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RUN-LENGTH DISTRIBUTION FOR SHEWHART
CONTROL CHART WITH RUNS RULES USING
FINITE MARKOV CHAIN IMBEDDING

YONGJIN KIM AND GYO-YOUNG CHO

ABSTRACT. Shewhart developed a control chart to statistically control
the production process in 1924. The classic Shewhart chart is effective
for large shifts and can be easily implemented in the real production pro-
cess. However, it is not effective for detecting small shifts. To compensate
for this, a control chart with the addition of runs rules was proposed by
Western Electric Company (1956). And Champ and Woodall (1987) in-
troduced how to calculate the average run-length in runs rules using a
method called Markov chain. We have combined runs rules to compen-
sate for the shortcomings of the traditional control chart, and suggest
the finite Markov chain imbedding method to get the run-length distri-
bution. The Shewhart control chart with supplementary runs rules can
sensitively detect small shifts in means and variances in the production
process, and calculate run-length probability distribution accurately and
quickly.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 11T23, 20G40, 94B05.
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1. INTRODUCTION

Shewhart developed a control chart to statistically control the production
process in 1924. In general, the the control chart consists of the lower control
limit and the upper control limit based on the target value, which is the cen-
ter line. Usually, control limits are set based on 3-sigma at the center line.
The production process is said to be in control when all control statistics
of the samples obtained from the process are between control limits. If any
control statistic is outside the control limit, the production process is consid-
ered to be faulty. In this way, it detects fluctuations in the process to detect
defects in advance and improve the production capacity of the process. It is
also effective for large shifts and can be easily implemented in the real pro-
duction process. The control chart has been developed through numerous
studies and is now used as an important way in the field of quality control.
But it is not effective when it comes to small shifts compared to large ones.
To compensate for this, Western Electronic Company (1956) has proposed
a control chart with runs rules. This method was constantly developed by
Bissell (1978) and Nelson (1999). Champ and Woodall (1987) calculated the
average run length (ARL) from runs rules using a method called Markov
chain. Shmueli and Cohen (2003) proposed a generation function to calcu-
late ARL.

In this paper, we propose the finite Markov chain imbedding method for
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calculating the run-length distribution of the control chart with runs rules.
This obtains the same results as the calculation method of Champ and
Woodall (1987) and the calculation method of Shmueli and Cohen (2003).
We propose a control chart with supplementary runs rules for monitoring
mean and variance. Finally, we will display the results of ARL, quartile val-
ues, cumulative distribution and probability distribution of run-length in
our proposed method.

2. FINITE MARKOV CHAIN IMBEDDING

2.1. Finite Markov Chain Imbedding. Fu (1985, 1986), Fu and Hu
(1987), Chao and Fu (1989, 1991), Fu and Lou (1991) introduced the finite
Markov chain imbedding, a method for finding the distribution of random
variable X, (I"). The term “finite Markov chain imbeddable” describes a
random variable and was introduced by Fu and Koutras (1994). Let an in-
dex set be Tp, = {1,2,--- ,n} and let Q = {b1,b2, - ,by} be a finite state
space. For every x =0,1,--- ,l,, if a finite markov chain {H; : t € T,,} and
a finite partition {Z,;,x = 1,2, -+ ,l,} exist in the defined finite state space
0 with initial probability vector ¢y, then the non-negative integer-valued
random variable X, (I") is finite Markov chain imbeddable. We have

(1) P(Xn(T) =z) = P(Hy, € Z|Cy)-

Fu and Koutras (1994) used the above definition to calculate the probabil-
ity as follows. Let {M;} be sequence of m x m transition probability matrices
of the imbedded Markov chain {H;} with initial probability distribution (g,
fort=1,2,3,--- ,n. If X,,(T) is finite Markov chain imbeddable,

(2)  P(X,(I) =2) =] ML (Z,) where L(Z,) = Sra,ec, 00,
t=1

o, is a 1 X m unit row vector corresponding to state b, of the state space ).

2.2. Waiting-Time Distribution. The geometric distribution of order j is
often referred to as the Wating-time distribution for Bernoulli trials and was
studied by Aki(1985) and Hirano(1986). Let I' = S--- S be a j consecutive
successes in the pattern of simplification of j, and define the random variable
V(L) as the waiting time for pattern I' to occur, i.e.

For a given pattern length j > 1 and a sequence of Bernoulli trials, the
distribution of V(I') is given by

4) P(V(T)=k) =¢N* ' (I - NV, k=1,2,3,-,



Run-length distribution for shewhart control chart

where ¢ = (1,0,...,0) isa 1 x j row vector, 1 = (1,1,...,1) isa 1 X j row
vector and IN is the j X j important transition probability submatrix of

0 qp 0 --- 010
1 q 0 p --- 0|0
o |
j_l q O DR ... 0 p
« 0.0 - 0 (1) x(3+1)

The expectation of the waiting-time random variable V(T") is given by
o0
(6) EV() =) (N =¢I-N)"'1.
k=1

The ARL and average waiting time have the same value. We verify per-
formance with ARL on control charts with supplementary runs rules.

3. DISTRIBUTION OF RUN-LENGTH

3.1. Run. Balakrishnan and Koutras (2002) introduced how to define and
use runs as subgroups of sequential points. In other words, a run is a test
that is repeated until a particular result is consistently successful in a test in
which a mutually exclusive event occurs. For example, if we have the binary
sequence SSSFFFSSF, we can know the following runs. First, we can have
a run of the three S ’s and a run of three F ’s; a run of two S ’s run, finally
a run of one F. As a result, the total sequence is four.

3.2. Runs Rules. To complement the Shewhart control chart, the Western
Electric Company (1956) proposed a runs rules as follows

Rule 1: One point is out of the 3 sigma limits

Rule 2: Two of three continuous points are out of the 2 sigma limits
Rule 3: Four of five continuous points are out of the 1 sigma limits

Rule 4: Eight continuous points in one direction relative to the center line

Runs rules apply after dividing the zone in the control chart. Control
chart devides into seven parts (S, A1, By, C1,Ca, Ba, Ag) as Figure 1.

We will use runs and rules notation from Champ and Woodall (1987).
They are denoted by T'(k,m, Z), which means that if k& of the last m stan-
dardized points fall in zone Z, it signals. In seven zones, the following shall
be considered:

Rule 1: R, = {T(1,1,5)}

Rule 2: Ry = {T'(2,3,A42),7(2,3, A1)}

Rule 3: R3 = {T(4, 5,As U Bg),T(4, 5 A1 U Bl)}

Rule 4: Ry = {T(S, 8, AU By U CQ), T(S, 8, At UBj U Cl)}
In addition, rules proposed by Duncan(1974):

Rule 5: R5 = {T(Q, 2, AQ),T(2, 2, Al)}

Rule 6: Rg = {T(5, 5, AU Bg)7T<5, 5, A1 U Bl)}
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FIGURE 1. 7 zones for control chart

We combined Rule 1 with other rules to create additional runs rules.
Previously, runs rules were developed as a Bernoulli trials. In the case of Aki
(1985), Hirano (1986) and Koutras (1996), they had studied the waiting-time
distribution in the Bernoulli trials according to the geometric distribution
of order j.

3.3. Run-Length Distribution for Mean and Variance Control Chart
with Runs Rules. We previously introduced how ARL can be calculated
using the finite Markov chain imbedding.Traditional control chart has not
been sensitive to small shifts in the production process. So, we have added
runs rules to the control chart to sensitively detect small shifts in the pro-
duction process. We used finite Markov chain imbedding to calculate the
ARL for control charts with runs rules in the production process. We ob-
serve the ARLs and quartiles when the mean and variance change due to
small shifts.

Assume that the production process has the characteristics of a normal
distribution, where mean 4o and variance o3 are known. When the produc-
tion process is controlled, the control statistic Y; is as follows:

n 2 2 - 2
Xij — jo (n—1)8  n(@ — po)
s X (F) SRR
j=1

99 99

and it has a chi-square distribution with n degrees of freedom.
Suppose that the mean and variance in the process change from ug to py
and o to o%, then the control statistic Y; is as

Y’:Z<M> _ ((Xij—/il)+(lt1—uo)g>
=1 70

-

= o1 00
2 N 2
_ o1 Xij — 1 | 1 — o
®) SOy (R i)
0 j=1
2 2
g1 2 (p1 — o)
~ 5 X(n,\) A=n——mpm—

99 07
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and it has a non-central chi-square distribution with n degrees of freedom
and the non-centrality parameter \.

Through this, we obtain the ARLs and quartiles when means and vari-
ances change.

We will divide the zone into four to apply the runs rules to the chi-
square distribution. Each zone is S, A, B, C' as following and the probability
is 0.0027, 0.0428, 0.2718 and 0.6827 respectively.

We use the notation of Camp and Woodall (1987) to use the following
runs rules:

Rule 1: Ry = {T'(1,1,5)}

Rule 2: Ry = {T'(2,3,A)}

Rule 3: Ry = {T(4,5,AU B)}

In addition, rules proposed by Duncan(1974):
Rule 4: Ry = {T(2,2, A)}

Rule 5: Rs = {T'(5,5,AU B)}

We combine Rule 2, Rule 3, Rule 4, and Rule 5 based on Rule 1 to create
new runs rules.

Let p; be the probability of entering each zone. If we combine Rule 1
with Rule 2, then the possible states are S, BS.S., S.BS., CS.S., S.CS.,
SeSe where S, = A in Figure 2. The probability of transition matrix M is
ps = 6 = 0.0027, ps, = P(S.) = P(A) = 0.0428 and p, = P(B) = 0.2718
and p. = P(C) = 0.6827.

If we combine Rule 1 with Rule 3, then the possible states are S, C'S.S.S.S.,
ScCSeScSe, SeS.CSeSe, S:5:5.CS., S:5:.5:5. where S, = AU B in Figure
2. The probability of transition matrix M is ps = § = 0.0027, ps, = P(S.) =
0.3146 and p. = P(C) = 0.6827.

If we combine Rule 1 with Rule 4, then the possible states are S, S.S.
where S, = A in Figure 2. The probability of transition matrix M is ps =
0 = 0.0027, ps, = P(S.) = P(A) = 0.0428 and p, = P(B) = 0.2718 and
pe = P(C) = 0.6827.
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FIGURE 2. 4 zones of control chart for chi-square distribution
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If we combine Rule 1 with Rule 5, then the possible states are S, S.5.S5.S.S,
where S. = AU B in Figure 2. The probability of transition matrix M is
ps = 6 = 0.0027, ps, = P(S.) = 0.3146 and p. = P(C) = 0.6827.

We show the ARLs and quarties when the means and variances change.
If the mean and varince change from pg to 1 and o to o respectively,
then the distribution of Y; is the non-central chi-square with o% /agx%m )
A =n(p — po)*/of.

In this paper, r is 01/09, A is n(u1 — po)?/o?. We set conditions that
degrees of freedom are 3,5, r=1,1.5 and A=0.0, 2.0, 4.0. Table 1 ~ Table 4
show ARLs and the quartiles of run-length of the control chart with runs
rules when the mean and varince change from jug to p and of to 0%, respec-

tively.
TABLE 1. The values of ARL and quartiles of run-length
distribution with Rule 1 and Rule 2
df=3 df=5
r | A| ARL @1 Med Q3| r | X | ARL @1 Med Q3
0.0 | 166.60 49 116 230 0.0 | 166.58 49 116 230
1 120 1641 6 12 22| 1 |20 2291 7 16 31
40| 6.23 3 5 8 40| 853 3 6 11
00| 6.45 3 5 9 0.0 4.39 2 3 6
15120 270 1 2 3 |15]20]| 241 1 2 3
4.0 | 1.83 1 2 2 4.0 | 1.76 1 1 2
TABLE 2. The values of ARL and quartiles of run-length
distribution with Rule 1 and Rule 3
df=3 df=5
r A | ARL @1 Med Q3| r A | ARL @1 Med Q3
005329 17 38 73 0.0 5328 17 38 73
1 120197 5 7 13 1 |20]1206 5 9 16
40| 512 4 5 6 40| 6.19 4 5 8
00| 566 3 5 7 00| 419 2 4 5
15120 28 1 3 4 | 1520 259 1 2 4
4.0 197 1 2 3 40| 1.90 1 1 2
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TABLE 3. The values of ARL and quartiles of run-length
distribution with Rule 1 and Rule 4

df=3 df=5
r | A ARL @ Med Q3| r | A | ARL @1 Med Q3
0.0 22446 65 156 311 0.0 | 22442 65 156 311
1120 2091 7 15 29 | 1 (20| 29.72 9 21 41
4.0 | 7.37 3 5 10 4.0 | 1041 4 7 14
0.0 7.36 3 5 10 0.0 | 4.87 2 4 6
15120 2.84 1 2 4 | 15]20]| 252 1 2 3
4.0 | 1.87 1 2 2 4.0 | 1.79 1 1 2
TABLE 4. The values of ARL and quartiles of run-length
distribution with Rule 1 and Rule 5
df=3 df=5
r | A ARL @ Med Q3| r | A | ARL @1 Med Q3
0.0 | 207.58 61 145 287 0.0 | 207.54 61 145 287
1 (20 1977 7 14 27| 1120|2715 9 20 37
4.0 | 7.61 4 6 10 40| 1018 5 8 13
0.0 | 797 3 6 11 0.0 | 5.36 2 5 7
15120 317 1 3 5 | 15120 282 1 2 4
4.0 2.04 1 2 3 4.0 | 1.96 1 1 2

Figure 3 ~ Figure 10 show the probability and cumulative run-length
distribution of the control chart with runs rules when the mean and varince
change from g to y1 and of to o2, respectively.
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FIGURE 3. Run-length distribution with Rule 1 and Rule 2 (df=3)
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FIGURE 4. Run-length distribution with Rule 1 and Rule 2 (df=5)
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FIGURE 5. Run-length distribution with Rule 1 and Rule 3 (df=3)
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FIGURE 6. Run-length distribution with Rule 1 and Rule 3 (df=5)
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FIGURE 7. Run-length distribution with Rule 1 and Rule 4 (df=3)
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FIGURE 8. Run-length distribution with Rule 1 and Rule 4 (df=5)
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FIGURE 9. Run-length distribution with Rule 1 and Rule 5 (df=3)
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4. CONCLUSIONS

We have combined runs rules to compensate for the shortcomings of the
traditional control chart, and suggest the finite Markov chain imbedding
method to get the run-length distribution. The Shewhart control chart with
supplementary runs rules can sensitively detect small shifts in means and
variances in the production process, and we can calculate run-length proba-
bility distribution accurately and quickly. The Shewhart control chart with
supplementary runs rules is effective in detecting small shifts in means and
variances.
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