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Abstract

Graphs are nowadays frequently used in modelling. Especially the sub area of
graph theory called the molecular graph theory deals with physicochemical proper-
ties of chemical substances by means of mathematical methods. Three main methods
to study graphs mathematically are to make use of the vertex degrees, distances and
matrices. The classical graph energy was defined 1978 by I. Gutman and has a large
number of applications in chemistry and physics. In this paper, a recently defined
new type of energy called g-distance energy by means of distances and matrices is
studied and ¢-distance energies of star graph, complete graph, crown graph, cocktail
party graph, complete bipartite graph, windmill graph are computed.
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1 Introduction

The concept of energy of a graph was introduced by I. Gutman in 1978, [6]. Let G
be a graph with n vertices and m edges and let A = (a;;) be the adjacency matrix of G.
The eigenvalues A1, Ag, ..., A, of A in non-increasing order, are called the eigenvalues
of the graph G. As A is real symmetric, the eigenvalues of G are real with sum equal
to zero. The energy E(G) of G is defined to be the sum of the absolute values of the

eigenvalues of G, i.e.
E(G) =Y |\l
i=1

For details on the mathematical aspects of the theory of graph energy, see the
review [8], papers [3, 4, 7] and the references cited therein. The basic properties
including various upper and lower bounds for the energy of a graph have been es-
tablished in [12; 13], and the notion of graph energy has found remarkable chemical
applications in the molecular orbital theory of conjugated molecules [5, 9.

The distance matrix of G is the square matrix of order n whose (i, 7)-th entry
is the distance between the vertices v; and v; which is defined as the length of the
shortest path between these two vertices. Let p1, po, . .., i, be the eigenvalues of the
distance matrix of G. The distance energy DI is defined by

DE = DE(G) := > _|ul.
=1

Detailed information on distance energy can be found in [2, 10, 11, 16]. The distance
energy of the join of two given graphs can be found in [15].

Recently R. B. Bapat et al., [1], defined a new distance matrix, called as the
g-distance matrix denoted by
Aq(G) = (Qz’j)~

For an indeterminate g, the entries ¢;; of this new matrix are defined by
1ttt ik =dy,
@i = 0, if i =,

where k = d;; is the distance between the vertices v; and v;. Each entry of A,(G) is

a polynomial in ¢g. Observe that A, (G) is an entry-wise non-negative matrix for all
q=> -1

The characteristic polynomial of A (G) is defined by
JulG 1) = det(ul — 8,(G).

The g-distance eigenvalues of the graph G are similarly the eigenvalues of A, (G).
Since A (G) is real and symmetric, its eigenvalues are also real numbers and we label
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them in non-increasing order pi; > pig > - -+ > ju,. In [14], the g-distance energy of G
was denoted by E,(G) and defined by

n

E,(G) = Z |-

i=1
Note: (i) Trace of A, (G) = 0 and (ii) If ¢ = 1, ¢-distance energy coincides with
distance energy of a graph.

To understand these new notion, let us see the following example:

Example 1.1. Consider a crown graph S§ as in Fig. 1.1.

Figure 1.1 The crown graph S§

As
0 1+q 1+q¢ 14+q+¢° 1 1
1+¢q 0 1+g¢q 1 1+q+ ¢ 1
AL(SY) = 1+q 1+q 0 1 1 1+q+ ¢
216 1+q+¢ 1 1 0 1+q 144 ’
1 l+q+¢° 1 1+q 0 144
1 1 l+q+¢* 1+g¢g 1+q 0

the characteristic polynomial of S§ is
(h+¢ —aq+1)(n—q* =3¢ =5)(u+ ¢+ 20+ 1)°(n — ¢ +1)*.
Then the q-distance energy of Sy is found as
E,(S8) = |—(—q+DI+1]¢*+3¢+5[+2-|—(¢*+2¢+ 1) +2-]¢° — 1

= 6¢°+ 6q+6.
2 g¢-distance energy of some standard graphs and

their complements

We now compute the g-distance energies of several important graph classes:

Theorem 2.1. The g-distance energy of the star graph Ky, is
(n—2)1+q) ++v/(n—22¢+2(n—2)%q+n2, if ¢g>—land n

v
w

—(n=2)(14+¢q) ++/(n—22¢+2(n—2)2q+n? if ¢g<-—land n > 3,

V5, if n=2.
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Proof. Case 1: For n > 3, g-distance matrix A,(K7,_1) of the star graph K, 4

with vertex set V' = {vy,vg,...,v,} is
0 1 | 1 1 1
11 0 1+q - 14+q 14+q 1+¢
1/14+4¢q 0 -+ 14q 14+q 1+¢
1/14+q 1+q --- 0 1+gq 1+g
1{1+¢q 14q -+ 14+q O 1+gq
1/1+¢q 14+q -+ 14q 1+qg O xn

The characteristic polynomial is
(t+1+9)" 21 = (n = 2)(L+q)p— (n = 1)).
Hence the g¢-distance spectrum of K ,_; would be

(n=2(1+9)+ V- D2 F2n =%+ n%  (n—2)(1+q) - V(0= D¢ F 2(n — 2)%q + n?
2 2

-1 =

n-—2 1 1
As a result, the g-distance energy of K ,_1 can be obtained as follows:

Case la: If ¢ > —1, then

(n—2)1+q) ++/(n—2)%¢2 +2(n —2)% + n2

EyKin1) = (1-2)|—q—1+ >

N (n—2)(14q) — /(n—2)2¢2 +2(n — 2)2q + n2
2

= (n=2)(1+q)++/(n—2?2¢ +2(n - 2)2q +n?
Case 1b: If ¢ < —1, then

(n—2)1+q) ++/(n—2)%¢+2(n—2)%q+n?

Ey(Kipn1) = (n—=2)—q—1+ 5

| =2(1-0) = VI =P 2= 2P+
2

= =21+ + V- 2P+ 20— g+

01
10

is p* — p — 1 and therefore the corresponding g-distance spectrum of K;; would be
1+v5 1-V5
found as < i i

of Kl,l as Eq(Kl,l) = \/g O

Case 2: Forn = 2, A (K1) = < ), then the characteristic polynomial

). As a result of all these, we obtain the ¢-distance energy
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Theorem 2.2. Forn > 2, the q-distance energy of the complement K ,_1 of the star
graph is 2(n — 2).

Proof. For n > 2, the ¢-distance matrix A,(K},_1) of the star graph Ky, with
vertex set V' = {vy, v9,v3,...,0,} I8

V1 U2 V3 ...Up_2Un_1Un
vy 0[O0 O --- 0 0 O
vu ! 0j0 1 -~ 1 11
vz | 0|1 0 -~ 1 11
Up—2| 0|1 1 -~ 0 1 1
Up—1| 01 1 - 1 1
vy \ O 1 - 110/

The characteristic polynomial is p(p — (n — 2))(u + 1)"~? giving the ¢-distance
0 n—2 -1

spectrum of K;,_1 as ( 1 1 n_2

). As a result, the ¢-distance energy of

Ky ;-1 would be found as

Eq(Kin-1) 0[(1) + [n = 2[(1) + | = 1|(n - 2)

= 2(n-—2).
g

Recall that a cocktail party graph denoted by K, 5 is the graph having the vertex
set V = U{uz, v;} and the edge set

i=1
E = {uu;,vv; i # j}U{u,—vj,viuj 1 <i<j<n}.

We have
Theorem 2.3. Forn > 2, the q-distance energy of cocktail party graph K, o is

—ng+2(q+n—-1), if —2n—-1)<g<—1,

2(ng +q—1), if —1<q<1,

2n(1+ q), ifq> 1.
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Proof. The g-distance matrix A ([, x2) of the cocktail party graph K,y having the

vertex set V = U{ul, v;} and the edge set E' = {uu;, vv; 11 # j} U {uu;,vv; 11 <

=1
i<j<n}is

U1 Uo us Uy, v Vo Vs Un
w/ 0 1 1 1 [1+q 1 1 1
up| 1 0 1 1 1 1+4q 1 1
us| 1 1 0 1 1 1 1+g¢ 1
u,| 1 1 0 1 1 1 1+g¢
v 1+q 1 1 1 0 1 1 1
Vo 1 1+q 1 1 1 0 1 1
Vs 1 1+g¢ 1 1 1 0 1
w\ 1 1 1 .. l+q 1 1 1 .. 0 ),

The characteristic polynomial is (u+¢+1)"(u — 14+ ¢)" (u —q— (2n — 1)) and
—q—1 q—1 g+2n—-1

therefore the g-distance spectrum of K, .o is n n_1 1

) giving
the g-distance energy of K, as follows:
Case 1: If ¢ < —(2n — 1), then
Ey(Knx2) = nl—q=1+(n=1g—1[+|g+2n—1|
= —2n(¢+1).
Case 2: If —(2n — 1) < ¢ < —1, then
Ey(Knx2) = nl=q¢—1[+(n—-1lg—1]+[g+ (2n—1)|
= —ng+2q+2n-2.
Case 3: If —1 < ¢ < 1, then
Ey(Knx2) = nl—g¢—=1+(n=1lg—1[+]g+2n—1|
= 22n+q—1).
Case 4 : If ¢ > 1 then

Eq(Knx2) = n[—q¢=1+(n—=1)g—1[+]|¢+2n -1

2n(qg+1).
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Theorem 2.4. For n > 2, the q-distance energy of the complement K,y of the
cocktail party graph is 2n.
Proof. The g-distance matrix A, (K, x2) of the complement K,y of the cocktail party
graph having the vertex set V = U{ul, v;} and the edge set E = {uv; : 1 <i < n}
i=1
is given as
Uy Uz U3 ... Uy V1 UV V3 ... Up
uy /0 0 0 ... 0|1 0O 0
u[ 000 ... 0|0 1 0 ... 0O
us] 0 0 0 ... 0|0 O 1 .0
u,] 0 0 0 00 0 0 . 1
vl 1 0 0 00 0 O . 0
vl 01 0 00 0 O . 0
vs| 0 0 1 00 0 0 . 0
m\0 00 ... 1|10 00 0/ 5 com
Then the characteristic polynomial is (pu+1)"(p — 1)™. Therefore the g-distance spec-
- . 1 -1 . —
trum of K, can be obtained as ( n . Hence the ¢-distance energy of K, 2
would be found as
Ey(Knx2) = nllf+n|-1|
= 2n.
O
Theorem 2.5. For n > 2, the g-distance energy of the crown graph S3. is 2n(q* +
g+1)ifg<n—2and2q¢(ng+2n—2) if¢g>n—2.
Proof. The g-distance matrix A,(S9,) of the crown graph S5, with vertex set V =
{ug, Ug, .« U, V1, Vg, .o, Vs b IS
. . uy " ug - 11,3H. ...1+q 'u,y,,l+q+q;71 . Avg ) v3 ) Un
us 144q 0 14q 144q 1 14 q+ 4> T 1
uz 1+gq 1+4+gq 0 1+4+gq 1 1 1+q+4q° 1
ul" 14‘—q 1-;—(1 1-;—(1 0 1 1 1 1+(1:-+-(12
vi| 14aq+q° T 1 1 0 1+gq 1+gq 1+4q
v2 1 14q+q? 1 1 1+q 0 l+gq 1+q
3 1 1 T+q+q® 1 l4g 14q 0 14q
v.,,, 1 1 1 l+q:+(12 l;q 1+‘—q 14»4 U 2 X2

Hence the characteristic polynomial is found as

W+ —(n=2g+1)(p—¢ —ng—2n+1))(p+F+2¢+1)" (u—+1)"".

177
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Therefore the g-distance spectrum of the graph S9, is

( @+ n=2)qg—1 @PH+ng+2n—-1) —¢®—2¢—-1 ¢ -1 )
1 1 n—1 n—1
implying that the g-distance energy of S is
E(S3,) = |=((¢®+1) = (n—2)g)+]¢" + ng+2n — 1|
H =@+ 20+ Dl(n—1) +¢* = 1f(n - 1)
= |=((@+1) = (n—2)q)| +2n¢" — ¢* + 3ng — 2¢+2n — 1.
Hence we have the following situations:
Case 1: If ¢ < (n — 2), then
E,(S9,) = ¢+ 1—ng+2q+2n¢* — ¢*+3ng—2q+2n—1
= 2n(¢*+q+1).

Case 2: If ¢ > (n — 2), then

=
=)
<
52
S~—
I

ng—2q+¢@+1+2n¢> —¢>+3ng—2q+2n—1
= 2¢(ng+2n—2).
O

Theorem 2.6. Forn > 2, the q-distance energy of the complement S_gn of the crown

graph is
2n—1
—4gn + 4q — 2n, if g<— n T
n_
2n — 1
—2qn +2¢ +2n — 2, if — —<q<-L,
n—
1
4n — 4, if —1<¢<———,
1 n—1
2ng +4n — 2q — 2, if ——1q<1<1,
n—
4dng + 2n — 4q, if g>1.

Proof. The ¢-distance matrix Aq(S_gn) of the complement S of the crown graph with
the vertex set V' = {uy,ua, ..., Uy, v1,02,...,0,} and the edge set £ = {uv; : 1 <
i <n}U{wuj,vv; 1 <i,j<n,i#j}is
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(51 Ug us Unp, (%1 (%] (%3 Un
Uy 0 1 1 1 1 14qg 14q ... 14+¢
Ug 1 0 1 1 1+4¢ 1 1+q ... 14g¢
us 1 1 0 1 14+4qg 14¢ 1 . 1+44¢q
Up, 1 1 1 0 14q 14q 1+¢q 1
U1 1 1+q 14q ... 14¢q| O 1 1 1
ve| 14¢ 1 1+q ... 14q| 1 0 1 1
vs| 1+q 14q 1 oo I4q| 1 1 0 1
v\ 1+q 14+q 14+q ... 1 1 1 1 ... 0 o om
Hence the characteristic polynomial is
(h+1+)" =g+ )" H(u—(n—1)g—2n—1))(u+ (n—1)g+1).

Therefore the g-distance spectrum of S9, is

—q—1 ¢g—1 (n—1)g+@2n—-1) —(n—1)¢g—1

n—1 n-1 1 1 '
Finally the g-distance energy of S_Sn is obtained as follows:

2n—1
Case 1: If ¢ < — n 7 , then
E(S5,) = |—q¢=1n—-1)+]g=1n-1)+|(n—-1)g+@2n—1)[+] - (n—1)g— 1
= —4gn +4q — 2n.
2n —1
Case 2: If - 1 < q < —1, then

E(S3) = [—g=1n-D+lg=1n-1)+[n-1g+@2n—1)[+| - (n—-1)g -1

I,

I,

= —2qn+2q+2n — 2.
1
Case 3: If -1 < ¢ < ———, then
n—1
(53,) = |—a—=1n=1)+lg=1(n—-1)+[(n—1)g+2n—1|+| - (n—1)g— 1
= 4n—4.
1
Case 4: If ———— < ¢ < 1, then
n—1
(53,) = |—a=1n=1)+lg=1(n—1)+[(n—1)g+2n—1|+| - (n—1)g—1

= 2ng+4n —2q — 2.

179
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Case 5: If ¢ > 1, then
E(S3) = |—a-1Un-1)+lg—1n-1)+[n-1)g+2n—1]+| - (n—1)g -1
= 4dng+2n — 4q.
O

Theorem 2.7. Forn > 2, the q-distance energy of the complete bipartite graph K, »,
is2(q+ 1)(m+n—2).

Proof. The ¢-distance matrix A (K,,,) of the complete bipartite graph K,,, with

vertex set V' = {uy, ug, ..., Uy, V1, V2, .., Uy} IS

U1 U9 Uus Um U1 Vo V3 Un
Uy 0 1+q 14q ... 14+¢q| 1 1 1 1
us| 14+q O 14+q ... 14g 1 1 1 1
us| 1+q 14+q O . 1+4g¢ 1 1 1 1
up| 1+q 1+q 1+4+g¢ 0 1 1 1 .. 1
U1 1 1 1 1 0 1+qg 1+¢q ... 1+g
Vg 1 1 1 1 14+4q O 1+q ... 14g¢q
V3 1 1 1 1 14qg 14+q O . 1+4¢q
Un 1 1 1 1 14qg 14+q 14+q ... 0

(m4mn)x (m+n)
Hence the characteristic polynomial is

(p+aq+1)"" 2 (1 = (m+n=2)(g+ )+ (m—1)(n—1)(¢* +29) — (m+n — 1))

implying that the ¢-distance energy of K, , would be obtained as

(m+n—2)(1+q)+/(m—n)2(1+q)+4mn

Eq(Km,n) = |-q¢—1{(m+n-2)+ B

N (m+n—-2)(1+q) — \/(m—n)2(1+q)2+4mn
2
= 2(g+1)(m+n-—2).
O

Theorem 2.8. For n > 2, the g-distance energy of the complement K, of the
complete bipartite graph is 2(m +n — 2).

Proof. The g-distance matrix A,(/,,,) of the complement [, ,, of the complete bi-
partite graph is

U Uz U3 ... Um V1 Uy V3 ... Up
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w /011 ... 1000 ...0
wl 101 110 0 0 0
us| 110 110 0 0 0
un| 111 0/0 0 0 0
v |00 0 0/0 1 1 1
v 00 0 0/1 01 1
vs] 0 0 0 01 1 0 1
b, N0 00 ... 0/1 11 0/ et

Hence the characteristic polynomial is

(= (m—=1)(p—(n—1))(u+1).

Therefore the g-distance spectrum of K, , is
m—1 n—1 -1
1 1 m+n—2 )

Then the g-distance energy of K, , is

E(Kmn) = m—=1+n—1/+]—1(m+n—-2)

}

2(m+n —2).
O

Recall that a windmill graph is the graph obtained by taking ¢ copies of the
complete graph K with a vertex in common. It is denoted by W, and it consists
of (s — 1)t + 1 vertices. The windmill graph is also called as the friendship graph if
s = 3. Now we have

Theorem 2.9. For n > 2, the q-distance energy of the windmill graph W, is
1

st—3t—sqt+qt+sq—q+1+VY, if ¢< P
s —

st—t+sqt—qt—sq+q—1+VY, if g> ~3

1
1
st —2t+ VY, if q=—

s—1
where Y = ((t — 1)(s — 1)g+ts — t — 1)* + 4t(s — 1).

Proof. The g-distance matrix A,(W,") of the windmill graph W, with vertex set
V =A{vy,vg,...,0,} I8
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vl v2 v3 .. Vs Vs41 Vs42 V2s—1 oo Un—s42 Un—s4+3 ... Un
v1 0 1 1 1 1 1 1 1 1 1
Vo 1 0 1 1 14+q 1+4g¢q 1+4+gq 14+q 1+4+¢q 1+4+gq
v3 1 1 0 1 1+q 1+g¢q 1+4¢q 1+4q 1+4+g¢q 1+gq
Vs 1 1 1 0 1+q 1+q 1+q 1+4g¢q 1+q 1+4g¢q 1+gq
Vs41 1{14+q 1+¢ 14+gq 0 1 1 1+4q 1+4+¢ 1+gq
Vs42 1{14+q 1+¢ 1+¢q 1 1 1+4q 1+4+¢ 1+gq
Vos_1 1| 14+q 1+g¢q 1+g¢q 1 1 0 1+4q 1+4+¢q 1+gq
Un—s+2 1| 14+q 14¢ 1+q|1+q 1+g¢g 1+q 0 1 1
Un-s+3] 1| 14+q 1+4gq 1+q|1+q 1+g¢ 1+gq 1 0 1
Un, 1|1+q 1+¢ 1+q|14+q 1+g¢g 14+q | ... 1 1 0

Hence the characteristic polynomial is

(1)t (s = Dg+ 1)V (" = (s = 1)(¢ = Dap— ((s = 1)t = D — (s = 1)t)
and therefore the ¢-distance spectrum of W,¥) would be obtained as

X+VY X VY
2

—(s—1)g—1
(s—1)q 5
t—1 1 1

-1
(s —2)t

where X = (t—1)(s—1)g+ts—t—1land Y = ((t—1)(s—1)g+ts—t—1)2+4t(s—1).
Then the ¢-distance energy of W, can be obtained as follows:

1
Case 1: If g < ST then
S p—

E, (W)

(5= 2 =1+~ = g = 1 - 1+ [FT 4 [TV

st—3t—sqt +qt+sq¢—q+1++Y.

1
Case 2: If ¢ > ST then
S J—

E,(W,")

(5= 21— 11+ s~ a1l - 1)+ [T | [ XV

st—t+sqt —qt —sq+q—1+VY.

1
Case 3: If g= ———, then
s—1

E, (W)

X Y X —VY
(s—2)t| — 1]+ +2\/_+‘ 2*/_’

st — 2t + Y.
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Theorem 2.10. Forn > 2, the q-distance energy of the complement W, of windmill
graph is

—2qst + 4qt — 2st + 4t + 2q, if qg< -1,
t+1— st
—l<g< ————,
s—2
i t+1—3t< - 1
5—2 1q s—2’

2qst — 4qt + 2st — 4t, if q>

qt — sq, if

2st + 2qs — 2t — 4q — 2,

s—2

Proof. The g-distance matrix A, (W,") of the complement W, of the windmill graph

with vertex set V = {vy,vg,...,v,} is
V1 Vo v3 Vg Vg1 Vs42 V2g—1 .. Un_s42 Un_s43 ... Un

v, /0] 0 0 ... 0 0 0 ... 0 |...] o 0 ... 0
vw [0 0 1+g T+q] 1 T ... 1 [...] 1 T ... 1
vs | 0|14 0 14+q| 1 1.1 ] 1.1
vs | 0|14q 14q 14q 0 1 11 1 1 1 1
ver1 | O 1 1 1 0 1+g T+q T 1 T
vera | O] 1 1 1 |1+q 0 14q 1 1 1
V2s_1 0 1 1 1 14q 144q ... 0 1 1 1
Vn_sy2| 0 1 R 1 1 T ... 1 0 1+g T+g
vnosts| 0| 1 1 1 1 1.1 1+q¢ 0 1+q
wm \0| 1 1 1 1 1.1 14q 14q ... 0

Hence the characteristic .polynomial is

plp g+ D) (= (s =2)g+ 1) — (s = 2)g = (s = D)t + 1)

).

and therefore the ¢-distance spectrum of W, is

(0 (s—2)g—1 (s=2)g+(s—1)t—1
1

t—1 1
As the result, we obtain the ¢-distance energy of W, as follows:

—q—1
(s —2)t

183

Case 1: If ¢ < —1, then
E, (W) = 0]+ —q—1(s—2)t+ (s — 2)g — 1[(t = 1) + (s = 2)q + (s — L}t — 1
= —2gst+4qt — 2st + 4t + 2q.
Case 2: If -1 <g< —w, then
§—2
E,W") = 0/+|=a—1f(s =2)t + (s = 2)g = 1|(t = 1) + |(s = 2)g + (s = 1)t — 1]

= qt —sq.
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t+1— st 1
Case 3: If B el < ——, then
s—2 s—2
E,(W,") = [0[+|—q—1(s = 2)t+[(s —2)g — 1|t = 1) + |(s = 2)g + (s — 1)t — 1]

= 2st+2qs—2t—4q— 2.
1
Case 4: If ¢ > ——, then
§—2

E,(W,9) = [0]+|—q—1/(s = 2)t + (s — 2)g = L|(t — 1) + (s — 2)q + (s — 1)t — 1|

= 2qst — 4qt + 2st — 4t.
O

Theorem 2.11. For n > 2, the g-distance energy of the complete graph K, is equal
to 2n — 2.

Proof. Since the ¢-distance adjacency matrix of K, is the same as the ordinary ad-
jacency matrix of K, the g-distance energy of the complete graph K, is equal to
2n — 2. O

3 Brief summary and conclusion

Energy is a very important subject of graph theory with many applications in
physics and chemistry. Similarly to the classical graph energy, there are a few other
types of energy in graphs which are similarly defined by means of some other matri-
ces. In this paper, we have studied a recently defined type of energy called g-distance
energy and the g-distance energy has been obtained for some standard graphs. As
the distances are calculated between the vertices of the graph representing the atoms
in the corresponding molecule, the ¢-distance energy is expected to have applications
in chemistry due to its effect on the intermolcecular forces which effect the graph
energy.
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