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ABSTRACT. The primary objective of this paper is to validate the existence and
uniqueness of coupled fractional differential equations of complex order along
with coupled non-local multipoint boundary conditions. The convergence of the
problem has validated with suitable examples.
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1. INTRODUCTION

The concept of fractional calculus is a generalization of differentiation, integration
of real and complex order. Among various mathematicians, Liouville, Riemann, and
Weyl gave important contributions to the theory of fractional calculus. The advan-
tages of fractional calculus are perceptible in modeling, mechanical and electrical
properties as well as in the description of properties of gases, liquids, and rocks, and
in many other fields, we refer the reader to the texts [4, 7, 9, 11], and the references
cited therein. There have been many contributions in this regard, going back to the
recent work of Ahmad et.al. [1, 2], where they have shown the solvability of a coupled
system of fractional differential equations by flux type integral boundary conditions.
Also, they established the existence results for a coupled system of Caputo type
sequential fractional differential equations with non-local integral boundary condi-
tions. More important to the fractional boundary conditions were given by Liu et
al.,[8], Henderson et al.,[5] and Wang et al.,[14] in the existence of solutions in a
coupled system of the nonlinear fractional differential equation. Tariboon et al., [13]
experimented on the non-integer order of Riemann-Liouville fractional derivatives
and Hadamard fractional integrals on coupled fractional-order differential equations.
For some recent work on the multiple orders of fractional derivatives and integrals
on coupled fractional order differential equation was initiated by Suantai et al.,[12].
Later this year, discrete boundary conditions on coupled fractional-order differential
equations were introduced by Alsaedi et al.,[3].

In view of the above, the reader can see that the authors have discussed the
existence of solutions of fractional differential equations only on non-integer order.
This provocative the inception of complex order differential equations and as defined

by

(1) lev(z) = hl(z7v(z)vw(z))a z€J:= [Ov 1] 61 = &1 +1Cq,
D2w(z) = ha(z,v(2),w(2)), z€J:=1[0,1] ¢ =& + i,
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supplemented with the boundary conditions

) v(0) = Yi(w), U/,(O) Z’Ylwi(51)7 v(1) =0,
w(0) = Yy(v), w (0)=yv (6&), w(l)=0,

where 2 < £1,63 < 3, (1, € RT and 1,02 are the Caputo fractional derivatives
of order 1,60 € C and hy,ha : [0, 1] X RxR = R, ¥y, ¥y : C([0,1],R) — R are given
continuous functions, 0 < 61,82 < 1, v;, (¢ = 1,2) are positive real constants. The
paper has been arranged systematically beginning with, preliminaries which have
some fundamental concepts of fractional calculus with basic lemma related to the
defined problem followed by the main results based on Leray-Schauder nonlinear
alternative type and Banach fixed point theorem, finally with suitable examples as
the validation of the results.

2. PRELIMINARIES

Before commencing with the problem, we shall define some notations and lemmas
of fractional calculus, which we may find useful for our problem. [6, 10]

DEFINITION 2.1 The fractional integral of order ¢ € C, (R(s) > 0) with the lower
limit zero for a function & is defined as

U TSR )
) = i ), e

provided the right hand-side is point-wise defined on [0, 00), where I'(-) is the gamma
function, which is defined by I'(c) = [;° 2" te *dz.

DEFINITION 2.2 The Stirling asymptotic formula of the Gamma function for x € C
is following

I(z) = (27r)%x$_%e_”

1
1+ o(z)], (larg(x)| < 7 |z| = o),
and its result for |T'(¢ 4+ i¢)|, (§,¢ € R) is

(3)  |D(E+iQ)| = (2m)2|¢[E2e ¢/

1+ 0(%)] (I¢] = o0).

DEFINITION 2.3 The Caputo derivative of order ¢ € C, (R(s) > 0) for a function
h:[0,00) = R can be written as

Dh(z) = ﬁ /O Z(z —0)" <" (9)dp.
Lemma 2.1. For¢ € C, (R(s) > 0) the general solution of the fractional differential
equation Dv(z) = 0 is given by
v(z) = di+dez+ dsz? + - +dp_12" 8,

where d; € R, 1 =1,2,...,n— 1(n = [R()] + 1).

In view of Lemma 2.1, it follows that
ID(z) = w(z)+di+doz+d32® 4+ dy 12"
for some d; € R, i=1,2,...,n—1(n=[R(s)] +1).
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Further, we proceed by furnishing a lemma which supports the continuation of
the problem.

Lemma 2.2. For hy, hy € C[0,1], the solution of the linear system of fractional
differential equations

(4) { Du(z) = @1(2), z€J, a =& +ic,
D2w(z) = ha(2), z€3J, ©=~E& +iCy,
for2 < &1,6 <3, (1,( € RT and supplemented with the boundary conditions (2) is

equivalent to the system of integral equations,

v(z) = /OZ w;ﬂ(@)d@ — Dy(2)T2(v) + [P3(2) + 1]T1(w)

L'(s1)
01 _ <2 2
+q(z [71 i (01 29_1 Q(Q)dé}
52 _ <1 -2
+05(2) 1o / ‘; i~ (0)d0)
+5(2)] /0 a-oo™ (0)d9]
1
(5) —®y(2) [ /0 (9)d9}
and
2 — )21,
w(z) = /( Ci) ha(0)dh — @7(2) 01 (w) + [Ps(z) + 1]Ta(v)
51 §2 —2
~B5(2) {a,l e _1 2(9)d9]
62 <1 2
_‘I’e {“/2/0 §1 — 1 1(9)d9}
B ta-gt 0 a1,
e [/0 fn (60)do]
1 _ s2—1
(© o) [ U5 9) ha(6)d6]
where
—22 K Z—ZQ Ay 2—22
By(z) = "“(ZA ) () = Q(A ) y(2) = 3(A )_.,
ka(z — 22 K (z — 22 Koz — 22
(134(,2) _ 4(A )’ (1)5() _ I(A )’ (1)6(2) _ 2(A )’
) _ my(z=2?)
(7) Pr(2) = A Bs(2) = N
K1 = Ag—Agya, Ky = Agy — Ag,

(8) Ky = Agl1, kg = Agiy,
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Kio= A=Ay, Ky = A — Ay
9) Ky = A1, kg = Mh, Y = 1—mm,
Ay = U1+ 277202, Ax = 27y,
(10) Ay = 2mb, Ay = 91+ 211720,
and
(11) A = AN, — AA£0.
Proof. Solving the fractional differential equations (4) in a standard manner, we get
4 <1 1
(12) u(z) = /% 1(0)d0 + by + byz + bg2?,
0 ['(s1)
(-0,
(13) w(z) = / L ho(0)dO + by + b5z + bg2?,
0 I(c2)

where b; € R, j =1,2,...,6 are arbitrary constants. Using the boundary conditions
(2) in (12) and (13), together with notations (7)-(11), we find that b; = ¥y(w),
by = ¥s(v) and

01 51— )22,
(14) by — 71bs — 2710106 = 71/ %hz(ﬁ)d(),
0 —
02 (5, — p)1—2
(15) bs — vaby — 2720203 = 7o %hl(ﬂ)dé),
0 —
-yt
(16) by +b3 = —Uy(w)— / % 1(0)dd,
(1 )2 1,
(17) bs+be = —Wa(v / Q) ha(6)d6.

Solving the system (14)-(17) for bq, b3, bs and bg, we get

by = %{m'ﬂ(/jl %ﬁg(@)dﬂ)

+f<;2”/2(/062 %ﬁl@)d@)

i)+ [ )]
[ [+ [ o]

F(<1)
o1 (5 )
b= gl ﬁ

f-zz”/z(/o(52 %ﬁl(ﬁ)dﬁ)

4 (Wa(v) + /0 1 U;(ﬁ%(@d@)

)

s (Wa(w) + /01 %ﬁl(ew)},

1 hQ(e)de)
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= gl GG )

_@72(/052 Mﬁl(@d@)

(s —1)
1 ¢1—1
—H;,(q/l(w) + /0 %ﬁl(@daﬂ
i+ [ Ao

be = %[K&%(/jl %52(9)6&9)

+n’272( /O 52 (513(; 9_)_<;)2 iu(e)da)

(161,

sy (w0 + [ Rt D i(0)a0)

/ YA -0yt
—hy (‘I’z(v) +/0 th(@d@)},
where ®;(2) (i = 1,2,...,8), ki, Ky, (i =1,2,3,4), A, A, (i =1,2), A are given by
(7)-(11) respectively. Substituting the values of b;, (i = 1,2,...,6) in (12) and (13),
we get the solutions (5) and (6). This completes the proof. O

3. EXISTENCE AND UNIQUENESS RESULTS

In this section, we shall obtain the existence and uniqueness results of the bound-
ary value problem (1) and (2).
We define spaces U = {v : v € C(J,R)} and W = {w : w € C(J,R)} equipped

respectively with norms ||v|ly = |[v| = sup |v(z)] and ||w|lgy = [|w|| = sup |w(z)].
z€[0,1 z€|0,

Obviously, (T, ||-|lw) and (20, ||-||lsw) are Banach space and consequently, the product
space (U x W, || - |lwxaw) is a Banach space with norm ||(v, w)|lgxw = ||v||ly + ||w] 2w
for (v, w) € WxW. In view of Lemma 2.2, we define an operator & : B x W — LV xW

(18) &(v,w)(z) = (B1(v,w)(2), B2(v, w)(2)),

where

Z(y s1—1
&1 (v, w)(z) = /O%hl(e,v(e),w(e))de

—®4(2)¥2(v) + [P3(2) + 1] 1 (w)
81 _ f)s2—2
+81(2)[n /0 OO (6, 0(6). w(6) ]

(e —1)
02 _ p\s1—2
+®3(2) [vz /0 ((?(q—e)l)hl(&vw),w(@))dé)}

1 _ ¢1—1
~a(2)] [ %m(e,vw),w(e»de)}
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1 _ Go—1
(19) 0,2 /0 %hg(e, o(8), w(0))d8

z— )2t

@) = [ L halo.0(0) w@)as

—07(2)W1(w) + [@5(2) + 1]W2(v)
01 _ P22
~as(:)[n [ %hg(e,v(e),w(e))de]
02 _p)s1—2
e [ a6, ot6), (o))

L1 -2t
=iy 0. 0(0) w()]

1 _ Go—1
(20) () [ /0 %hm, (8), w(@))d@].

In the forthcoming analysis, we need the following assumptions:
(211) The continuous functions ki, hy are defined from J x R? to R and there exist
constants v; and o; > 0, i = 1,2, 1y > 0,09 > 0 such that V p; € R, i = 1,2, we
have
|h1(z, p1,p2)| < vo + v1|p1| + valpal,
\ha(z, p1,p2)| < 00 + o1|p1] + o2|p2l.
(/A2) The continuous functions ¥y, Uy are defined from C(J,R) to R with ¥1(0) =
Uy(0) =0 and there exist constants p;, i = 1,2, we have
[P1(w)| < prflwll,  |P2(v)] < pellv]-
(23) The continuous functions ki, hy are defined from J x R? to R and there exist
positive constants &;, @l i = 1,2 such that for all z € J and p;,¢; € R(i = 1,2), we
have
h1(2,p1,p2) — ha(2, 41, ¢2)| < Gulp1 — @1 + S2lp2 — g2,
|ha(2,p1,p2) — ha(2, q1,q2)| < Gilp1 — q1] + Salp2 — g2l
(A4) The continuous functions ¥q, Uy are defined from C(J,R) to R with ¥1(0) =
Uy(0) =0 and there exist constants v;, ¢ = 1,2, such that V p; € C(J,R), i = 1,2,
we have
[T1(p1) — C1(p2)| S vilpr —paf,  [Wa(p1) — Pa(p2)| < v2lp1 — pal.
To avoid computational complexity,

= (P4 Q1)1+ (Bo+ Qo)or + Daps + [1+ D) pa,
ty = (P1+ Q1)+ (Pa+ Qoo + [1+ slpr + Drpy,
and
(21) U = min{l—ty,1— 8},
where
P = 1+ ®s] n Dyyp05 " P, = 3, Byvy,08 71

&) (G -1)I(a—1) &l(w) (b= 1Dl(e2— 1)
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? Pgy205 1+ P5vy,6827
a - T Do Q, — L+ %s 57107

Gl() (& -1 —1)’ &l(e2) (o= 1l (e—1)

Lemma 3.1. Let & : § — § be a completely continuous operator (i.e., a map
that restricted to any bounded set in § is compact). Let x(&) = {v € §F: v =
e®(v) for some 0 < e < 1}. Then either the set x(§) is unbounded, or § has at least
one fized point.

Theorem 3.2. Assume that (1) and (2Az) holds. Also let us understand that Ly <
1, and iy < 1. Then there exists at least one solution for the boundary value problem

(1)-(2) on 3.

Proof. First we show that the operator & : Ux2J — U x2W is completely continuous.
Note that & is continuous, since the functions h1 and ho are continuous.

Let 2 C *U x 20 be bounded. Then there exist positive constants &, , €;,, &y, and
€y, such that |hi(z,v(2),w(z))| < €, and |ha(z,v(2), w(z))| < Ep,, ¥ (v,w) € Q,
|1 (w)| < €y, and |Va(v)| < Eg,, ¥ (v,w) € C(J,R). So, for any (v,w) € Q, we
have

61 (v, w)(2)|

IN

z (Z _ g)qfl
/O gy (6, 0(0), w(6))las

+04(2) [ U (0) + [B3(2) + 1|01 (w)|

01 _ f)s2—2
sa(e) o [ LD a6, 0(0), (o))

(o - 1)
vaa(e) o [ O 0,000 w0 0]
1 Bs(2) [/01 %ml(e, o(6). w(0))]do]
+B4(2) [/01 %Mg((),v(ﬁ),w(ﬁ))d()}

< Zu Z(z — )50 + Dy(2) g, + [P3(2) + 1]Ey,

—
~—
A
—
S—r
[==}

¢ 02
()T [A,Q (6s — 9)51‘2d9}
0

(s —1)

1
+<1>3(Z)F€(Z;) [/0 1- 9)51*1d9]
+<I>4(z)F€(Z;) [/01(1 - 9)52*1519}

<€ P+ € P + &)4(‘3\1/1 +[1+ ‘/1\)3]@\112-

In the same way, we obtain

& ZZ_ &2-1
G < f [ -oea

+®7(2)Cy, + [Ps(z) + 1]Ey,
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€h2

e [vl / 9)&~ 2d9]
e _&1’3 [’m /0 02 )51~ 249}
<I>7F(§1(’3h1 [/0 gy 1d0}

( )ehz / £a—1
4R L) g)eeLg
I'(s2) { 0 ( ) }
< €y + €, Q1 + 1€y, + (1 + By,

Thus, it follows from the above inequalities that the operator & is uniformly
bounded. Next, we show that & is equicontinuous. Let 21,29 € J with 21 < zo.
Then we have

|81 (v, w)(22) — 1 (v, w)(21)]

/Zl (2 =) = (2 =) 1] hi(6,v(8), w(6))do
0

= L(s1)

. /Z"’ (/22“49)“1 ha (0, 0(0), w(0))do

S1)
+|¢‘4(ZQ - 21)‘@\1;2 + |¢‘3(ZQ - z1)\(‘3q,1

e =2l [ = a0, 000) w0 )

02 (65 — 0) 2
+Heal - )| e Fq_n|m&wwwwmw}

1 gl 1
H®s(22 — 21) /0 Q=0 (0, 0(6), w(6)|ds]

|

Hou =l [ U5 ”1mww>wﬂ
2
2

[(22—21)Z(z _zl)} X{ [52(18‘}(122) L ey ]

&p, K1€h2715§2_1
€1F( 1) (o= 1DI(2—1)

ko€, 7205 _ Ep,
+—(£1 ~ (e — 1) } + (22 — #1) [£1F(<1) + qu;l}

¢
Eriy 22— 2% + (5 =)

Analogously, we obtain

1B2(v, w)(22) — G2 (v, w)(21)]

21 (g — -1 _ 21— 2l
/0 e F(Q() L= O L (6, 0(0), w(6))d8

IN

+53{ + @%} +

<
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. /w ha (6, 0(0), w(6))d0

I'(s2)
+[@7(22 — 21)|€y, + [Ps(22 — 21)|€u,

01 (51 _ 9)<2—2
+[®5(22 — 21)| [’Yl/o F(T—l)

d2 _ f)s1—2
+|‘I>6(22—21)|{72/0 (297

(6, v(6), w(6)| 6|

(6, v(0), w(6)| o

[(s1—1)
1 _ c1—1
+|®7(z0 — 21)] [/0 %Ihl(e,vw),w(@)ldﬂ
1 _ Go—1
#los(ea = ol [ [ E— hato.0(0), w00
2
2

IN

29— 2 22 — 23 / .
{( 2 1)2( 1)] x {ﬁ4[£ﬁ+e@2}

€ Ky Cpyy1 05
+h3| = + €y, | + e ——
"3 [€1F(<1) %} (= 1)I(s2 — 1)

y €1-1
rey €y 1203 } + (22 — 21){ Cha + (’3\112}

(61— Dl —1) §al'(2)
6hz > 2 2
&T() [2(22 — 21)% + (25° — 2§*)].

Therefore, the operator &(v, w) is equicontinuous, and thus the operator & (v, w) is
completely continuous, by Arzela-Ascoli theorem. Finally, it will be verified that
the set A = {(v,w) € V x W|(v,w) = 76(v,w),0 < 7 < 1} is bounded. Let
(v,w) € A, then (v,w) = 7®(v,w). For any z € J, we have v(z) = 761(v, w)(z),
w(z) = 765(v, w)(z). Then

w(z)] = [7&1(v,w)(z)]

(o + ol +rvelwl) (% ge-1

(o) /0 (z—6)571dg
+P4(2)p2v]l + [®3(2) + 1] p[|w]]
91

+<I>1(z)(<fo ;(?21!1)!)-% aaljw||) [71/0 (&) — 0)52—2(19}
+<I>2(z)(uo;-(;1!v|1)+ vollwl|) {72 /062(52 _ g)él—zda]
L B5(2)(m +Fu(1 §||1)| + vafw]) { /01(1 — o)
L 24(2)(00 +Pg(1 C||21))|| + oawl) [ /01(1 ~ p)etay]
(ro + vil|v]] + v2llw[)P1 + (o0 + a1 l|v]l + oafw]]) B2

+@4pa|vl] + [1+ B3] pr ]

IN

IN
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and
lw(z)] = [r&s(v, w)(2)|
(90 +orf|vll +oalwl) (% pe
I'(c2) /0 (e = 0)%dd
+@7(2)prllw] + [Rs(z) + 1p2|v]|
P5(2) (00 + o1 [v]| + o2flwl) o -
+= Or(czl— 1) 2 [71 , & -0 2d9}
D6(2) (o + mlv]l + valwl) o -
) [”2/0 (32 = 6)°+~2s)
1
+<I>7(Z)(Vo +II‘/(1§||1?;|| + vaw|) [/0 (1- 9)51—1(19}
+<I>8(Z)(Uo +1f(1<|27)1| + aallwl|) {/01(1 _ 9)52—1(19}
(00 + a1]lvll + o2]lw])Q2 + (1o + vi|[v]| + vellw])Q

+&7p1 o]l + 1+ Bslpallo]l

IN

IN

Hence we have

vl < (v + wiljv]| + vallw]))B1 + (o0 + o1l[v]| + o2[w]) P2
+®@4palv]| + [L + P3]p1||w]|
and

[[wll

IN

(00 + a1[v]| + o2l|w])Q2 + (vo + v1|[v]| + v2||w])Q:
+®7p1 [[w] + [1 + Bs]pav]l,
which implies
vl + [lwll < (P +Q1)vo + (P2 + Q2)o0
+((‘431 +91)1 + (Po + Qo)or + Bapa + [1+ 3’8]/)2) [[v]l

+((’1§1 + Q1) + (P + Qoo + [1+ Bslpy + 57/)1) [[w]]-
Consequently,
(P11 + Q1)ro + (P2 + Q2)00
11

for any z € J, where il is defined by (21), which proves that A is bounded. Thus, by
Lemma 3.1, the operator & has at least one fixed point. Hence the boundary value
problem (1)-(2) has at least one solution on J. O

(v, w)|| <

b

ExaMPLE 3.3 Consider the coupled fractional differential equations of complex
order given by

8. tan~lz  sinw(z) w(z)|v(z)| N

@ E +’L = b b

(22) PR =17 9150 205(1+ [o(z)]) v
CD%“w(z) sin z cosv(z) tan™t w(z) Lea,

T 3v/Z T o5 1801+ w(2) | 9viioon
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subject to the boundary conditions

0(0) = —~w(z), (0) =mw (6), v(1)=0,

(23) 100 / /
w(0) = mv(z) w (0) =vyv (02), w(l)=0.
Clearly, hq, hy are continuous functions. Now, we get
1 1
< 4
(@@ < 5+ 150” o+ el
1
h < =4+ —
oz, v, 0| < g+ gslol + ol
Here, 4 =3, & =2 G0,e=1,p1 = % pPr=1 - N=5 V=1 0=3% 6=23

_ 1 S 1 1 1 1 1
Yo = 13> Y1 = 1500 Y2 = 32755 00 = 155 91 = 1807 92 = 225-

In view of relation (3), since [I'(¢1 +14)| > 1 and |['(¢2 +¢)| > 1. With the given data,
we find that { = min{1 — 44,1 — s} < 1. Thus, the assumptions of Theorem 3.2
holds and the problem (22)-(23) has at least one solution on J.

Next, we shall roll the ball towards the uniqueness of solutions using the Banach
fixed point theorem for the problem (1) and (2).

Theorem 3.4. Assume that (As3) and (A4) holds. Also let us understand that
R = (614 6)P1 + (61 + E2)Pa + Byvs + [1 + B3]uy,
R = (é1 + (%2))32 + (61 4+ 62) + drvy + 1+ E’g}vz,

then the boundary value problem (1)-(2) has a unique solution on J.

Proof. Define sup |hi(2z,0,0)] = M3 < oo and sup |ha(z,0,0)] = My < oo and
z€[0,1] z€[0,1]
choose a positive real number p, such that

0 > max{‘ﬁliml + Py 1My +szm2}

1-— % ’ 1— Ry

First, we show that 8B, C B,, where B, = {(v,w) € B x W : ||(v,w)| < o}. In
view of the assumption (A3) and (U4) for (v,w) € B,, z € J, we have

|h1(z,v(2), w(z))] < |hi(z,v(2), w(2)) — hi(z,0,0)| + |h1(2,0,0)|
< Gilv(2)] + S2lw(z)| + M
< G| + Gz w|| + My < (61 + G2)o + My,
and
Pi(w)] < wvlw]| <vie, [P2(v)] < vaflv] < va2o,
and

lha(z,v(2),w(2))] < |ha(z,v(2), w(z)) — ha(2,0,0)| + [ha(z,0,0)|
< Gyfjv]| + Gaflw|| + My < (&1 + G2)0 + Ma.
This guides to
(2 — @)1t
G1(v,w)(2)] < sup 5 ([h1(6, v(0),w(0))
ze0,1] | Jo (1)
_h1(07 Oa 0)‘ + ‘hl(ga Oa 0)‘)(10
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IN

<

<

() [Wa(0)| + [Bs(2) + 1) T (w)
01 _ )22
@) [ %(hm,vw),w(e»

—hy(6,0,0)| + |ha(6,0, 0)|)d9}
02 (52 _ 9)(1—2 /
()0 [ (0,006, w(0)
—h1(6,0,0)| + |h1(6,0, 0)|)d9}
O
+03()| [ S 0.0(0) w(6)
—h1(8,0,0)] + |h1(8, 0, 0)|)d9}

1 _ Go—1
()] [ = (ha(0.006), (o)

—hy(6,0,0)] + |ha(8,0, 0)|)d9] }

(&1]lv] + Gaf|w| + M) [*
r(ﬁ) 0
+@4(2)v2v|| + [@3(2) + v ||lw]|
B1(2)(S1]|v]| + Golfwl| + 9Ms) /0‘1 2
+ 51— 0)27249
o= [710 (61— 0)%2df]
+(I>2(Z)(61HU|| + GQHTUH -l—ml) |:r>/2 /52 (52 — 0)51—2 9}
INSEERY 0 d
O3(2)(S1||v]| + Sa2f|w| + M) /1 -1
1— 05 1q0
F(q) { 0 ( ) }
D4(2)(S1]v]| + Saflw]| + M) / &1
+ 1—0)%2 149
(S1[v]| + Sallw|| +M1)P1 + (S1]|v]| + Salwl| + Nz)Po
+®@qva|[v]| + [1 + @3]vq ||w]|
Rir + P10 + P My < p.

(z—60)"1do

_|_

In the same way, we obtain

Ga(v,w)(2)] <

su ’ 7('2 — 07 v w
sup { | Em—(thafo.v(0).w(0)

z€[0,1]
—h2(6,0,0)| + [h2(6,0,0)[)d0
+®7(2) U1 (w)| + [@s(2) + 1]| T2 (v)]

01 _ p)s2—2
ss() o [ e D a6, o), w6)
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02 _ p)si—2
so(e) [ [ L (6.0, w6)

—h1(6,0,0)| + |h1(8, 0, 0)|)d9}

1 _ p)s1i—1
()| /0 %qm(e,v(e),w(@))

—h1(6,0,0)] + |71 (6,0, 0)|)d9]

1 _ p\s2—1
sa(a) | [ B hato. v(0),00)

—ha(6,0,0)| + |h2(8, 0, 0)|)d9} }

VAN

(Suflvll + Saflw] + D) (7 ey
T() o
+@7(2)uaw] + [2s(2) + Loallo]

<z><61|§|(| ;6;||w|\+imz / (51— 0)5+~2]

+<I>6(z><61|g|(|q+ _6;)||w| +ML, /0 (52 - 0)5 28]
+<I>7(z><61|\v||F ?§§2Hw| il /01(1 — )¢ ~ag]
<I>s<z><€51|v||F f)gnw ) /01(1 ~ 6) 1]

< (Giflofl + Saflwl + M) Qs + (S1|v] + Sa|w]| + M)

+0701[|w] + [1+ Bglva 0]
< Ror 4+ QoM + 0190 < p.

In view of (23) and (24), it follows that

|h1(9,v1,w1) —hl(ﬂ,v2,w2)| < (‘51”1)1 —7}2” +62||w1 —w2||
Wy (w1) = Wy (wa)] < wrflwr —wal|,
|ha (6, v1,w1) — ha(0,v2, we, we)| < é1||’U1 — vg| +(%2||w1—w2||
[Wa(v1) — Ya(vz)] < wallor — vel|.

Now for (va,ws2), (v1,w1) € UV x W, and for any z € J, we get
&1 (v2, w2)(2) — 1 (v1, w1)(2)|

Z( )§1 1
= /0 61) |h1(0,v2(0), w2(0)) — ha(0,v1(0), w1(0))|dO

S T(q)
+®3(2)|¥1(v2) ‘1’1(01)|+[q>4( )+ 1[Wa(w2) — Wa(w1)]

+1(z [ /0 Rl 2|h2(9,v2(9),w2(9))—hQ(e,vl(e),wl(e))\de]

g—l
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#23(2) [ 2= 0,00, 03(0) — 6,020,010 ]

T 1)
+3(2) [/01 %hl(e,w(e),wz(g)) 1 0) 10 0]
#0u(2) | [ 00209, 102(00) — . 0 0) 010 ]

< Cluulesdn ol [ gx
F®5(2)v1][va — v1]| + [Ba(2) + 1Jva|ws — w1
+F(q;17(_z)1)(é1|7)2 — ol + &sllwa — wn ) [ /051 (0~ 0e~2as]
+F(q;f7(f)1)<el|v2 — il + Salws —wal) [ [ " - 0520
+<1>3()(1)(61|v2 v1]| + &aflwz — wil|) /(1_ g)6i 1d9}
JFF(()(Gllvg—m+62|w2 wi) /(1_9)& ]

< (S1]ve — vi]| + Galfws — wi[)P1 + (S1[va — v1]| + Saf|wa — wi]|)Ba
+&3(2)v1vz — vi]| + [Pa(2) + Lvz[lwz — wi |
< Ri(|Jve — v + [[we — wil]),

and consequently we obtain

(24) [&1(v2, w2)(2) — B1(vi,w1)(2)|| < Kai([Jva —v1]| + [[wg — wi).
Similarly,
(25) [B2(v2, w2)(2) — Ba(vi, w1)(2)|| < Ra([lva — v + [[wa — wi).

It follows from (24) and (25) that
[&(v2, wa)(2) — B(vr,wi)(2)[| < (81 + Ra)([[vz — v1 + [Jwa — wal]).

Since (R + R2) < 1, therefore, & is a contraction operator. So, by Banach fixed
point theorem, the operator ® has a unique fixed point, which is the unique solution
of the problem (1)-(2). O

ExXAMPLE 3.5 Consider the coupled fractional differential equations of complex
order given by

Q%-Hv(z) =2+ p(Z) SIHQ(Z) , 63,
(26) 4\/22+4( )3\/164‘? )
74 ) cosp(z cosq(z
D3 (z) = sin z + + , Zz€73,
=) V22 +81 13
subject to the boundary conditions (23).
Using the given data, it is found that &; = %, Gy = i2 GH %, (G %, v = %,

_ 1
U2 ._ m' . .
It is clear that hp, he are continuous functions. Now, we get
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|h1(2,v1,v2) — hi(z, w1, wa)| < %\01 —w| + 1—12|v2 — wal,
|ha(z, v1,v2) — ha(z, wy,ws)| < %\vl —w| + 1—13|v2 — wal.
With the given data, we get

22 (% - %) 56
fa = 0.0400791 + 7= 303 +4)  2050(3 +14)
L3 4 P S O
241123V30(3 +4)  AIT(3+4) 8205 +14)
9 72

5
R = 0.0426895 + — n |
24205 x T3T(4 4+4)  14350(5 +1)

(- )
22 | T\%  yix73 2448
17| 4AT(5 +4) 1435L(% + 1)

Thus, the assumption of Theorem 3.4 holds and hence the problem (26) with the
boundary conditions (23) has a unique solution on J.
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