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SOME IDENTITIES OF THE PARTIALLY DEGENERATE
CHANGHEE-GENOCCHI POLYNOMIALS AND NUMBERS

YUNJAE KIM!, JONGKYUM KWON? GYOYONG SOHN?, AND JEONG GON LEE*

ABSTRACT. In this paper, we introduce the partially degenerate Changhee-Genocchi
polynomials and numbers and investigated some identities of these polynomials.
Furthermore, we investigate some explicit identities and properties of the partially
degenerate Changhee-Genocchi arising from the nonlinear differential equations.

1. Introduction

As is well known, the Genocchi polynomials G, (x) are defined by the generating

function as follows:
’fL

ZG 7)— (see [1,3,6,17,19)). (1.1)

When z =0, G, = G,,(0) are called the Genocchi numbers.

The Changhee polynomials Ch,(x) are defined by the generating function to be

2
2+t (1+1t)" ZCh —. (see [5,8, 13,16, 18]). (1.2)

When z = 0, Ch,, = Ch,(0) are called the Changhee numbers.

By replacing t by e! — 1, we get
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where E,,(x) are ordinary Euler polynomials and S2(n,m) are the Stirling num-
bers of second kind.

Thus, we have

Z Chm () S2(n, m). (1.4)
Now, we define the degenerate exponentlal function as follow:
1o (D
el =1+ M)x = Z n? t", (see [9)). (1.5)
n=0

Where (z),\ =z(z —A)--- (z — (n — 1)A).
Note that

t'ﬂ
;i_r)%et)\ = Z — =e (1.6)

In [2], L. Carlitz consider the degenerate Euler polynomials which are given by
the generating function to be

2 o0 tn
tr
T T = nE OEn’,\(a:)—n!. (1.7)

The Bernoulli polynomials of the second kind b, (z) are defined by the generating
function to be

t
_ bp(z)— [17]). 1.
og 1 T t (1+t)* Z (see [17]) (1.8)

When z =0, b, = b,(0) are called the Bernoulh numbers of the second kind.

The Changhee-Genocchi polynomials CGy,(z) are defined by the generating func-
tion to be
2log(1 + 1)
24+t

When z =0, CG,, = CG,(0) are called the Changhee—Genocchl numbers.

(1+1)* ZCG —'see[]) (1.9)

The Genocchi-Changhee polynomials GCh,,(z) are defined by the generating func-
tion to be

2t
10
51+ ZGCh (1.10)

When z = 0, GCh,, = GCh,(0) are called the Genocchi-Changhee numbers.

The degenerate Changhee-Genocchi polynomials CGy(z | A) are defined by the
generating function to be
2log(1 + loge})

(1+logeh)” CGr(z | )\ (see [11]). (1.11)
2+ log e} Z
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When z = 0, CG, = CGL(0 | A\) are called the degenerate Changhee-Genocchi
numbers.

We recall the Stirling numbers of the first kind S1(n, m) and Sa(n,m) are defined
by

o0

%(log(l +Om =Y sl(n,m)g (see [4,7, 14,20)). (1.12)
and -
%(et —1)" = i SQ(n,m)g (see [10,12,15]). (1.13)

Recently, B-M. Kim et al. studied Changhee-Genocchi polynomials and some
identities of these polynomials. They also introduced Changhee-Genocchi polyno-
mials and investigated some identities of these polynomials ([3]). Also, H. -I. Kwon
et al. introduced degenerate Changhee-Genocchi polynomials and some identities of
these polynomials and investigated some identities of these polynomials ([11]). In
this paper, we introduce the partially degenerate Changhee-Genocchi polynomials
and numbers and investigated some identities of these polynomials. Furthermore,
we investigate some explicit identities and properties of the partially degenerate
Changhee-Genocchi arising from the nonlinear differential equations.

2. The partially degenerate Changhee-Genocchi polynomials and
numbers

In this section, we define the partially degenerate Changhee-Genocchi polynomials
and numbers and investigate some identities of the partially degenerate Changhee-
Genocchi polynomials.

Now, we consider the degenerate Genocchi polynomials which are given by the
generating function to be
(o)

2t =3 Gua(a)e (2.1)
7 A — n/\ —' .
ey + 1 = n!

When z = 0, G, » = G, A(0) are called the degenerate Genocchi numbers.

It is not difficult to show that G »(0) = 0.

So,
2t i x= Grpga(z) tt?
= —_— 2.2
el + 19 Z n+1 nl (2:2)
n=0
Thus,
i Gn-i-l./\(x) tn+1 —t 2 6ta:
— n+1l nl ek +1 7
"= (2.3)

e tn+1

:ZEn,)\(x) nl -

n=0
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Comparing the coefficients on the both sides in (2.3), we have the following result.

Theorem 2.1. Let A € C, with 0 < |\|, < 1. Then

Gn+1,/\(x)

In [4], the degenerate Changhee polynomials which are given by

o0
x tn
W(l +logeh)” = Cha(2) . (2.5)
A - !

By replacing ¢ by +(e* — 1) in (2.5), we get

(14t =
CEELR

WE

chm,mw)% (- 1>)m

0

3
I

hma(x Z Sa(n,m) (2.6)

0

!
8ﬁM8

n
n!

=> (Z Chyp A ()N S2(n, m)) ;
n=0 \m=0

Thus, we obtain the following result.

Theorem 2.2. Let A € C, with 0 < ||, < 1. Then
Z Chpm (@) AN""™ Sy (n, m). (2.7)

Now, we define the partially degenerate Changhee-Genocchi polynomials which
are given by

2log(1+1) "
W(l"‘loge)\ ZCG‘n)\ —' (28)

When z = 0, EE*n A= 55” A(0) are called the partially degenerate Changhee-
Genocchi numbers.

Also, we define the higher-order partially degenerate Changhee-Genocchi numbers
which are given by the generating function to be

2log(1+1) k) t"
(W) ZCGnA . (2.9)
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Now, we observe that

2log(1l+1t)

(1+17)
i oger (L Floged)” = (1+8)"
A

Where D,,, are the Dachee numbers.
Comparing the coefficients on the both sides in (2.10), we have the following

result.
Theorem 2.3. Let A € C, with 0 < |\|, <1 and A — 0. Then
Clholz) =S (”) GChy(z)Dy_y. (2.11)
= \!

Now, we observe that

=~ " 2log(141t) .
=5 T 4 e
;CGn’)‘n! 2 +log el (1+loge})
2t ¢ log(1+1)
= W(l +logey) —
oo i . - (2.12)
- (Z Chl,A(@ﬁ) (Z Dmm)
=0 m=0
=Y <Z <l>0hMDn_l> —
n=0 \1=0 ’

Comparing the coefficients on the both sides in (2.12), we have the following
result.

Theorem 2.4. Let A € C, with 0 < |\|, < 1. Then

— n n
CGur=) (l)ChMDn_l. (2.13)
=0
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We observe that
t"  2log(1+1t)

00
role. R S t\x
;}CGn)\(x)n' 2+10gef\ (1+10g6)\)

e —_— l e
(Z c@,ﬁ—,) (Z(m%aoge&)k)
=0 ’ ’

k=0

- l - /m (2.14)
¢ . ¢m
= (Z CG!,Aﬁ) <Z (Z(x)k)\ kSl(mJﬂ)) @)
=0 m=0 \ k=0
= Z <Z <n> (x)k)\m_ksl(m,k)c/'an_m,)\) t—'
n=0 \m=0 k=0 m v
Theorem 2.5. Let A € C, with 0 < [\, < 1. Then

@n,)\(w) = Z Z (Z) (‘T)kAm_kS](mak‘)éan—m,/\- (215)

3. The partially degenerate Changhee-Genocchi numbers arising from
differential equations

In this section, we investigate some identities of the partially degenerate Changhee-
Genocchi numbers arising from differential equations.

Let
F=F(t) = ! 3.1
N © 22 +log(1+ M) (3.1)
Then, by taking the derivative with respect to t of (3.1), we obtain
d 1 A
FUO = ZF(t) = -
dt ®) (2X + log(1 + At))2 1+ At (3.2)

A
= (- F2.
( 1+>\t>

A2 = —(1+ )P, (3.3)
By taking the derivative with respect to ¢ in (3.3), we note that

From (3.2), we have

INFFW = _\F1) — (14 \)F®?), (3.4)
Thus, by multiple (1 4+ At) on the both sides of (3.4), we obtain
A1+ M) FFN) = X1+ M)FY — (14 At)2F3), (3.5)

From (3.3) and (3.5), we get
INZFS = A1+ A)FM + (1 + At)2FP), (3.6)
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From the above equation, we have

3INF2FM = N2FM 4 \(1 4+ A)F® 4+ 201 + M) FP + (1 4+ At)2F®)
=N2FM £ 301 + M) FP 4 (14 At)2FO),

Multiply (1 + At) on the both sides of (3.7), we get
3N+ M) F2FD = 21+ M) FD £ 301+ A)2FO + 1+ 1)°FO). (3.8)
From (3.3) and (3.8), we obtain
3INFY = X214+ M) FD — 301+ A2 F®) — (1 + xt)°FO), (3.9)

Continuing this process, we get
N
NIAVENT = (—1)N 3 " ap(N)ANF(1 4+ At)F FO), (3.10)
k=1

Let us take the derivative on the both sides of (3.10)
with respect to t. Then we obtain

(N +D)NVFNFO = ()N N7 g (N)ANFH (1 4 ap)FLFR)

(3.11)
+ (=D)Y T ap (NAN A 4+ A RGHD,
k=1
Multiply (1 + At) on the both sides of (3.11), we have
(N + 1)1+ x)FVFD Z kap(N)AV=F1(1 + at)F P
(3.12)

1)N Za’k /\N k 1 4 )\t)k-'rlF(k-'rl)
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Then, by (3.3) and (3.12), we obtain

(N+1)!>\N+1FN+2 N+1Zka AN k+1(1+)\t)kF(k)
N+1 Z ag )\N k: + )\t)k+1F(kr+1)

— N+1Zkak )\N k+1(1+)\t)kF (k)

N+1
N+1 Z ap_ 1 )\N k+1(1+)\f)kF(k)

= (—1)N+1a1( AN (14 a)FW
(—1)N+1CLN(N)(1+)\t)N+1F(N+1)

+

N
DY " (kag(N) + ap—1 (N) AN TFH(1 4 ae)F )

(3.13)

By substituting N by N + 1 given in (3.10), we have another equation.
(N 4+ )INFLpN+2 — (_q)N+1 NZH ap(N + DAN=FHL (1 4 ) p®)
k=1
= (DM (N + DAV + a)FD)
+ (=DMl (N +1)(1 + AN 0D
+ (=) EN: ap(N + DAV (1 4 xR F®),
k=2
Comparing the coeflicients on the both sides of (3.13) and (3.14), we have

CL1(N+ 1) = a1(N), aN+1(N-|- 1) = CLN(N), (315)

(3.14)

and

a(N +1) = kar(N) + ag—1(N), for 2<k<N. (3.16)
From (3.3) and (3.10), for N = 1, we obtain

1
NF? == ap (DA F (1 + M) F®)

k=1
= —a;(1)(1 + A)FD) (3.17)

= —(1+x)F.

From (3.17), we get
a(l) =1. (3.18)
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From (3.15), we have the following result using (3.18).
al(N—l—l)zal(N):al(N—l)=~--=a1(1)=1. (319)

and

an+1(N+1)=an(N)=an_1(N—-1)=---=ai(1) =1. (3.20)
From (3.16), for 2 < k < N, we have
ar(N + 1) = kar,(N) + ax_1(N)
=k(kap(N — 1)+ ar_1(N — 1)) + ar_1(N)
=k?ap(N — 1) + kap_1(N — 1) + ap_1(N) (3.21)

= kN ap (k) + BN Fap 1 (k) + -+ ap-1(N)
Therefore by (3.15) and (3.21), we get

ai(N + 1) = kN_kHak(k) + kN_kak_l(k) + -+ ak_l(N)

N—k+1
= Z kNik_H*ila,k,l(k‘ -1+ i1)
11=0
N—-k+1 i1
> ENTEERN T (h — 1) 20y _o(k — 2+ i)
11=0 12=0
N—k+1 1
= Y D ENTEHTR (R - 1)1 Ry (k- 2 + i)
11=0 1i2=0
N—k+1 41 lg—2

Z Z Z N —k+1—i1 (k—1)17%2 .. 9k—2=lk-10) (1 44, _4).

i1=0 i2=0  ix_1=0

(3.22)
From (3.19) and (3.22), we obtain

N—k+1 i1 ig—2

RN = D Y e Yo N R — )i g (3.93)

i1=0 i2=0 lk_1:0

Thus, we have the following theorem.

Theorem 3.1. Let N € N. Then the follour/lnq differential equation,
NINVFNT! = Zak NIMTFL+ Atk F®)

have a solution F = F(t) = where

2/\+log(1+)\t) ’
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and

N—-k 11 -2

N) = Z Z Z kN*k*il(k-_l)ilfiz.,'2ik_27ik_1’ fO’I’ 2 < k < N.

i1=014i2=0  ix_1=0

From (3.1), we get

1
© 22X\ +log(1 + At)
ot 1 2leg(1+1)
Clog(1+1t) " 2Mt T 2+logel

1t
<hzobl” '> (ZCGM?A b > (3.24)

lo=1

1 tl
<Zbllz'> <ZCG12+“ l+1)l2>

11=0 l2=0
- 1 tls
Z Z blg—IQCGl2+1,)\—> NN
50 (lz =0 < 2) 2)\(l2 + 1) I3!
From the above equation, we get
d\k
k) — (2
PO = () FO
ANk [ (1 1 fla
B (E) 2 <E (lJbls_lzCG’”“m(zg T1) )1 (3.25)
13=0 \l2=0
9] l3+k l
o ls+k 1 t3
- Z < ( Iy >bls—lz+kCGl2+1,,\m> 13—|
13=0 \l2=0
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Multiply 2V A(log(1 + t))¥*! on the right sides of (3.10), we get

N
(—I)N Zak(N))\ka+12N+l(log(l + t))N+1(1 + )\t)kF(k)

k=1
N 00 tMl
_ N N—k+1oN+1
= (DN ar(N)A 2 < > SI(MI;N+1)M1!>
k=1 Mi=N+1
¢ e B\ Lok
My=0
N [e%9) M35 M
_/_1\N N—k+1oN+1 3
= (=) Y ap(NATTENE Y ( 2 <M1>
k=1 M3=N+1 Mp=N+1
O\ $Ms
x S1(My, N + 1) (k) pgs—ap, A\M3 M0 WF(M.
3t

Where S;(n, k) is the Stirling number of the first kind.

Thus, by (3.25) and (3.26), we get

N
(DN D an(N)AN TN (log (1 + )N (L + a)f P
k=1

N o) M3
_(_1\N a N—k+1oN+1 Ms
LA ST ol (D ol ¢

k=1 Ms=N+1 —N+1 1
tMs

x S1(My, N + 1) (k) azsap N3~
M3!

oo [lat+k . (3.27)
Is+k 1 tls
x E(E ( Iy )blskaGle,Am)ﬁ
13=0 l2=0

l3!

M3 n—Mz+k

e W)

k=1n=N-+1Ms=N+1M;=N+1 I5=0
X ap(N)ANFFMs=MioNG (M N + 1) (k) by — 0y bn My 1o+
1 t"

XCGlH“l 1
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o £ (55 £ E G

n=N+1 \ k=1 Ms=N+1M;=N+1  1,=0
N—k+Ms—Mi N
X ap(N)ANTFEM=MoN Gy (M1, N + 1) (k) My— 01, bne My — 1ok

« CG LI RV
l2+1)\l 1 TL!.

Also, multiply 2¥ 1\ (log(1 +¢))V*! on the left sides of (3.10), we get

2log(1 +t)>N+1

N!2N+1AN+1(IOg(1 —I—t))N+1FN+1 —N! (W
(&
A

e (3.28)
_m Y @l =
n=N+1
By equation (3.10), (3.27) and (3.28), we finally get the explicit expression arising
from nonlinear differential equation.

Theorem 3.2. Forn > N + 1, we have
n—Ms+k

ce\ - SIS ( )( )(”‘Af““)ak(m

k=1 M3=N+1M;=N+1 12=0

x A\N=REMs=MioN g (M1, N + 1) (k) vy — a1y b a1, 5C Gy 10

lg—i—l'

4. Conclusion

T. Kim have studied some identities of Changhee numbers which are derived from
generating function using nonlinear differential equation(see [8]). In this paper, we
study some identities of the partially degenerate Changhee-Genocchi polynomials
and the partially degenerate Changhee-Genocchi number arising from nonlinear dif-
ferential equation. In Theorem 2.3 and Theorem 2.4, we get the some identities
of the partially degenerate Changhee-Genocchi polynomials. In Theorem 3.1, we
get the solution of nonlinear differential equation arising from generating function of
the partially degenerate Changhee-Genocchi numbers. In Theorem 3.2, we have
explicit expression of the partially degenerate Changhee-Genocchi number from the
result of Theorem 3.1 using generating function and nonlinear differential equa-
tions.
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