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EXTENDED FORMS OF
LEGENDRE-GOULD-HOPPER-APPELL POLYNOMIALS
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ABSTRACT. In this article, the extended class of Legendre-Gould-Hopper-
Appell polynomials are introduced using integral transform and opera-

tional method which are fairly useful tools to deal with new families of

special polynomials. Some important properties including operational

representation, generating function, series definitions, determinant def-

inition and some other identities of this class are established. Certain

members of extended Legendre-Gould-Hopper-Appell polynomials are

also considered.
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1. INTRODUCTION AND PRELIMINARIES

Fractional calculus with integral transforms has emerged as an important
interdisciplinary subject during the last four decades mainly due to its appli-
cations in various fields of science and engineering. The most interesting and
useful applications of the combined use of integral transforms and fractional
derivatives are establishing new generalizations of hybrid type polynomials
3, 9, 8].

One of the starting point of the theory of fractional operators is the opera-
tor raised to a fractional power which was given by Srivastava and Manocha
[18] and the possibility of using integral transforms to deal with fractional
derivative in a wider context is discussed by Dattoli et al. [9, 8], that is the
identity (called Euler’s integral)

(1) = /Oo e % vl de.
I'(v) Jo

The fractional operators can be treated as an efficient way by combining
the properties of exponential operators and suitable integral representations.
The class of Appell polynomial sequences [1] is one of the interesting and
important classes of special polynomials. The Appell polynomial sequences
have been an active research area since they have many applications in an-
alytic number theory, approximation theory, theoretical physics and several
other mathematical branches. The recent applications of Appell polynomials
in probability theory and statistics are considered in [2, 17]. The generalized
Appell polynomials as tools for approximating 3D mappings were introduced
for the first time in [15] in combination with Clifford analysis methods. The
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representation theoretic results like those of [4, 14] provide new examples
of applications of Appell polynomials and gave evidence to the central role
of Appell polynomials as orthogonal polynomials. Representation theory is
also the tool for their applications in quantum physics as explained in [19].
The set of Appell sequences is an abelian group under the binomial con-
volution. The Appell polynomials are defined by means of the generating
function

) A eap(at) = 3 Anfa) o
m=0 !
Here
(3) A =D An s Ao £ 0
m=0 :

is an analytic function at ¢ = 0 and A, := A,(0) denotes the Appell
numbers. It is directly seen that for any A(t), the derivative of A,,(x)
satisfies

(4) A (@) = mA i ().

The class of Appell sequences contains a large number of classical poly-
nomials sequences such as Bernoulli, Euler, Genocchi, etc. Recently, certain
new classes of hybrid special polynomials related to Appell sequences are
introduced and studied [13, 10, 12, 11, 20]. These hybrid polynomials are
important due to the fact that they posses important properties such as
differential equation, generating function, series definition, determinant def-
inition, etc.

Recently, Yasmin et al. have introduced the Legendre-Gould-Hopper-
Appell polynomials (LeGHAP) ) Am(2,y,z) which are defined by the
following generating function [20]:

(5)  AW)exp(=t?) Colat) Col—yt) = 3, sy Am(, 9, z)’%,
m=0 :

where Cp(x) denotes the Tricomi function of order zero. The m!* order
Tricomi functions C,,(x) are defined by means of the generating function

e}
T m
(6) ea:p(t - ;) =3 et
for t # 0 and for all finite x and are defined by the following series [18]:
o0
(1) &
7 C = I r— =0,1,2,...
() m(m) ;3' (m+8)'7m Pt Nl .
The series definition of the LeGHAP _ ) Am(2,y, 2) is given as:

(2] ,
ULR (_1)k$kZlAm*Sl*k(D 1)
©)  aerAnleyz) =ml Y3
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or, equivalently

m 5] Y™ sl— kA
9) rHOAm(T,Y, 2 ZZ l((kl m— sl — kl)(.);'

The LeGHAP e Am(x,y, z) satisfy the following differential equation
(10)
(_ pot 0 P o A'(DyyD,)

+D;! +sz -n 9An(z,y,2) =0,
aD, "~ Y oD, oy-19D, . A(DyyD,) oD, )RH” (@,2)

a __ 0
where D (‘9z’ W = szaz’ n{].} = z_'

Also, the LeGHAP RH(S).Am(x, y, z) are defined by means of the following
operational representations:

W) eAnes) = eon(s50= ) eAnz ),
1) o Anen2) = e (107250 ) tndu(o).

where p Ay, (z,y) are the 2-variable Legendre-Appell polynomials (2VLeAP)
[20], defined by means of the generating function

oo tm
(13) A(t) Colat) Co(—yt) = ) rAm(2,y)

m=0

s)
The Legendre-Gould-Hopper polynomials £ M

of the following generating function [21]:

are defined by means

oo s) m

Hy'(z,y,2)t
(14) cap(at) C(at) Co(—yt) = 3 W B0 D
m=0 ' ’

and operational representation of the form
(s) S
rHm (z,y,2) 0 Ry (z,y)
(15) e exp(zaD_s - .

The 2-variable Legendre polynomials R,,(z,y) are defined by the following
series [7]:

m
1 - m T

1 P2y T
m Rutao) = S5
and specified by the generating function

>\ Ry (z,y) t™
a7) Coat) Co(—yt) = 3 B T

m=0

Further, we recall the following identities [16]

(19) (1o =y Wm T
m=0
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(19) m k= O
(=m)y
(20) > > B(k,m)=>_> B(k,m—k).
m=0 k=0 m=0 k=0

Further, for some choices of the indices and variables, the LeGHAP
wi @ Am(,y, 2) reduce to certain special polynomials which are mentioned
as special cases in Table 1.

TABLE 1. Special cases of the LeGHAP | () An(z,y, 2)

S. | Values of the indices | Relation between LeGHAP RH(N]A,,(;zr,y,z) Name of the

No. | and variables and its special case special polynomials

1. z2=0 ”H(,,A,,,,(;zt, y,0) = pAn(2,y) 2-Variable Legendre based
Appell polynomials (2VLeAP)

11 2-Variable generalized
s=n;y=0,2—y ”H(,,)A,,,,(;zz, 0,y) = [”][_A,,,(;zr, y) Laguerre type based Appell

polynomials (2VGLTAP)
111, s=2,2=0, ”Hu)A,,,,((). z,y) = ¢Am(z,y) Hermite type based Appell

YT,y polynomials (HTAP)
V. s=1uz— (I_T')‘ RH(HAm(%, %,()) = pApn(x) Legendre based Appell
y— (H2), 2 =0 polynomials (LeAP)

In the present article, the extended forms of Legendre-Gould-Hopper-
Appell polynomials are introduced and discussed with the help of fractional
operators. In Section 2, the extended Legendre-Gould-Hopper-Appell poly-
nomials are introduced by means of the operational representation and gen-
erating function using Euler’s integral and operational rules. In Section 3,
the determinant definition of extended Legendre-Gould-Hopper-Appell poly-
nomials is established. In Section 4, certain members of these polynomials
are also considered as special cases.

2. EXTENDED LEGENDRE-GOULD-HOPPER-APPELL POLYNOMIALS

In this section, we first establish an operational representation between
the extended Legendre-Gould-Hopper-Appell polynomials and Legendre-
Appell polynomials by proving the following results:

Theorem 2.1. The following operational representations between the
ELeGHAP () Am o (,y, 2) and 2VLeAP prAp(x,y) hold true:

as —v
(21) [a -z } RA(2,9) = g Amu(,y, 25 0),

(22) [a - Z(—l)s—} RA(2,Y) = | g Amu(,y, 25 a).

Proof. On multiplying both sides of equation (1) by g(x,y) and then replac-

ing a by [a —Z3 gs_s] in the resultant equation, we get
Y
(23)
o° 17 1 o0 o o5
- = —af qv—1 de.
[a zaDy_s] g(z,y) e /0 e ¢ exp(z&aDy_s)g(m,y) 3
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Further, taking g(z,vy) = rAm(z,y) in the above equation, we get
(24)

o] e = s [ e e (0 ) rnton) de

9Dy * (v 9Dy *®
which on using operational relation (11), becomes
oA _
(25) [“—ZaDS] rRAR(2,Y) U)/ e e o Am(@,y, 2€) dE.
y

Now, we note that the integral transform in the r.h.s. of equation (25)
generate a new special polynomials. Denoting these polynomials by
RH(S)Am,U (‘Tv Y,z (1), we get

1 o0
(26) RH(S)Am,v(xa:’J’Z; a) = () /0 e ot fU_IRH(s)Am(I,y, z€) d€.

Finally, in view of equations (25) and (26), we get assertion (21). Us-
ing a similar argument as in the proof of assertion (21) by making use of
operational identity (12), we get assertion (22). O

Theorem 2.2. For the ELeGHAP _ () Am (2, Y, 2; @), the following series
formula holds true:

m! i (V)r(— ZAm si—k(Dy 1)
(27) H(S)Am o(Z, Y,z a) = ZZ kl' k' S AT

k=0 =0

Proof. In view of series definition (8), equation (26) becomes
(28)

(-1)rz Z-Am sl— k(D DT e porket
RH( 9Am oz, Y, 25 ) I‘(L) ZZ (kD2 (m — sl — k)! /0 e 3 dg.

k=0 1=0

Now, using equation (1) in the r.h.s. of equation (28), yields to assertion
(27). O

Theorem 2.3. The following generating function for the ELeGHAP
wHOAm(T,Y, 23 0), holds true:
A(7) Co(z7) Co(—y7)

(a0 — z78)v

o m
-
= Z RH(s>Am,u($,yyz;a)m~

m=0

(29)

Proof. On multiplying both sides of equation (26) by :n—n: and then summing
up over m, we get
(30)

Z rH( )~’4’mv(m Y,z a m' - ’U)/ 70‘5 61) 1< HH(S)A ($ y,Z{) >d£a

m=0

which in view of equations (1) and (5), becomes

(31)
2 (0)(2€5)F
m= 0 o |

Finally, using identity (18) in the r.h.s. of equation (31), yields to asser-
tion (29). O
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Theorem 2.4. The following explicit summation formula for the ELeGHAP
RH(s)Am’U(SL', y,2; ), holds true:
(32)

ii i n+k (U) " y" (Zf )TAm n— k

v 1(EN2(n!)2
o r=0 n,k=0 r(k) (TL)

AL (2,Y, 25 )

Proof. In view of equations (3), (7) and (31), we get
(33)

3 s Anslansia) o = 35 5SS I

m=0 m! m=0r=0n=0 k=0

m+tn+r

Next, replacing m by m — r in r.h.s. of equation (33) and then using
relation (20) in the resultant equation, we find

(34)
oo oo m

Z rHOAm (7,7, 2 a) ml - av ; ZZZ iy l(:ls(rzl) (’:!)g -

m=0 0 k=0n=0r=0

m—+n

Again, replacing m by m — n in the r.h.s. of equation (34), then using
relation (20) in the resultant equation, we get

(35)
m.om T, m s k m
kw Yy ( 5) m—n—r T
H(s )-Am ’U(z Y, z; a .
ZOR E:Okzog:ozo —“‘7‘)' ki(nl)2(r)?

Finally, using identity (19) in the r.h.s. of the above equation and then
equating the coefficients of :n—m, in the resultant equation, we arrive at asser-

tion (32). O

Theorem 2.5. The extended Legendre-Gould-Hopper-Appell polynomials
RH(S).Am’U(x,y, zy ) are defined by the series:
(36)

RH(S)-Am o(T,Y, 2 @)

1 = m)(V)n(28°)" A Ry 1 (, )
_UZZ:X:: k' n! (m — k)k e

Proof. The proof is direct use of equations (3) and (17) in the r.h.s. of
equation (31) and then equating the coefficients of % in the resultant equa-
tion. (]

Remark 2.6. Using a similar argument as in the proof of Theorem 2.1 and
in view of equations (1) and (15) we can drive the following operational

RHS) (2,,2:0) |
m! '

result for the extended Legendre-Gould-Hopper polynomials

o 0% 17V Ry (z,y) RHT(,,)v(a: Y, 2 a)
0Dy*® m! m!

Further, using a similar argument as in the proof of Theorem 2.3 and using
equations (1), (14) and (18) we can drive the following generating function

RHS (2,y,250) |
m! :

(37)

for the extended Legendre-Gould-Hopper polynomials
Co(z7) Co(~ X\ pHip(z,y,20) 7"
(38) O(IT) 0( yT) — Z R me(x Y,z O[) T

(o — z75)Vv — m! m!
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Theorem 2.7. For the ELeGHAP | (o) Am,o(2,y, 2; ), the following ex-
plicit summation formula holds true:

i ()™ (=m)n RHS) (@, 9, 2 @) Am_n

(39) RH(S)Am,1)($7 Y,z a) = (TL‘)Z

n=0

Proof. In view of equations (3), (29) and (38), we have

[e'e) m oo 0 (s) m—+n
CNTT rHp ’U(I Y, z; a)A’m T
(40) %Rms)z‘lm,v(%y, z; a)m = n;; (n)Z m! '

Now, replacing m by m — n in the r.h.s. of the above equation and then
using identities (19) and (20) in the resultant equation, we get

(41)
0 m > m n (s) m
E . T E E (_1) (_m)n RHnJ)(xv Y, z; a)Am—n T
— RH(-*)A7YL,U($7yazva)m - et (n!)Q W

Finally, equating the coefficients of jn—n: in the above equation, we arrive
at assertion (39). O

Theorem 2.8. For the ELeGHAP RH(S)Am’U(x,y,z;a), the following ez-
plicit summation formula holds true:
(42)

T (1) R (em) ke w A () RHS (@Y, 25 q)

RH(«*)Am,U(‘r> Y,z O[) = Z Z klnl( —n— k)'

n=0 k=0

Proof. In view of equations (2) and (38), we have

ur © (s) .
(43) A(T)e CO(xT) CO(_yT) — Z ZAIC(U) RHm,U(x’yvzva)T

(a —z7%)" k!(m!)2

m+k

Now, shifting the exponential to the r.h.s. and then in the resultant
equation replacing m by m — k in the r.h.s. and using equation (29) in the
Lh.s., we get

(44)
- o oo myn Ay (u) pHO M(x Yy, z; )T
mZORH( o Amo(2,y, 2 @) m) mZOnZO§ n!k!((m k)!)?

Finally, replacing m by m — n in the r.h.s. of equation (44), then using
identity (19) and equating the coefficients of :n—": in the resultant equation,
we arrive at assertion (42). O
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Remark 2.9. The ELeGHAP _ (o) Am,o (7, y, 2; a) satisfy the following dif-
ferential recurrence relations:

0
(45) WRH(S)Am,U(xv Y, z; (,Y) = _mRH(S)Amfl,v(xa Y, z; (1),
T

3]
(46) WRH(S)Am,U(xa Y,z CY) = mRH(S>-A’m—1,U(‘T7 Y,z CY),
Y

0
(47) &RH(S)AWL,U(:I’.a Y,z Ol)
=vm(m—1)(m—2)..(m - s+1), g An-sv1(2,y, 25 ),

(48) 8_aRH(S)Am,’U(x7 Y, z; Oé) = _URH(S)Am,U-‘rl(xa Y, z; (,Y)

Further, we have

o st 6s+1
(49) &RHu)Am,v(ﬂ?,y,Z;a) =(-1) WRH(S)AWL,U(-T’ZJ’ z ),
x
0 o

(50) %RH(S>Am,U(l‘7y7Z;O‘) = ?RH(S)AM,U(%‘vyaZ;a)'
Y

Cda o

Theorem 2.10. The ELeGHAP (s Amo(T,y, 25 a) satisfy the following
differential equation:

s+1
(51) <— D;lig1 +D," 841 — sz 0 —
oDy oDy, dadys—10D,
A/(Dnyy) 0

B 0 A 2y, z5a) = 0.
A(Dnyy) 8Dy_1 m) rH®) m,v(x Y,z (,y)
Proof. On replacing z by zt in equation (10), multiplying by ﬁe*af gv-1
and integrating the resultant equation w.r.t. ¢ with limits from 0 to oo, we
get
(52)

(7,3_1 O L p-1_0  ADywDy) 0 7m> 1
“op,t Y oDyt A(DyyDy) 8D, I(v)

/0 e o Am (2, y, 2€)d€

0° 1

+8z—m—
dys=1oDy ' T(v)

/ e &Yy Am(@, y, 2€) dE = 0.
0

Further, in view of equation (26), equation (52) becomes

(53)

4 0 ., 0 A'(DyyD,) 0
- D 1 D 1 Y Y _ . Co
( * oD,* Ty oD, ! * A(DyyD,) dD,* ™ ) i Amo (7,9, 75 )
S
+52UW3H(S)AWL,U+1 (z,y,2,a) =0,
y
which on using equation (48) yields to assertion (51). O

In the next section, we established the determinant definition for the
extended Legendre-Gould-Hopper-Appell polynomials _ () Am,o (2,9, 2; ).
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3. DETERMINANT APPROACH

The determinant approach is equivalent to the corresponding approach
based on operational methods. However, the simplicity of this approach al-
lows non-specialists to use its applications and it is also suitable for compu-
tation. In 2010, Costabile and Longo introduced the determinant definition
of the Appell polynomials [5, p. 1533]. In order to derive the determi-
nant definition for the extended Legendre-Gould-Hopper-Appell polynomi-
als (o) Am,o(,y, 23 ), we first establish the determinant definition for the
2-variable Legendre-Appell polynomials p A, (x,y):

Theorem 3.1. The 2-variable Legendre-Appell polynomials gpAn(x,y) of
degree m are defined by

(54) rA(,y) = % o = Aio’
1 Ri(z,y) w R?(n,fi(ir)r;y) Fon (2.9)
Bo B B2 Bm—1 Bm

(55) R.Am(z,y) = (;7)172::1 0 50 (%)’[31 (ml—l )[3":,—2 (T)ﬁm_l 7

o
0 0 BO (m;1 )Bm—B (?)6771—2
6 O 0 [3;0 (myi1 )31
Bm = *ALO (Z(?)Akﬁnz,_k) m=1,23,..,

k=1

where 8o, 81, B € R, B # 0 and Emle¥)(my — 0,12, ..., are the 2-
variable Legendre polynomials defined by equation (16).

Proof. The proof is the direct use of the identities [20, 21]

(56) i Am(2,9,0) = pAnm (2,y) and gHS (2,y,0) = Ry (2,y),

in both sides of the determinant definition of Legendre-Gould-Hopper-Appell
polynomials which was introduced by the authors in [20]. d

Next, we introduce the determinant form of the extended Legendre-Gould-
Hopper-Appell polynomials _ ) Amo (7,9, 2;@) by proving the following
result:

Theorem 3.2. The extended Legendre-Gould-Hopper-Appell polynomials
i@ Am (T, Y, 23 0) of degree m are defined by

1 s
(57) A (2, Y, 75 0) = %RH&(%Z/, zia), fo=—

497
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(58) RH(s)Am,v(-Ty Y,z a)

s ) 9,20 H(':) (@Y, 2500 () (2y, 250
L rH{)(@y,z0) 2RSS Rlacda Tt i Gose)
Bo B B2 fn—1 B
~ (Bo)mtt Bo (1B (") Bm—2 ("7)Bm-1
0 0 Bo ("3")Bm-3 ('2)Bm—2
0 0 0 Bo (me1)B1
1 m
Bm:_A_()(Z(Z‘l)Akﬂm—k)’ m=123,..,

G. Yasmin and A. Muhyi

k=1

() .
where fo, B1, ... Bm € R, By # 0 and EAmr @820 () (1 9 are the

m

extended Legendre-Gould-Hopper polynomialé defined by equation (38).

Proof. Taking m = 0 in equation (39) and in view of equation (54), assertion

(57) is proved.

Next, consider the determinant definition of the 2VLeAP given by equa-

tions (54) and (55).

(55) w.r.t. the first row, gives

()" Ra(z,y)
(Boy™T |0

AT

51
Bo

52 fgm—l 6m
(%)ﬁl (m1_1)/3m—2 (ql ),Bm—l
50 (mzil )6m—3 (gl )/))m—Q
0w B B
/7’2 ﬂm—l ﬁm
(%)61 (mfl)ﬁm—2 (ql)ﬁm—l
Bo ("3 )Bm-3 ('3)Bm—2
R N rap A
ﬁl ﬁmfl ﬂm
BO (m;l )5m72 (T)Bmfl
0 (7”2_1 )ﬁm—i& (?)Bm—2
0 A (A

Expanding the determinant in the r.h.s. of equation
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(=1*" " R 1 (z,y)

(Bo)mH (m — 1)!
Bo B B2 Bm Bo Br B2 Brm-1
0 B (DB o (T)Bm— 0 Bo (DB o ("M)Bm—2
X + R’m($7y) .
0 0 Bo v (B)Bm—2|  Bo)™mlio 0 Bo e (M31)Bm-s
000 0 . (MOm o0 0 . 5o

Since each minor in equation (59) is independent of x, therefore on ap-

plying the operator [a — Zag =]"" on both sides of equation (60), using
equations (21) and (37) and combining the terms in the r.h.s. of the resul-
tant equation, we arrive at assertion (58). O

4. EXAMPLES

In this section, we give some important examples as members of ex-
tended Legendre-Gould-Hopper-Appell family " g Am (T, y, z; ) such as
extended Legendre-Gould-Hopper-Bernoulli polynomials (ELeGHBP)
wiBmu(T,y, 25 ), extended Legendre-Gould-Hopper-Euler polynomials

(ELeGHEP) _ (s Em (7, y, 23 @) and extended Legendre-Gould-Hopper-Genocchi

polynomials (ELeGHGP) _ (s Gm,v (2,9, 25 ).

4.1. Extended Legendre-Gould-Hopper-Bernoulli polynomials. Since,

for A(t) = -, the Appell polynomials (AP) Ay, () reduce to the Bernoulli

polynomials (BP) B,,(x). Therefore, for the same choice of A(t) the ELeGHAP

i Am(T,Y, 23 ) reduce to ELeGHBP 1) Bm (2, y, 2; o) which in view
of the equation (29) are defined by means of following generating function:
7 Co(x7) Co(—yT)
(e7 —1)(a — z75)

o0 Tm
= Z RH(S)%TIL,’U(xﬁy7 23 O‘)W

m=0

(60)

In view of equations (21) and (22), the operational representations for the
ELeGHBP RH(S)%mﬂ,(x, Y, z; @) are given as:

o5 17"
(61) {CV - ZW] R‘Bm(%y) = RH(@%m,u(fE’y, 2;06)7
y
as —v
(62) |:O/ —z(-1)° aD_S] RBn(7,y) = g Bmw(T,y,2;0).

Further, in view of equation (32), the ELeGHBP RH(.q)‘Bmm(;r, Y, 2; ) are
defined by the series
(63)

k

1 & M m)n v xknzsr%m_n_
1 Bmo(2,7, 2 0) JZZ )" (=m)nsk (v)r 2 y" (26°)

(k! 12
o rI(kD)2(n!)

499
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The ELeGHBP | () Bmo(x, Y, z; ) satisfy the following recurrence rela-
tions:

(64) FRH@%WU(SIJ,% zia) = =M, s Bm-1,(2, Y, 2; ),
0
(65) FRH(S) %m,v(xv Y, z; O[) = mRH(S)%mfl,’U(x7 Y, z; Oé),
y

0
(66) &RH(-‘i)anz,u(xayv Z3 (Y,)

=vm(m—1)(m —2)...(m — s+ 1)RH(S>%m_S’U+1(:1:, Y, 2 )y

13}
(67) a_aRH“‘)%m*U(I’y’ zi0) = =U, g Brmu+1 (T, Y, 23 @),

Also, the ELeGHBP RH® Bmu (z,y, z; «) satisfy the following differential
equation:
o o as+1
(68) (— e R T P e
oD, ° 0Dy dadys~10D,
(Dnyy)(l — D.uD ) —1
€ yY L
(e(DyyDy) . 1)U - m) wH®Bma(T,y, z5a) = 0.

Further, we note that for 39 = 1 and 3; = H%,(z =1,2,3,...,m), the
determinant definition for the Appell polynomials reduces to determinant
definition of the Bernoulli polynomials [6], therefore taking Sy = 1 and
Bi = H%, (i=1,2,3,...,m) in equations (57) and (58), we get the following
determinant definition of the ELeGHBP RH(S)%m,v(x, Y, 25 Q)

Definition 4.1.1. The extended Legendre-Gould-Hopper-Bernoulli poly-
nomials () B, (7,Y, 2; @) of degree m are defined by
(69) RH(S)%O,W(x’yvz;a) = RH(gi))(wvyaZ;a)a
(70) RH(-‘!)%m,U(xvyaz;a)

(s) T,y,2; (s) T,Y,Z0 (s) x,Y,2;
1 RHﬁ?j(%%zia) RH2,17(2!vy> a) RHm,f(Tlril(l)!J ) RHm,?;r(L!:Jv jor)
1 i 3 o T
m m+
(_1)'m 1 m— 1 my 1
:(ﬁ(})—"n#—1 0 1 (%)5 ( 11)77171 1)E ’

0 0 1 - (M (%)
m=1,2,3,

4.2. Extended Legendre-Gould-Hopper-Euler polynomials. Since, for
A(t) = gt%, the AP A,,(z) reduce to the Euler polynomials (EP) &,,(x).
Therefore, for the same choice of A(t) the ELeGHAP RH(S)Am’U(x,y, z; Q)
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reduce to ELeGHEP (5 € v (2,9, 2; ) which in view of the equation (29)
are defined by means of following generating function:

2 Co(a7) Co(=y7) _ - T
(e 4+ 1)(a — z78)Y - Z RH(S)S,”,/U(.T,y,zya)m_

m=0

(71)

Further, in view of equations (21) and (22), the operational representa-
tions for the ELeGHEP 1) Em (7, y, 2; @) are given as:

65 —v
I e L e}
Y
Lo
(73) aiz(il) W Rg’m(x7y) :RH(S)Em‘U(xay7z;a)'

Next, in view of equation (32), the ELeGHEP RH<S)€m7U(x,y,z;a) are
defined by the series
(74)

1S & (D)™ (—m)yag (V) 2y (265)7E0 1
_ZZ( )" (=m)ptk (V)r 2 Y (2€°) 3

RH(S)gm,U(xvya Z’ Oé) = CL/U

1 EN2(n!)2
o S rl(kD)?2(n!)

The ELeGHEP | (o) Em v (2, Y, 2; «) satisfy the following recurrence rela-
tions:

(75) 5771,1) (:L'a Y, z; a) = _mRH(S)gmfl.’U(xa Y,z Oé),

0

76 —_—
(76) oDy !

RH(S)Sm,U(‘Tvya 3 Ck) = mRH(S)gmfl,U(xaya z3 Oé),

0
(77) ngs)gm,v(%y,Z;a)

= Um(m - 1)(m - 2)(m — s+ 1)RH<5)8mfs,v+1(may7 Z3 Ol),

0
(78) %RH(QEWL,U(%" Y,z Oé) = _URH(S)STYL,’UJFl(x? Y, z; Oé).

Also, the ELeGHEP | yy(5)Emv(2,y, 2; @) satisty the following differential
equation:
0 0 as+1
(79) ( -D;' ——+ D' —— sz Ty
0D, 7 0Dy, dady*~10D,
(Dnyy)(l — (DyZIDy)) -1
e e
(e(Dnyy) — 1) — m) RH(s)gm,v(fL'a Y, z; Oé) =0.

+

Further, in fact for Sy = 1 and 3; = %, (i=1,2,3,...,m), the determinant
definition for the Appell polynomials reduces to determinant definition of the
Euler polynomials [5], therefore taking Sy = 1 and 3; = %, (1=1,2,3,..,m)
in equations (57) and (58), we get the following determinant definition of
the ELeGHEP RH(S)(‘,’,,,L7U($, Y, 25 Q):

Definition 4.2.1. The extended Legendre-Gould-Hopper-Euler polyno-
mials RH@Em’U(x, y,z; ) of degree m are defined by
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(80) RH(S)gO:U(xﬂyﬂz;a) = RHéiz(x,yaZ;a),
(81) RH(S)Em,U(x,yaz;(Y)

s H®) (2,y,2500) 2 | (@y,z0) H (29,2
U RH{)(2,y,50) 2] . Blmota CLEANCTELY
1 1 1 1 1
P 3 3 P
o 1 1)1 7)1
= ([)70)7,,+1 0 1 (%)5 (mll)ﬁ (1)5 )
0 0 L. (e (3)%
0 0 0 1 (m1)%
m=1,23,

4.3. Extended Legendre-Gould-Hopper-Genocchi polynomials. Since,
for A(t) = %’ the AP A,,(z) reduce to the Genocchi polynomials (GP)
Gm(). Therefore, for the same choice of A(t) the ELeGHAP | () Ao (7, Y, 25 )
reduce to ELeGHGP  1()Gm,v (2, Y, 2; @) which in view of the equation (29)

are defined by means of following generating function:

[e.9]

Fm
Z RH®) gm,v(ajv Y, z; O‘)m

m=0

27 Co(z7) Co(—yT) _
(e + 1) (o — 27%)v

(82)

Further, in view of equations (21) and (22), the operational representa-
tions for the ELeGHGP _ ()G v(2,y, 2; ) are given as:

(83) [Q—ZW Rgm(.'L',y) :RH(S)gm,U(x7y7z;a)7
Yy
Lo
(84) [04 - Z(—l) W} Rgm(x,y) = RH<g>gm7,,(m,y,Z;a).

Next, in view of equation (32), the ELeGHGP RH(@Qm,U(m,y,z;a) are
defined by the series

(85)
oo e CY)PEm)nn () 7yt (2€0) G
G (30 = 550 3 PRl '
The ELeGHGP RH(S)Qmﬂ,(aJ, Yy, z; ) satisfy the following recurrence rela-
tions:
0
(86) WRH(S) gm,v(xa Y, z; a) = _mRH(S)gm—l,U(wa Y,z Ck),
x
(87) Ar—1rH®) gm,v(xa Y, z; 04) = mRH(H)gm—l,v(wa Y,z CY),

0Dy
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0
(88) &RH(S)gm‘U(xa Y,z 0[)
=vm(m—1)(m—2)..(m—=s+1), g Gm-sv+1(z,y, 2 @),
0
(89) 5 ) Gmo(,y,210) =~V o G+ (2, Y, 25 Q).

Also, the ELeGHGP n 1 Gma (T, Y, z; ) satisty the following differential
equation:

—1 a —1 a 3S+1
90) (-D;'=2 4D, e _
oDy, Y 0D, 0adys—19Dy

(DyyDy) (1 — D,yD,) + 1
(& 1 y 1
T —— m) w0 Gmo (@Y, 25.0) = 0.

Similarly, for the other members of the Appell family (see [20, Table
1]), we can establish new special polynomials belonging to the extended
Legendre-Gould-Hopper-Appell family. The operational representations,
generating function and other properties of these special polynomials can
be obtained from the results derived in the second and third sections.

APPENDIX

We have mentioned special cases of the LeGHAP RH(S)An(x, Yy, z) in Table
1. Now, for the same choice of the variables and indices the ELeGHAP
n g Amu (@, Y, 2; &) reduce to the corresponding special cases. We mention
these new special polynomials in Table 2.

TABLE 2. Special cases of the ELeGHAP _ (o) Am (7, y, 2; )

S. | Values of the indices
No. and variables

Generating function

Name of the special
polynomials

L z2=0

=
ZHA(7) Colar) Co(—y7) = X RAmu(@,yi0) 57
0

D

m=

Extended 2-variable Legendre-Appell
polynomials (E2VLeAP)

1L

s=ny=0,2z—-y

A( C oS} N . m
L % tAma (@005

m=0

Extended 2-variable generalized
Laguerre type-Appell polynomials
(E2VGLTAP)

11 s=2%a=0,

Yy—=r,z—y

=
=3 gAno(z,yi0)oy
m=0

A(r) Co(—ar

Extended Hermite type-Appell
polynomials (EHTAP)

V. s=1; 17%(%),

y— (155, 2=0

Co(4527) Co(=527) = z( pAn ,,(:Ir:u)%
m=0

Extended Legendre-Appell
polynomials (ELeAP)
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