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CERTAIN SEQUENCE SPACES USING A-OPERATOR
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ABSTRACT. The aim of this paper is to introduce the new type of gen-
eralized B- difference sequence spaces by the combination of binomial
mappings and the A operator. We also study their topological proper-
ties.
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1. PRELIMINARIES, BACKGROUND AND NOTATION

Sequence space is referred to be a function space with entries as functions
from positive numbers N to the field R of real numbers or C the complex
numbers. The set of every sequences (real or complex) will be given symbol
as Y. The bounded sequences, p-absolutely sequence, convergent sequences
and null sequences will be symbolized by lo, I, ¢ and cg respectively as in
[20].

A linear Topological space G over R is called a paranormed space if there
exists a sub-additive function I' : G — R so that I'(§) = 0, I'(—¢) = T'(¢)
and scalar multiplication is continuous, i.e,, |&, —&| — 0 and I'(¢, — ¢) = 0
imply T'(€n¢rn — €C) = 0V &s in R and ('s in G , where 6 denotes the zero
element in G. For spaces GG and H, set

(1) V(G H) ={r= (ki) : (k= (Gri)e HY (= (() € G}
By (1), we re-write the a-, (- and - duals of G as follows;
G =T(G: 1)), GP =U(G : cs) and G¥ = V(X : bs).

As in [14], if space G paranormed by I' admits a sequence (g,,) with the
character that for all g € G there exists one and only one sequence of scalars
(&n) in such a way that

limI'(g — > &rer) =0,
k=0

then (g,,) defines a Schauder basis for G. Here > {ipr having the sum as
g is then known as the expansion of ¢ w.r.t. (p,) and it is expressed as

9 =>_,kpr-

For the matrix C = (¢; ;) and v = () € T, the C-transform of v is given
by Cv = {(Cv);} for if it survives (i.e., it does not diverges) V i € N, where

(Cv)i = 32720 cijvie



18

A. H. Ganie and A. Antesar

For such a matrix C = (¢; ;), the set G¢, where
(2) Ge={v=(;)eT : CveqG}

is referred as the domain/region of C in G. As in [1], [4], [17], we shall
designate all such classes by (G : H) with G C He¢

In[9] the author has constructed new techniques and introduced the fol-
lowing spaces:
T(A) ={p=(pi) : Ap € T},
where T' = {lo ,¢, co} and which was further analysed as in [6], [10], [12],
[15], [16].
Let a, b € R with a + b # 0, then recently Bigign [2] introduced and

studied the matrix B®? = (192%) and is defined as follows:

—L—<">M*M if 0<k<n,

o= ¢ AR
0 if k >mn,
for all n, k € N. It is obvious that for ab > 0, we have
(i) | B**| < o0

N gab

(i1) T}ergoﬁflk =0VkeN
. a,b _
(#id) nh_)r{)lo Ek vy =1

Hence, we conclude that the binomial matrix B is regular for ab > 0 [11],
[13], [14], [18].
Quite recently in [2] we have the following sequence spaces:

n

ﬁa,b:{cz(ck)er.z 1 Z<n>an—kbk<kp<oo}
P ' —~|(a+0b)" k

k=0
and
ab_ ) _ . 1 ~(n\ .
ﬁoob—{c_(Ck)ET‘S%p m§<k>a kbk<k<oo}.

An approach of constructing of a new sequence space by means of the
matrix domain of a particular limitation method was used by various authors
viz., Basar [1], M. Basarir [2], Bisgin [3], Ganie et al [4] - [6], [17]-[19], Jarrah
[8], Mursaleen [11]-[12], Ng and Lee [14] and many more. Following the
authors cited, we would like to introduce the binomial difference sequence
spaces By'(A,) and BZ'(A,), whose B*Y(A)-transforms are respectively
in the spaces £, and s and u = (uy) is a sequence such that uy 0 for all
k € N.

2. THE DIFFERENCE SEQUENCE SPACES ﬁg’b(Au) AND ﬁ&b(Au)

In this section, we have introduced the spaces 9%°(A,) and 9%°(A,) and
show that these spaces are BK-spaces.
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We define the spaces 92°(A,) and 927 (A,,) as follows:
BPa) ={C= (W T (Aug) € v}

and
(A ={¢= (@) €T+ (Aug) €3}
By the definition of matrix domain (2), we re-define these spaces as follows:
bt = (0)  and 02(A) = (920)

For each n € N, we define the sequence y = {yn}, which will be frequently
used as the B4*A,-transform of a sequence ¢ = {(x}, i.e.,

1 i n
— a,b _ n—kypk
B =[] = > ( ! ) R (AuG)
Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. The spaces 92°(A,) and 957 (A,) are BK - spaces with their
norm defined by

fﬁgvb(A,’ —Hpr <Z |yn|p)

and

T an(©) =MWlloe = sup [y,

where 1 < p < oo and the sequence y = (yn) is defined by the B®*(A,)-
transform of ¢.

Proof : The trivial part is linearity. Further, it is clear that fﬁa,b(A )([)’C) =
P u

ﬁfﬁ;,h(Au)(C) and fﬁ;,h(Au)(C) =0if and only if ( =6 for all ¢ € f,&;,b(Au)(C),
where 0 is the zero element of fﬁa BA, )( ¢) and 8 € R.
Now for any ¢, n € fﬁa b , we have

Fysvan (€ +m) = (Z\(Bab WG+ m)]) \”)5
< (Sl ) = (Sl [)

= fv;:b(Au)(C) + fﬁgvb(Au)(n)'

This shows that the f 99 (M) is a norm on the space ﬂa’b(Au).

Now let (¢;) be a Cauchy sequence in ﬁg’b(Au), where (; = {(, oy for
each i € N. Then for every € > 0, there exists a positive integer ig such that

fﬁ;vb(Au)(Ci — () <efor i, j >

19
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Therefore, we have

B

(B 12 (G = G)]) | < (Z\(B‘“’ (Giu - cjkn)n\”)

<e,

for every 4, j > io and for each k € N. This shows that (B** (A ugk)) is a
Cauchy sequence in the set of real numbers R. But R is complete, therefore,
we have

lim B (AyGi,) = B (AuG)

11— 00

for each k € N. Thus,
@ (B A~ Gl | < fea, GG <
n=0

for every ¢ > igp. Now letting m and j — oo, then from (4), we have

fﬁ;’b(Au) (G —¢) —0.

b(Aw) €) < fg;vb(Au) (CZ -¢)+ fﬁ;’b(Au) (Gi) < oo,

that is 2 € ¥2°(A,). This shows the completeness of the space ¥3°(A,) and
the proof is complete.
In a similar fashion, the space 19g5b(Au) is to be shown as complete.c

Theorem 2.2. The space 192’b(Au) and ﬁg&b(Au) are linearly isomorphic to
the space £, and (s respectively, i.e., ﬁg’b(Au) =~ [, and DL (Ay) =2 loo;
where 1 < p < 0.

Proof : To establish the result we shall consider ﬁg’b(Au) = [, and rest
will follow by similar fashion.

Thus, to show get the result, we must show that the existence of a linear
bijection between the space ﬁZ’b(Au) and [, for 1 < p < oo. Consider the
transformation T : 93°(A,) — 1, defined by T¢ = B> (A, (k).

The linearity of T is trivial. Further, it is trivial that ( = 8 whenever
T(¢ = 0 and hence T is injective.

Let y = (yn) =, for 1 < p < co and define the sequence ¢ = ({x) by
k k

(5) Ck = Z(a +b)’ Zb_r(—a)’”_juj_lyj for each k € N.
Jj=0 r=j
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Therefore, we have

Tnan(© = || [B* 2] |

[ oo 1 n n P %
< |t (3 )|

Ln=1 (a + b)” k=0 k

- 1

o P

= Z |yn|p

ln=1
= llyllp < oo

Hence, we see that ¢ € ﬁg’b(Au) and T'(¢) = y. Consequently, T is surjective
and is norm preserving, where 1 < p < oo. Hence, T is linear bijection
which implies that the spaces ﬂg’b(Au) and [, are linearly isomorphic for
1<p<ooo

3. SCHAUDER BASIS

In this section, we compute the Schauder basis of the space 19Z’b(Au) for
1<p<oo.

Theorem 3.1. Define the sequence g (a,b) = {ggk) (a,b)}nen of the ele-
ments of the space ﬁg'b(Au) for each k € N as

0 if 0 <i <k,

(a+ b)* Z;:k ( 2 ) b= (—a)i~Fu=I ifi> k,

9" (a,b) =

for each k € N. Then, the sequence {g(k)(a, b)}ken is a Schauder basis for

the space ﬁg'b(Au) and any ¢ = () € ﬁg’b(Au) has a unique representation
of the form

(6) ¢=> mg™(a,b),
k

where ug(a,b) = (B“’b(AuCi))k for allk € N and 1 < p < oc.

Proof : It is a clear that B%® (192’b(Au)) = ¢e®) ¢ 1,, where e®) is the
sequence whose only non-zero term is a 1 at the kth place for each k € N.
This implies that g*)(a,b) € 95 (A,) for each k € N.

Let ¢ € ﬁg’b(Au) be given. For every non-negative integer m, we define

m

(7) C[m] = Z/l'k(avb)g(k)(avb)'

k=0

21
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Then, we obtain by applying B%® (ﬁg’b(Au)) to (7) with (6) that

B (958, ) = 3 o, ) B (29 (a,0))

k=0
m
= Z i (a, b)e( )
k=0

and

. - : if 0<k<m,
{Br(aufe-¢ ))}k_{[OBa’b(AuQ)]k, ;f k<>m<7m

for all k € N.
Given € > 0, there exists an integer mg such that

o0 P

Z ’ {Ba’b (AuCi)} k’p < %’

k=mo+1
(k

(S el

k=mo+1

for all m > mq. Hence,

fugrian (6= ) = (2

+1

=

€
<§<€,

for all m > myg, which proves that = € ﬁg’b(Au) is represented as (6).
Let us show the uniqueness of this representation. Suppose, on the con-
trary; that there exists another representation ¢ = 3_ \x(a, b)g"(a,b). Since
k

the linear transformation T from 19Z’b(Au) to [, used in the Theorem B above
is continuous, we have

[Bab Ayl } Z)‘k a,b) { ( "gl(k)(a’ b)ﬂk
- Z)\k(a,b (e'®)), = An(a,b).
k

which contradicts the fact that [B®® (AuGi)], = m(a,b) for every k € N.
Hence, the representation (6) is unique. This completes the proof.

4. KOTHE DUALS

In this section, we compute the a-, 8- and y-duals of the spaces ﬁg’b(Au)
and ﬁggb(Au) for 1 < p < oo.
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For use in the lemma 4.1 below, we now give some properties:

(8) bupZ\ank\q < 0.
neN &
(9) supZ|ank| < 0.
neN
(10) sup |an k| < oo.
n,keN
(11) lim ay, = ag.
n—oo

12 sup an k| < oo.
= w2 2
(13) nlggoz |an | = Z hm Qn

where F is the collection of all finite subsets of N; %+ % =land1<p<oo.

Lemma 4.1. As in [7], for an infinite matriz A = (ank), we have following
statements that are essential in further part of the text.

(i) A€ (lh, l1) if and only if (9) holds.

(i) A€ (l1, ¢) if and only if (10) and (11) holds.

(iii) A € (l1, ls) if and only if (10) holds.

(iv) A€ (lp, L) if and only if (12) holds with %—l—% =1landl<p<oo.

(v) A€ (Ip, ¢) if and only if (8) and (11) holds with 11—7 —i-é =1 and
1 <p<oo.

(vi) A € (lp, lso) if and only if (8) holds with %—i—% =1landl<p< 0.

(vii) A € (loo, ¢) if and only if (11) and (13) holds with 11—) + % =1 and
1<p<oo.

(viii) A € (o, lso) if and only if (8) holds with ¢ = 1.

Theorem 4.2. Let W“’b and W;’b be defined as follows:
Wla’b =qt=(ty) €T: blelgz (a+b)* Z ( i >b_j(—a)j_iu;1tk < oo
2

and
q

Wb ={t=(ty) e supz > (a+by Z( )bﬂ( a) up | < oo

kel =t

a,b a a,b a,b a,b
Then [191 (Au)} =W and {191, (Au)} =W,", where 1 < p < 0.
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Proof: Let t = (t,) € YT be given and ¢ = ((;) as defined by (5), so we
can write

k k

e = (a+b)"> b7 (—a) 'u; My,

i=0 j=i

- (%),

for each k € N and H** = (hgf) is given by

ab :
hk,i = )

0, if > k.

(a+0)' Y5, ( y ) b= (—a) "ty if 0<i <Kk,

Therefore, we deduce that tx = (tx(;) € [1 whenever ¢ = ((x) € b‘ll’b (Ay)or¢ =

(Ck) € bg’b (Ay) if and only if H**y € I whenever y = (yx) € Iy or
a

y = (yx) € lp, respectively. This shows that t = (t;) € {b‘f’b (Au)} or

t=(t) € {bj‘i’b (Au)r if and only if H% € (I1,1y) or H%® € (I,,11), respec-

tively, where 1 < p < oco. If we combine these two facts and utlizing (i) and
(iv) of Lemma 4.1, we see

Y . k y . . .
t=(t) = {b‘f’b (Au)} iff S,ggz (a+b)"y " (Z >b—ﬂ(_a)ﬂ—zuk1tk < o0
v k j=i

t=(t) = {bZ’b (Au)]a & 2116%2 Z(a + b)izi; ( z ) b (—a) Tty < oo,

i |keF Jj=i

respectively, where 1 < p < co. Therefore, we have
(6% o
[19;"” (Au)] = W and {19;’*’ (Au)} — W2 where 1 < p < 0o and the
proof is complete.o
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Theorem 4.3. Let W;’b, Wf’b, W;’b, Wg’b and W7a’b be defined as follows:

Wg’b:{t:(tk)eT hm (a+b ZZ( )b I(—a)~ j_lt]- exists

i=k j=k
for each k € N}

n,keN

noo4 .
Wf’b = {t =(ty) €T : sup |(a+Db)F ( i ) b_j(—a)j_iujfltj < oo}
k

i=k j=

n i .
et = (= e T tim Sl n Y3 (L) par ity
k i—k j—k

- ; lim (@+0)"y ( i ) b~ (—a) ;' |}

i=k j=k
q
Wg’b =(t=(t) €T: supz (a+b) ZZ ( ) bfj(fa)j*iuj_ltj <00,
i=k j=k
l<g< o
and
n no1 . ) o
Wit ={t=(tp) €Y supy_ |(a+b)F ( J ) b (—a) Thu; | < oo
neN—o i=k j=k k
Then

can write

Zt;&—Ztk (; a+bzz< '>b - Zullyl>

j=i
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where Z%0 = (ZZZ) is given by

o _ @S| 8 e ey e i 0<k<n,
n,k

0, it k>n.

Therefore, we deduce that t¢ = (txc) € ¢ if and only if Z%by € ¢ whenever
B
y € l1, which implies that ¢t = (t) € {19‘11’17 (Au)} if and only if Z%? € (I3, ¢c).

B
Therefore, by lemma 4.1 (ii), we have {19'11’1’ (Au)} = W n Wb,

By similar fashion, instead of using (ii) of lemma 4.1, we employ (i) and
(iii)-(viii), the proof follows.c
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