Advanced Studies in Contemporary Mathematics www.jangjeon.or.kr
30 (2020), No. 3, pp. 285 - 288 http://dx.doi.org/10.17777/ascm2020.30.3.285

IRREDUCIBLE LOCALLY BOUNDED
FINITE-DIMENSIONAL PSEUDOREPRESENTATIONS
OF CONNECTED LIE GROUPS

A. 1. SHTERN

ABSTRACT. Bounded quasirepresentations always admit small (in norm) per-
turbations that define irreducible bounded quasirepresentations. The pseu-
dorepresentations corresponding to these quasirepresentations (if they ex-
ist) are defined more rigidly, and therefore it is reasonable to seek for ir-
reducible pseudorepresentations. In this note, we describe the irreducible lo-
cally bounded finite-dimensional pseudorepresentations of connected locally

compact groups.

§ 1. INTRODUCTION

For the motivation concerning the interest to irreducible pseudorepresen-
tations of groups, see the introduction to [1].

The paper [1] promised to give a description of irreducible locally bounded
finite-dimensional pseudorepresentations of connected locally compact
groups. Instead, as follows from the text of the proofs of the theorem
in [1], the statement of the theorem is related to semisimple Lie groups only
rather than connected locally compact groups (everywhere in the text of [1],
the words “connected locally compact group” should read “semisimple Lie
group”). In the present note we clarify the matter for connected Lie groups
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and describe the irreducible locally bounded finite-dimensional pseudorepre-
sentations of all connected Lie groups. We recall that these pseudorepresen-
tations are pure, i.e., their restrictions to amenable subgroups are ordinary
representations of these subgroups [4, 5.

§ 2. PRELIMINARIES

Recall the general result concerning the structure of quasirepresentations
of arbitrary groups.

Theorem 1 [2-5]. Let G be a group and let w be a quasirepresentation of G
on a finite-dimensional vector space E.. Let E be the space dual to E. Let
L be the set of vectors & € Ex whose orbit

{m(9)¢ | g € G}

is bounded in E; let M be the set of functionals f € EX whose orbit {m(g)* f |
g € G} is bounded in E*; then L and the annihilator M~ are m-invariant
vector subspaces in Er. Let us consider an increasing family of subspaces
{0}, LM+, M+, L+ M+, E = E, and write out the matriz t(g) of the
operator w(g), g € G, in a block form corresponding to the decomposition
of the space E into a direct sum of subspaces L N M+, M+ \ (LN M%1),
L\ (LN M%), and E\ (L + M*1), where the symbol “\” stands for the

passage to a complementary subspace:

a(g) »(9) o(g) 7(9)
_ 0 Blg) 0 pg)
t(g) = \

0 0 g xle | 9IEG

0 0 0 &g
(Here ta3(g) = 0, since L 1s invariant with respect to m.) Then the following

assertions hold:
1) the mappings o, 0, 7y, o, and x are bounded;
2) the matriz-valued mappings t1 and to defined by the formulas t1(g) =

(agg) gg;@) and ta(g) = <5E)9) gEg)’ are representations of G,

3) the mapping T is a quasicocycle with respect to the representations ty

and ts, that is, the mapping (g, h) — (gh) — a(g)r(k) — 9(g)p(h) — T(9)3(h),
g,h € G, is bounded.

§ 3. MAIN THEOREM

Theorem 1 plays a crucial role in the proof of the following main result of
this note, which gives a kind of a list the irreducible locally bounded finite-
dimensional finally precontinuous pseudorepresentations of connected locally
compact groups.



Irreducible locally bounded finite-dimensional pseudorepresentations

Theorem 2. Let G be a connected Lie group, let R be the radical of G, and
let S be a Levi subgroup of G, and let ™ be an irreducible locally bounded
finite-dimensional pseudorepresentation of G.

Let the center of S be finite. Then m is an ordinary continuous finite-
dimensional representation of G, namely, a product of a central character
of R (i.c., a character x of R such that x(grg=') = x(r) for every r € R
and g € G) and an irreducible unitary representation of the compact part
of S.

Let the center of G be infinite. Then m is either an ordinary continuous
finite-dimensional representation of G or a product of a real exponential of
some Guichardet—Wigner pseudocharacter related to simple components with
infinite center of S by a central character of R (i.e., a character x of R such
that

x(grg™") = x(r)
for every r € R and g € G) and by an irreducible unitary representation of
the compact part of S.

Proof. Let the center of G be finite. It follows from Theorem 1 that every
irreducible locally bounded finite-dimensional pseudorepresentation of G is
an irreducible mapping of one of the forms «, 3, 7, or . According to The-
orem 3.3.17 of [6], the mapping ~ is the direct sum of (ordinary) products of
some continuous irreducible unitary representations of the maximal compact
quotient group of G and some G-central unitary characters of the group R.
This proves the first assertion of the theorem.

If the center of S is infinite (if the group G (or S) has a nontrivial Her-
mitian symmetric quotient group), then the information concerning the rep-
resentations «, (3, and ¢ is quite similar, and, if 7 is a representation of
one of these types, then, as in the previous case, 7 is an ordinary finite-
dimensional representation of GG. However, since the center is infinite, it
follows that, by Theorem 3.3.17 of [6], the mapping v is a direct sum, then
the mapping 7 is a direct sum of (ordinary) products of some continuous
irreducible unitary representations of the maximal compact quotient group
of S, some one-dimensional Guichardet—Wigner pseudorepresentations (i.e.,
one-dimensional mappings of the form

g —exp(irf(g)), g€G,

for some r € R, where 6 stands for a Guichardet—Wigner pseudocharacter
on G, see [4-6]), and some G-central unitary characters of the group R. This
completes the proof of Theorem 2.
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§ 4. CONCLUDING REMARKS

The general case of irreducible finite-dimensional finally precontinuous
locally bounded pseudorepresentations of connected locally compact groups
will be considered elsewhere.
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