CERTAIN SEQUENCE SPACES USING △-OPERATOR

ABDUL HAMID GANIE* AND ANTESAR ALDAWOUD

ABSTRACT. The aim of this paper is to introduce the new type of generalized B- difference sequence spaces by the combination of binomial mappings and the \triangle operator. We also study their topological properties.

2000 Mathematics Subject Classification. 46A45, 46B20, 40C05.

Keywords and Phrases. Infinite matrices, Schauder basis, Kötheduals .

1. Preliminaries, Background and Notation

Sequence space is referred to be a function space with entries as functions from positive numbers \mathbb{N} to the field \mathbb{R} of real numbers or \mathbb{C} the complex numbers. The set of every sequences (real or complex) will be given symbol as Υ . The bounded sequences, p-absolutely sequence, convergent sequences and null sequences will be symbolized by l_{∞} , l_p , c and c_0 respectively as in [20].

A linear Topological space G over $\mathbb R$ is called a paranormed space if there exists a sub-additive function $\Gamma:G\to\mathbb R$ so that $\Gamma(\theta)=0$, $\Gamma(-\zeta)=\Gamma(\zeta)$ and scalar multiplication is continuous, i.e,, $|\xi_n-\xi|\to 0$ and $\Gamma(\zeta_n-\zeta)\to 0$ imply $\Gamma(\xi_n\zeta_n-\xi\zeta)\to 0$ \forall $\xi's$ in $\mathbb R$ and $\zeta's$ in G, where θ denotes the zero element in G. For spaces G and H, set

(1)
$$\Psi(G:H) = \{ \kappa = (\kappa_i) : \zeta \kappa = (\zeta_i \kappa_i) \in H \ \forall \ \zeta = (\zeta_i) \in G \}.$$

By (1), we re-write the α -, β - and γ - duals of G as follows;

$$G^{\alpha} = \Psi(G:l_1), \ G^{\beta} = \Psi(G:cs) \ and \ G^{\gamma} = \Psi(X:bs).$$

As in [14], if space G paranormed by Γ admits a sequence (\wp_n) with the character that for all $g \in G$ there exists one and only one sequence of scalars (ξ_n) in such a way that

$$\lim_{n} \Gamma(g - \sum_{k=0}^{n} \xi_k \wp_k) = 0,$$

then (\wp_n) defines a Schauder basis for G. Here $\sum \xi_k \wp_k$ having the sum as g is then known as the expansion of g w.r.t. (\wp_n) and it is expressed as $g = \sum \xi_k \wp_k$.

For the matrix $C = (c_{i,j})$ and $\nu = (\nu_k) \in \Upsilon$, the C-transform of ν is given by $C\nu = \{(C\nu)_i\}$ for if it survives (i.e., it does not diverges) $\forall i \in \mathbb{N}$, where $(C\nu)_i = \sum_{j=0}^{\infty} c_{i,j}\nu_j$.

For such a matrix $C = (c_{i,i})$, the set G_C , where

(2)
$$G_{\mathcal{C}} = \{ \nu = (\nu_j) \in \Upsilon : \mathcal{C}\nu \in G \},$$

is referred as the domain/region of C in G. As in [1], [4], [17], we shall designate all such classes by (G:H) with $G\subseteq H_{\mathcal{C}}$

In[9] the author has constructed new techniques and introduced the following spaces:

$$T(\Delta) = \{ \rho = (\rho_i) : \Delta \rho \in T \},$$

where $T = \{l_{\infty}, c, c_0\}$ and which was further analysed as in [6], [10], [12], [15], [16].

Let $a, b \in \mathbf{R}$ with $a + b \neq 0$, then recently Bişign [2] introduced and studied the matrix $B^{a,b} = \left(\vartheta_{n,k}^{a,b}\right)$ and is defined as follows:

$$\vartheta_{n,k}^{a,b} = \begin{cases} \frac{1}{(a+b)^n} \binom{n}{k} a^{n-k} b^k & \text{if } 0 \le k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

for all $n, k \in \mathbb{N}$. It is obvious that for ab > 0, we have

$$(i) \|B^{a,b}\| < \infty$$

(ii)
$$\lim_{n \to \infty} \vartheta_{n,k}^{a,b} = 0 \ \forall \ k \in \mathbf{N}$$

$$(ii) \lim_{n \to \infty} \vartheta_{n,k}^{a,b} = 0 \ \forall \ k \in \mathbf{N}$$

$$(iii) \lim_{n \to \infty} \sum_{k} \vartheta_{n,k}^{a,b} = 1.$$

Hence, we conclude that the binomial matrix $B^{a,b}$ is regular for ab > 0 [11],

Quite recently in [2] we have the following sequence spaces:

$$\vartheta_p^{a,b} = \left\{ \zeta = (\zeta_k) \in \Upsilon : \sum_n \left| \frac{1}{(a+b)^n} \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \zeta_k \right|^p < \infty \right\}$$

$$\vartheta_{\infty}^{a,b} = \left\{ \zeta = (\zeta_k) \in \Upsilon : \sup_{n} \left| \frac{1}{(a+b)^n} \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \zeta_k \right| < \infty \right\}.$$

An approach of constructing of a new sequence space by means of the matrix domain of a particular limitation method was used by various authors viz., Başar [1], M. Başarir [2], Bişgin [3], Ganie et al [4] - [6], [17]-[19], Jarrah [8], Mursaleen [11]-[12], Ng and Lee [14] and many more. Following the authors cited, we would like to introduce the binomial difference sequence spaces $B_p^{a,b}(\Delta_u)$ and $B_{\infty}^{a,b}(\Delta_u)$, whose $B^{a,b}(\Delta)$ -transforms are respectively in the spaces ℓ_p and ℓ_{∞} and $u=(u_k)$ is a sequence such that $u_k \neq 0$ for all $k \in \mathbf{N}$.

2. The difference sequence spaces $\vartheta_n^{a,b}(\Delta_n)$ and $\vartheta_{\infty}^{a,b}(\Delta_n)$

In this section, we have introduced the spaces $\vartheta_p^{a,b}(\Delta_u)$ and $\vartheta_\infty^{a,b}(\Delta_u)$ and show that these spaces are BK-spaces.

We define the spaces $\vartheta_p^{a,b}(\Delta_u)$ and $\vartheta_\infty^{a,b}(\Delta_u)$ as follows:

$$\vartheta_p^{a,b}(\Delta_u) = \left\{ \zeta = (\zeta_k) \in \Upsilon : \ (\Delta_u \zeta_k) \in \vartheta_p^{a,b} \right\}$$
 and

$$\vartheta^{a,b}_{\infty}(\Delta_u) = \left\{ \zeta = (\zeta_k) \in \Upsilon: \ (\Delta_u \zeta_k) \in \vartheta^{a,b}_{\infty} \right\}.$$

By the definition of matrix domain (2), we re-define these spaces as follows:

$$b_p^{a,b}(\Delta_u) = \left(\vartheta_p^{a,b}\right)_{\Delta_u} \text{ and } \vartheta_\infty^{a,b}(\Delta_u) = \left(\vartheta_\infty^{a,b}\right)_{\Delta_u}.$$

For each $n \in \mathbb{N}$, we define the sequence $y = \{y_n\}$, which will be frequently used as the $B^{a,b}\Delta_u$ -transform of a sequence $\zeta = \{\zeta_k\}$, i.e.,

(3)
$$y_n = \left[B^{a,b} \left(\Delta_u \zeta_k \right) \right]_n = \frac{1}{(a+b)^n} \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \left(\Delta_u \zeta_k \right).$$

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. The spaces $\vartheta_p^{a,b}(\Delta_u)$ and $\vartheta_\infty^{a,b}(\Delta_u)$ are BK- spaces with their norm defined by

$$f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta) = ||y||_p = \left(\sum_{k=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}}$$

$$and$$

$$f_{\vartheta_{\infty}^{a,b}(\Delta_u)}(\zeta) = ||y||_{\infty} = \sup_{n \in \mathbf{N}} |y_n|,$$

where $1 \leq p < \infty$ and the sequence $y = (y_n)$ is defined by the $B^{a,b}(\Delta_u)$ -transform of ζ .

 $\begin{aligned} \mathbf{Proof}: & \text{ The trivial part is linearity. Further, it is clear that } f_{\vartheta_p^{a,b}(\Delta_u)}(\beta\zeta) = \\ & \beta f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta) \text{ and } f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta) = 0 \text{ if and only if } \zeta = \theta \text{ for all } \zeta \in f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta), \\ & \text{where } \theta \text{ is the zero element of } f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta) \text{ and } \beta \in \mathbf{R}. \end{aligned}$

Now for any ζ , $\eta \in f_{\vartheta_n^{a,b}(\Delta_u)}$, we have

$$f_{\vartheta_{p}^{a,b}(\Delta_{u})}(\zeta+\eta) = \left(\sum_{n} \left| \left(B^{a,b} \left[\Delta_{u}(\zeta_{k}+\eta_{k})\right]\right)_{n} \right|^{p} \right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{n} \left| \left(B^{a,b} \left[\Delta_{u}\zeta_{k}\right]\right)_{n} \right|^{p} + \left(\sum_{n} \left| \left(B^{a,b} \left[\Delta_{u}\eta_{k}\right]\right)_{n} \right|^{p} \right)^{\frac{1}{p}}$$

$$= f_{\vartheta_{n}^{a,b}(\Delta_{u})}(\zeta) + f_{\vartheta_{n}^{a,b}(\Delta_{u})}(\eta).$$

This shows that the $f_{\vartheta_p^{a,b}(\Delta_u)}$ is a norm on the space $\vartheta_p^{a,b}(\Delta_u)$.

Now let (ζ_i) be a Cauchy sequence in $\vartheta_p^{a,b}(\Delta_u)$, where $\zeta_i = \{\zeta_{i_k}\}_{k=1}^{\infty}$ for each $i \in \mathbb{N}$. Then for every $\epsilon > 0$, there exists a positive integer i_0 such that

$$f_{\vartheta_n^{a,b}(\Delta_n)}(\zeta_i - \zeta_j) < \epsilon \text{ for } i, j \ge i_0.$$

Therefore, we have

$$\left| \left(B^{a,b} \left[\Delta_u \left(\zeta_{i_k} - \zeta_{j_k} \right) \right] \right)_n \right| \le \left(\sum_n \left| \left(B^{a,b} \left[\Delta_u \left(\zeta_{i_k} - \zeta_{j_k} \right) \right] \right)_n \right|^p \right)^{\frac{1}{p}}$$

$$\le \epsilon.$$

for every $i, j \geq i_0$ and for each $k \in \mathbb{N}$. This shows that $(B^{a,b}(\Delta_u \zeta_{i_k}))_{i=1}^{\infty}$ is a Cauchy sequence in the set of real numbers \mathbb{R} . But \mathbb{R} is complete, therefore, we have

$$\lim_{i \to \infty} B^{a,b} \left(\Delta_u \zeta_{i_k} \right) = B^{a,b} \left(\Delta_u \zeta_k \right)$$

for each $k \in \mathbb{N}$. Thus,

(4)
$$\sum_{n=0}^{m} \left| \left(B^{a,b} \left[\Delta_u \left(\zeta_{i_k} - \zeta_{j_k} \right) \right] \right)_n \right| \le f_{\vartheta_p^{a,b}(\Delta_u)} \left(\zeta_i - \zeta_j \right) < \epsilon,$$

for every $i \geq i_0$. Now letting m and $j \to \infty$, then from (4), we have

$$f_{\vartheta_{x}^{a,b}(\Lambda_{x})}(\zeta_{i}-\zeta)\to 0.$$

$$\therefore f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta) \le f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta_i - \zeta) + f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta_i) < \infty,$$

that is $x \in \vartheta_p^{a,b}(\Delta_u)$. This shows the completeness of the space $\vartheta_p^{a,b}(\Delta_u)$ and the proof is complete.

In a similar fashion, the space $\vartheta_{\infty}^{a,b}(\Delta_u)$ is to be shown as complete.

Theorem 2.2. The space $\vartheta_p^{a,b}(\Delta_u)$ and $\vartheta_\infty^{a,b}(\Delta_u)$ are linearly isomorphic to the space ℓ_p and ℓ_∞ respectively, i.e., $\vartheta_p^{a,b}(\Delta_u) \cong l_p$ and $\vartheta_\infty^{a,b}(\Delta_u) \cong l_\infty$; where $1 \leq p < \infty$.

Proof: To establish the result we shall consider $\vartheta_p^{a,b}(\Delta_u) \cong l_p$ and rest will follow by similar fashion.

Thus, to show get the result, we must show that the existence of a linear bijection between the space $\vartheta_p^{a,b}(\Delta_u)$ and l_p for $1 \leq p < \infty$. Consider the transformation $T: \vartheta_p^{a,b}(\Delta_u) \to l_p$ defined by $T\zeta = B^{a,b}(\Delta_u\zeta_k)$.

The linearity of T is trivial. Further, it is trivial that $\zeta = \theta$ whenever

The linearity of T is trivial. Further, it is trivial that $\zeta = \theta$ whenever $T\zeta = \theta$ and hence T is injective.

Let $y=(y_n)=l_p$ for $1\leq p<\infty$ and define the sequence $\zeta=(\zeta_k)$ by

(5)
$$\zeta_k = \sum_{j=0}^k (a+b)^j \sum_{r=j}^k b^{-r} (-a)^{r-j} u_j^{-1} y_j \text{ for each } k \in \mathbb{N}.$$

Therefore, we have

$$f_{\vartheta_p^{a,b}(\Delta_u)}(\zeta) = \left\| \left[B^{a,b} \left(\Delta_u \zeta_k \right) \right]_n \right\|$$

$$\leq \left[\sum_{n=1}^{\infty} \left| \frac{1}{(a+b)^n} \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \left(\Delta_u \zeta_k \right) \right|^p \right]^{\frac{1}{p}}$$

$$= \left[\sum_{n=1}^{\infty} |y_n|^p \right]^{\frac{1}{p}}$$

$$= \|y\|_p < \infty.$$

Hence, we see that $\zeta \in \vartheta_p^{a,b}(\Delta_u)$ and $T(\zeta) = y$. Consequently, T is surjective and is norm preserving, where $1 \leq p < \infty$. Hence, T is linear bijection which implies that the spaces $\vartheta_p^{a,b}(\Delta_u)$ and l_p are linearly isomorphic for $1 \leq p < \infty.$

3. Schauder basis

In this section, we compute the Schauder basis of the space $\vartheta_p^{a,b}(\Delta_u)$ for $1 \leq p < \infty$.

Theorem 3.1. Define the sequence $g^{(k)}(a,b) = \{g_i^{(k)}(a,b)\}_{n\in\mathbb{N}}$ of the elements of the space $\vartheta_p^{a,b}(\Delta_u)$ for each $k\in\mathbb{N}$ as

$$g_i^{(k)}(a,b) = \begin{cases} 0 & \text{if } 0 \le i < k, \\ (a+b)^k \sum_{j=k}^i \binom{j}{k} b^{-j} (-a)^{j-k} u^{-j} & \text{if } i \ge k, \end{cases}$$

for each $k \in \mathbb{N}$. Then, the sequence $\{g^{(k)}(a,b)\}_{k \in \mathbb{N}}$ is a Schauder basis for the space $\vartheta_p^{a,b}(\Delta_u)$ and any $\zeta = (\zeta_i) \in \vartheta_p^{a,b}(\Delta_u)$ has a unique representation of the form

(6)
$$\zeta = \sum_{k} \mu_k g^{(k)}(a, b),$$

where $\mu_k(a,b) = (B^{a,b}(\Delta_u \zeta_i))_k$ for all $k \in \mathbb{N}$ and $1 \le p < \infty$.

Proof: It is a clear that $B^{a,b}\left(\vartheta_p^{a,b}(\Delta_u)\right)=e^{(k)}\in l_p$, where $e^{(k)}$ is the sequence whose only non-zero term is a 1 at the kth place for each $k\in\mathbb{N}$. This implies that $g^{(k)}(a,b)\in\vartheta_p^{a,b}(\Delta_u)$ for each $k\in\mathbb{N}$.

Let $\zeta \in \vartheta_p^{a,b}(\Delta_u)$ be given. For every non-negative integer m, we define

(7)
$$\zeta^{[m]} = \sum_{k=0}^{m} \mu_k(a, b) g^{(k)}(a, b).$$

Then, we obtain by applying $B^{a,b}\left(\vartheta_p^{a,b}(\Delta_u)\right)$ to (7) with (6) that

$$B^{a,b}\left(\vartheta_p^{a,b}(\Delta_u\zeta_i^{[m]})\right) = \sum_{k=0}^m \mu_k(a,b)B^{a,b}\left(\Delta g_i^{(k)}(a,b)\right)$$
$$= \sum_{k=0}^m \mu_k(a,b)e^{(k)}$$

and

$$\left\{B^{a,b}\left(\Delta_u\left(\zeta_i - \zeta_i^{[m]}\right)\right)\right\}_k = \begin{cases} 0, & \text{if } 0 \le k \le m, \\ \left[B^{a,b}\left(\Delta_u\zeta_i\right)\right]_k, & \text{if } k > m, \end{cases}$$

for all $k \in \mathbb{N}$.

Given $\epsilon > 0$, there exists an integer m_0 such that

$$\left(\sum_{k=m_0+1}^{\infty}\left|\left[B^{a,b}\left(\Delta_u\zeta_i\right)\right]_k\right|^p\right)^{\frac{1}{p}}<\frac{\varepsilon}{2},$$

for all $m \geq m_0$. Hence,

$$f_{\vartheta_{p}^{a,b}(\Delta_{u})}\left(\zeta - \zeta^{[m]}\right) = \left(\sum_{k=m+1}^{\infty} \left| \left[B^{a,b}\left(\Delta_{u}\zeta_{i}\right) \right]_{k} \right|^{p} \right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{k=m_{0}+1}^{\infty} \left| \left[B^{a,b}\left(\Delta_{u}\zeta_{i}\right) \right]_{k} \right|^{p} \right)^{\frac{1}{p}}$$

$$< \frac{\epsilon}{2} < \epsilon,$$

for all $m \geq m_0$, which proves that $x \in \vartheta_p^{a,b}(\Delta_u)$ is represented as (6).

Let us show the uniqueness of this representation. Suppose, on the contrary; that there exists another representation $\zeta = \sum_{k} \lambda_k(a,b) g^k(a,b)$. Since

the linear transformation T from $\vartheta_p^{a,b}(\Delta_u)$ to l_p used in the Theorem B above is continuous, we have

$$\left[B^{a,b}\left(\Delta_{u}\zeta_{i}\right)\right]_{k} = \sum_{k} \lambda_{k}(a,b) \left[B^{a,b}\left(\Delta_{u}g_{i}^{(k)}(a,b)\right)\right]_{k}
= \sum_{k} \lambda_{k}(a,b) \left(e^{(k)}\right)_{k} = \lambda_{k}(a,b).$$

which contradicts the fact that $\left[B^{a,b}\left(\Delta_{u}\zeta_{i}\right)\right]_{k}=\mu_{k}(a,b)$ for every $k\in\mathbb{N}$. Hence, the representation (6) is unique. This completes the proof.

4. Köthe duals

In this section, we compute the α -, β - and γ -duals of the spaces $\vartheta_p^{a,b}(\Delta_u)$ and $\vartheta_\infty^{a,b}(\Delta_u)$ for $1 \leq p < \infty$.

For use in the lemma 4.1 below, we now give some properties:

(8)
$$\sup_{n \in \mathbb{N}} \sum_{k} |a_{n,k}|^q < \infty.$$

(9)
$$\sup_{n \in \mathbb{N}} \sum_{n} |a_{n,k}| < \infty.$$

(10)
$$\sup_{n,k\in\mathbb{N}}|a_{n,k}|<\infty.$$

$$\lim_{n \to \infty} a_{n,k} = a_k.$$

(12)
$$\sup_{K \in \mathbb{F}} \sum_{k} \left| \sum_{n \in K} a_{n,k} \right|^{q} < \infty.$$

(13)
$$\lim_{n \to \infty} \sum_{k} |a_{n,k}| = \sum_{k} \left| \lim_{n \to \infty} a_{n,k} \right|,$$

where \mathbb{F} is the collection of all finite subsets of \mathbb{N} ; $\frac{1}{p} + \frac{1}{q} = 1$ and $1 \leq p < \infty$.

Lemma 4.1. As in [7], for an infinite matrix $A = (a_{nk})$, we have following statements that are essential in further part of the text.

(i) $A \in (l_1, l_1)$ if and only if (9) holds.

(ii) $A \in (l_1, c)$ if and only if (10) and (11) holds.

(iii) $A \in (l_1, l_\infty)$ if and only if (10) holds.

(iv) $A \in (l_p, l_1)$ if and only if (12) holds with $\frac{1}{p} + \frac{1}{q} = 1$ and 1 .

(v) $A \in (l_p, c)$ if and only if (8) and (11) holds with $\frac{1}{p} + \frac{1}{q} = 1$ and

(vi) $A \in (l_p, l_\infty)$ if and only if (8) holds with $\frac{1}{p} + \frac{1}{q} = 1$ and $1 . (vii) <math>A \in (l_\infty, c)$ if and only if (11) and (13) holds with $\frac{1}{p} + \frac{1}{q} = 1$ and

1 .

(viii) $A \in (l_{\infty}, l_{\infty})$ if and only if (8) holds with q = 1.

Theorem 4.2. Let $W_1^{a,b}$ and $W_2^{a,b}$ be defined as follows:

$$W_1^{a,b} = \left\{ t = (t_k) \in \Upsilon : \sup_{i \in \mathbb{N}} \sum_{k} \left| (a+b)^i \sum_{j=i}^k \binom{j}{i} b^{-j} (-a)^{j-i} u_k^{-1} t_k \right| < \infty \right\}$$

$$W_2^{a,b} = \left\{ t = (t_k) \in \Upsilon : \sup_{K \in \mathbb{F}} \sum_i \left| \sum_{k \in \mathbb{F}} (a+b)^i \sum_{j=i}^k \binom{j}{i} b^{-j} (-a)^{j-i} u_k^{-1} t_k \right|^q < \infty \right\}.$$

Then
$$\left[\vartheta_1^{a,b}\left(\Delta_u\right)\right]^{\alpha} = W_1^{a,b}$$
 and $\left[\vartheta_p^{a,b}\left(\Delta_u\right)\right]^{\alpha} = W_2^{a,b}$, where $1 .$

Proof: Let $t = (t_n) \in \Upsilon$ be given and $\zeta = (\zeta_k)$ as defined by (5), so we can write

$$t_k \zeta_k = \sum_{i=0}^k (a+b)^i \sum_{j=i}^k b^{-j} (-a)^{j-i} u_i^{-1} t_k y_j$$
$$= \left(H^{a,b} y \right)_k$$

for each $k \in \mathbb{N}$ and $H^{a,b} = \left(h_{k,i}^{a,b}\right)$ is given by

$$h_{k,i}^{a,b} = \begin{cases} (a+b)^i \sum_{j=i}^k \binom{j}{i} b^{-j} (-a)^{j-i} u_i^{-1} t_k & \text{if } 0 \le i \le k, \\ 0, & \text{if } i > k. \end{cases}$$

Therefore, we deduce that $tx=(t_k\zeta_k)\in l_1$ whenever $\zeta=(\zeta_k)\in b_1^{a,b}\left(\Delta_u\right)$ or $\zeta=(\zeta_k)\in b_p^{a,b}\left(\Delta_u\right)$ if and only if $H^{a,b}y\in l_1$ whenever $y=(y_k)\in l_1$ or $y=(y_k)\in l_p$, respectively. This shows that $t=(t_k)\in \left[b_1^{a,b}\left(\Delta_u\right)\right]^{\alpha}$ or $t=(t_k)\in \left[b_p^{a,b}\left(\Delta_u\right)\right]^{\alpha}$ if and only if $H^{a,b}\in (l_1,l_1)$ or $H^{a,b}\in (l_p,l_1)$, respectively, where $1< p\leq \infty$. If we combine these two facts and utilizing (i) and (iv) of Lemma 4.1, we see

$$t = (t_k) = \left[b_1^{a,b}\left(\Delta_u\right)\right]^{\alpha} iff \sup_{i \in \mathbb{N}} \sum_{k} \left| (a+b)^i \sum_{j=i}^k \binom{j}{i} b^{-j} (-a)^{j-i} u_k^{-1} t_k \right| < \infty$$
or
$$t = (t_k) = \left[b_p^{a,b}\left(\Delta_u\right)\right]^{\alpha} \Leftrightarrow \sup_{K \in \mathbb{F}} \sum_{k} \left| \sum_{k \in \mathbb{F}} (a+b)^i \sum_{j=i}^k \binom{j}{i} b^{-j} (-a)^{j-i} u_k^{-1} t_k \right|^q < \infty,$$

respectively, where $1 . Therefore, we have <math>\left[\vartheta_1^{a,b}\left(\Delta_u\right)\right]^{\alpha} = W_1^{a,b}$ and $\left[\vartheta_p^{a,b}\left(\Delta_u\right)\right]^{\alpha} = W_2^{a,b}$, where $1 and the proof is complete.<math>\diamond$

Theorem 4.3. Let $W_3^{a,b}$, $W_4^{a,b}$, $W_5^{a,b}$, $W_6^{a,b}$ and $W_7^{a,b}$ be defined as follows:

$$W_3^{a,b} = \{t = (t_k) \in \Upsilon : \lim_{n \to \infty} (a+b)^n \sum_{i=k}^n \sum_{j=k}^i \binom{j}{k} b^{-j} (-a)^{j-k} u_j^{-1} t_j \text{ exists}$$

$$for \ each \ k \in \mathbb{N} \}$$

$$W_4^{a,b} = \left\{ t = (t_k) \in \Upsilon : \sup_{n,k \in \mathbb{N}} \left| (a+b)^k \sum_{i=k}^n \sum_{j=k}^i \binom{j}{k} b^{-j} (-a)^{j-i} u_j^{-1} t_j \right| < \infty \right\}$$

$$W_5^{a,b} = \{t = (t_k) \in \Upsilon : \lim_{n \to \infty} \sum_{k} \left| (a+b)^k \sum_{i=k}^n \sum_{j=k}^i \binom{j}{k} b^{-j} (-a)^{j-i} u_j^{-1} t_j \right|$$

$$= \sum_{k} \left| \lim_{n \to \infty} (a+b)^{k} \sum_{i=k}^{n} \sum_{j=k}^{i} \binom{j}{k} b^{-j} (-a)^{j-i} u_{j}^{-1} t_{j} \right|$$

$$W_6^{a,b} = \left\{ t = (t_k) \in \Upsilon : \sup_{n \in \mathbb{N}} \sum_{k=0}^n \left| (a+b)^k \sum_{i=k}^n \sum_{j=k}^i \binom{j}{k} b^{-j} (-a)^{j-i} u_j^{-1} t_j \right|^q < \infty \right\},$$

$$1 < q < \infty$$

and

$$W_7^{a,b} = \left\{ t = (t_k) \in \Upsilon: \ \sup_{n \in \mathbb{N}} \sum_{k=0}^n \left| (a+b)^k \sum_{i=k}^n \sum_{j=k}^i \left(\begin{array}{c} j \\ k \end{array} \right) b^{-j} (-a)^{j-i} u_j^{-1} t_j \right| < \infty \right\}.$$

Then

$$(i) \left[\vartheta_1^{a,b} \left(\Delta_u \right) \right]^{\beta} = W_3^{a,b} \cap W_4^{a,b}.$$

(ii)
$$\left[\vartheta_p^{a,b} \left(\Delta_u \right) \right]^{\beta} = W_3^{a,b} \cap W_6^{a,b}, \ 1$$

(iii)
$$\left[\vartheta_{\infty}^{a,b}\left(\Delta_{u}\right)\right]^{\beta} = W_{3}^{a,b} \cap W_{5}^{a,b}.$$

$$(iv) \left[\vartheta_1^{a,b} \left(\Delta_u\right)\right]^{\gamma} = W_4^{a,b}.$$

$$(v) \left[\vartheta_p^{a,b} \left(\Delta_u \right) \right]^{\gamma} = W_6^{a,b}, \ 1$$

$$(vi) \left[\vartheta_{\infty}^{a,b}\left(\Delta_{u}\right)\right]^{\gamma} = W_{7}^{a,b}.$$

Proof: Let $t = (t_n) \in \Upsilon$ be given and $\varsigma = (\varsigma_k)$ as defined by (5), so we can write

$$\sum_{k=0}^{n} t_k \varsigma_k = \sum_{k=0}^{n} t_k \left(\sum_{i=0}^{k} (a+b)^i \sum_{j=i}^{k} \binom{j}{k} b^{-j} (-a)^{j-i} u_i^{-1} y_i \right)$$

$$= \sum_{k=0}^{n} \left((a+b)^k \sum_{i=k}^{n} \sum_{j=k}^{i} \binom{j}{k} b^{-j} (-a)^{j-i} u_i^{-1} t_i \right) y_k$$

$$= \left(Z^{a,b} \right)_n,$$

where $Z^{a,b} = \left(z_{n,k}^{a,b}\right)$ is given by

$$z_{n,k}^{a,b} = \begin{cases} (a+b)^k \sum_{i=k}^n \sum_{j=k}^i \binom{j}{k} b^{-j} (-a)^{j-i} u_i^{-1} t_i & \text{if } 0 \le k \le n, \\ 0, & \text{if } k > n. \end{cases}$$

Therefore, we deduce that $t\varsigma = (t_k\varsigma_k) \in c$ if and only if $Z^{a,b}y \in c$ whenever $y \in l_1$, which implies that $t = (t_k) \in \left[\vartheta_1^{a,b}\left(\Delta_u\right)\right]^{\beta}$ if and only if $Z^{a,b} \in (l_1,c)$.

Therefore, by lemma 4.1 (ii), we have $\left[\vartheta_1^{a,b}\left(\Delta_u\right)\right]^{\beta}=W_3^{a,b}\cap W_4^{a,b}$.

By similar fashion, instead of using (ii) of lemma 4.1, we employ (i) and (iii)-(viii), the proof follows.

Acknowledgement: We are very thankful to the anonymous reviewer(s) for making suggestions and improving our manuscript.

References

- F. Başar and B. Altay, On the spaces of p-bounded variation and related matrix mappings, Ukrainian Math. J.,1(2003), 136-147.
- [2] M. Başarir, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2(2011), 114-129.
- [3] M. C. Bişgin, The binomial sequence spaces of nonabsolute type, J. Inequal. Appl. 2016, 309 (2016).
- [4] A. H. Ganie, Some new difference sequence space of non-absolute type, Int. J. Math. & computational Methods, 1 (2016), 48-57.
- [5] A. H. Ganie and N. A. Sheikh, On some new sequence space of non-absolute type and matrix transformations, J. Ejyp. Math. Soc., 21(2013), 34-40.
- [6] Ab. Hamid Ganie, A. Mobin, N. A. Sheikh, T. Jalal and S. A. Gupkari, Some new type of difference sequence space of non-absolute type, Int. J. Modern Math. Sci., 14(1)(2016), 116-122.
- [7] T. Hubert and S. Michael, Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154(1977), 1-16.
- [8] A. M. Jarrah and E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat, 17 (2003), 59-78.
- [9] H Kizmaz, On certain sequence spaces. Can. Math. Bull., 24(1981), 169-176.
- [10] A. Manna, A. Maji and P.D.Srivastava, Difference sequence spaces derived by using generalized means, 23 (2015)-127-133.
- [11] M. Mursaleen, Infinite matrices and almost convergent sequences, Southeast Asian Bulletin of Math., 19(1)(1995), 45-48.
- [12] M. Mursaleen and A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comp. Model., 52(2010), 603-617.
- [13] P.-N. Ng, and P.-Y. Lee, Cesàro sequences spaces of non-absolute type, Comment Math. Prace Math., 2(1978), 429-433.
- [14] G. M. Petersen, Regular matrix transformations, Mc Graw-Hill, London, (1966).
- [15] H. Polat, V. Karakaya and N. Şimşek, Difference sequence spaces derived by using a generalized weighted mean, Appl. Math. Lett., 24 (5) (2011), 608-614.
- [16] M. A. Sarigol, On difference sequence spaces, J. Karad. Tech. Univ. (ser. Math-Phy), X(1987), 63-71.
- [17] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paed. Nyreg., 28 (2012), 47-58.
- [18] N. A. Sheikh and A. H. Ganie, A new type of sequence space of non-absolute type and matrix transformation, WSEAS Transaction of Math., 8(12) (2013), 852-859.
- [19] N. A. Sheikh and A. H. Ganie, infinite matrices and almost convergence, Filomat, 29(2015), 1183-1188.

[20] A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, Amsterdam - New York - Oxford, (1984).

College of Science and Theoretical Studies, Saudi Electronic University, Boys Branch, Abha - Saudi Arabia $Email\ address:\ *a.ganie@seu.edu.sa$

College of Science and Theoretical Studies, Saudi Electronic University, Female Branch, Riyadh- Saudi Arabia $Email\ address:\ a.aldawoud@seu.edu.sa$