the elementary or spanning elementary
(if 2t + 3 = n) subgraphs with 2t + 3 vertices.
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Proof. Let us take a graph G. Any elementary or spanning elementary subgraph of G has odd
number of vertices if and only if it has at least a cycle with odd vertices. By the hypotesis ¢; = c3 =
cs = -+ = cgpp1 = 0, it is clear that there is no odd cycle with 2j 41 edges where j = 1,2, -+ ,¢
in G. So each component of any elementary or spanning elementary subgraph with 2¢ 4 3 vertices
of G cannot be an edge and has to be a (2t + 3) —cycle. If we add regularity condition to G, then
by Theorem 2.3, we find that every elementary or spanning elementary subgraph of G with 2¢ 4 3
vertices contributes the same number to co;3. Moreover, the elementary or spanning elementary
subgraphs consist of merely cycle components and we have the required result. O

3 Laplacian adjaceny matrices, determinants and characteristic poly-
nomials

In this section, we are interested in Laplacian adjacency matrices and we establish some methods
for finding determinant and characteristic polynomial as in the second section.

First of all, we give the definition of the Laplacian adjacency matrix of a graph G.

Let G be a graph with the vertex set V(G) = {u1,u2,- -+ ,un} and edge set E(G). We shall
denote the Laplacian adjacency matrix by L(G) = [lij|nxn Which is given by

-1, if the vertices u; and u; are adjacent
Lij =1 dw), ifi=j
0, otherwise.

Secondly, the characteristic polynomial of the Laplacian adjacency matrix is |z — L(G)| and
it will be denoted by PL(z).

Let 7 be the sum of the numbers of the vertices that belong to cycles that exist in the corres-
ponding elementary or spanning elementary subgraph of G. Now we are ready to give a theorem
for calculation of the determinant of Laplacian adjacency matrix of a graph G. Note that we earlier
defined elementary and spanning elementary subgraphs of G. In the next two results, we also allow
a new type of component in the form of a vertex in addition to those which are edges or cycles. If
there is no such component in the form of a vertex, say u;, then we omit the product in Theorem
3.1

Theorem 3.1. Let G be a graph with the vertex set V(G) = {u1,uz, - ,un} and E(G). Let the
Laplacian adjacency matrix of G be L(G). Then

IL(G)] = (1) 3 (—2)—e- (D=2 gD T )

where the summation is taken over all spanning elementary subgraphs H.
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Proof. Let G be a graph with n vertices. By the definition of the Laplacian adjacency matrix of G
and by the proof of Theorem 2.1, we have (—1)" 3 (—1)"~¢-(F)=co(H)2¢e(H) and also considering
the different entries between the Laplacian adjacency matrix and the edge-Zagreb adjacency matrix,
we get by the proof of Theorem 2.1, [i=1 d(u;). As a result, we have

IL(G)] = (=1)7 ) (= 1)re- () meelH)ge ) ﬁd(uz')

i=1

We can give a formula for Laplacian characteristic polynomial of a graph G.

Theorem 3.2. Let G be any graph of order n and let P’G (z) be Laplacian characteristic polynomial
of G as above.

cp = (_1)1' Z(_l)c_(H)+CO(H)2CO(H) Hd(uz)

i=1

Here the summation is over all elementary subgraphs H with k vertices.
Note that u; is defined as in Theorem 3.1 but we replace the statement that is spanning elementary
subgraph with elementary subgraph.

Proof. By Theorem 2.2, ¢ = (—1)* S(all k x k principal minors). Also by Theorem 3.1, we
have

ek = (_1)k(_1)7‘ Z(_l)k—c_(H)—co(H)2co(H) ﬁd(uz)

i=1

Consequently, we get

ek = (-1)" Z(_l)c-(HHco(H)zco(H) Hd(uz').
i=1
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