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1. Introduction

The Caratheodory approximation scheme has been used by several math-
ematicians to prove the existence theorem for the solutions of ordinary dif-
ferential equations under mild regularity conditions. N. Caratheodory [2]
was the first to introduce this approximation for ordinary differential equa-
tions. Then, K.Liu [10] has used the Caratheodory solution for a class of
infinite-dimensional stochastic evolution equations with time delays. More-
over, H.Young [18] has discussed Caratheodory’s and Euler Maruyam’s ap-
proximate solutions to stochastic differential delay equation.

Furthermore, in [3] F. Faiz Ullah proves that the Caratheodory approxi-
mation solution for vector valued stochastic differential equation driven by
a G—Brownian motion (G—SDEs) converges to the unique solution of the
following G—SDEs under the Lipschitz and the linear growth conditions:

(1.1)
Xt:X0+/O f(s,Xs)ds+/0tg(s,Xs)d<B>s+/0th(s,XS)st, te0,7]

In 2006, S. Peng (for more details see [12], [13], [14], [15] and [16]) intro-
duced the theory of non linear expectation, G—Brownian motion and de-
fined the related stochastic calculus, especially stochastic integrals of Itd’s
type with respect to G—Brownian motion and derived the related Ito’s for-
mula [16]. In addition, the notion of G—normal distribution plays the same
important role in the theory of non linear expectation as that of normal
distribution with the classical probability.

The existence and the uniqueness of the solution X;, for G—SDEs (1.1)
under different conditions was proved in ([1], [4], [5], [7], [8], [9], [11], [14]
and [16]).

In this paper, we present both the existence and the uniqueness of the
solution for the following system of stochastic differential equations driven
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by a G—Brownian motion (SG—SDEs):

Xy =Xo+ [y f1 (s, X,,Ys) ds+

+ Jo 2 (s, X5, Ya) d(B), + [y f3(s,X,,Ys) dBs
Yy =Y+ [y 91(s, Xs, Ys) ds+

+ Jo 92 (s, Xo, Vo) d(B), + [y 95 (s, Xs, Y2) dB (s)

Where (Xo,Yp) is a given initial condition, ((Bi)),s, is the quadratic
variation process of the G—Brownian motion (B;),-, and all the coefficients
fit,x,y), gi(t,x,y), for i = 1,2,3, satisfy the Lipschitz and the linear
growth conditions with respect to (z,y). These results are obtained by using
the technics adopted by F. Faiz Ullah [3] in the case where the Lipschitz and
the linear growth constants are time dependant.

This paper is divided into three sections. The second section gives the
necessary notations and results that we will use in this work. The third
section proves the existence and the uniqueness of the solution of (1.2) by
using the Caratheodory approximation scheme.

(1.2)

2. PRELIMINARIES

In this section we recall some basic notions and theorems which we use in
this work and deal with sublinear expectation and G—stochastic calculus.
More details concerning this section may be found in [12], [13], [14] and [16].

Let Q2 be a given non-empty set and let H be a linear space of real valued
functions defined on 2 such that any arbitrary constant ¢ € ‘H and if X €
H, then |X| € H. We consider that H is the space of random variables.

Definition 2.1. A functional E : H — R is called sublinear expectation, if
forall X, Y in H, ¢ in R and A > 0, the following properties are satisfied:
(i) (Monotonicity): if X >Y, then E[X] > E[Y],
(i1) (Constant preserving): E[c] = ¢,
(ii1) (Sub-additivity): BE[X + Y| <E[X]+E[Y],
(iv) (Positive homogeneity): E[AX] = ME [X].
The triple (Q, H,E) is called sublinear expectation space.

We assume that if X;, Xo, ..., X;, € H, then ¢( X1,Xs,...,Xy) € H,
for each ¢ € Cjp(R™), the set of functions ¢ : R® — R satisfying the
condition: |p(z) — ¢ (y)] < C 1+ |z|™ + |y[™) |z —y| for all z, y € R,
where C' is a positive constant and m € N* depending only on ¢.

Definition 2.2. Let X, Y be two n—dimensional random vectors defined
on nonlinear expectation spaces (1, H1,E1) and (Q2, Ha, Ey), respectively.

They are called identically distributed, denoted by X 4 Y, if B[ (Y)] =
E1 [ (X)], for each ¢ € Cypip(R™).

Definition 2.3. In a sublinear expectation space (Q, H,E), a random vector
Y € H" is said to be independent from another random vector X € H™ if
Elp(X,Y)|=EE[p(z,Y)],_x] Yo € Crip®R™™).

X is called an independent copy of X, if X L X and X is independent
from X.
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Remark 1. It is important to note that Y is independent from X does not
imply that X is independent from'Y, (see [6]).

Let T" be a closed bounded and convex subset of S, (d) the set of positive
and symmetric d—dimensional matrix. Let

¥ ={AA*: AeT and A" is the transpose of A}
and let G : Sy (d) — R defined by:
G(A) = LsupTr (14)
2')'EI‘

Definition 2.4. In a sublinear expectation space (2, H,E), a d—dimensional
vector of random variables X € H? is G—normal distributed, if for each ¢ €
Criip(RY), the function u(t,z) = E (¢ (z+V1tX)) is the unique viscosity
solution of the following parabolic equation called the G—heat equation:

ou 9
{ =0 (£ 2) eR, xR

u(0,2) = ¢ (x)
d
where D*u = ((‘ﬁimj u)' _is the Hessian matriz of u.
i

Remark 2. In fact, if d = 1 we have G (a) = % (62(1* —g2of), where
72 = E[X?], ¢? = -E[-X?], o = max(,0) and o~ = max (—«,0) (For
more details see [16]). We write X ~ N (0;[0?,57]) .

L]

Definition 2.5. A process (By), in a sublinear expectation space (0, H, E),
is called a G—Brownian motion if the following properties are satisfied:

(i) Bo =0,

(ii) For eacht, s > 0, the increment By, s— By is N'(0; [a?s, 7% s|— distributed
and is independent from (By,, Bty,..., B,) for eachn € N and 0 <t <...<
tn <t

We denote by Q = Cy(R) the space of all R—valued continuous functions
w, defined on R, such that wy = 0, equipped with the distance

p(wh w?) = i=12_itrg[%?ci] [|(wi —wi) A1]]

For each fixed T > 0, let
Qpr = {wAAT, w e Q}
Llp(QT) = {SD(BtU "'7Btm)a m > ]-7 t1, e tm € [O7T]7 pE Cl;lip(Rm)}
and let
Lip(@) = § Lip(©,)
In [16] Peng constructs a sublinear expectation E on (€, Lip(€2)) under
which the canonical process (By); (i.e.Bi(w) = wy) is a G—Brownian mo-

tion. In what follows, we consider this G—Brownian motion.
We denote by LY,(Qr), p > 1, the completion of Lip(Qr) under the norm

[1X]l, = (E[|X|”])%. Similarly, we denote LZ,(€2) the completion space of
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Lip(2). It was shown in [12] and [16] that there exists a family of probability
measures P on {2 such that

E[X] = Is;égEP [X], for X € LE(Q)

where E¥ stands for the linear expectation under the probability P. We
say that a property holds quasi surely (g.s.) if it holds for each P € P.

Yy property q y g

For a finite partition of [0,T], 7r = {to,%1,...,tN}, We set

p(mr) = max{|tip1 — ¢;], i=0,1,...,N —1}
Consider the collection M 0 (0 T ) of simple processes defined by:

Z § [tl,t1+1[ )

where
& € L%(Qti), 1=0,1,...,.N—land p>1

The completion of M%° (0, T) under the norm

i = {3 [ =l dt};

is denoted by MZ(0,T). Note that
MIG(0,T) c ME(0,T), for 1<p<gq

Definition 2.6. For each n € Mé;O(O,T), the G—1td’s integral is defined

by
N-1
I(n) = /0 1By = 3 €(Bu,, — Bi)
=0
The mapping n— I(n) can be extends continuously to M2(0,T).
Definition 2.7. The increasing continuous process ((B)t)t>0 with (B), =

0 defined by
t
(B), = B? -2 / B,dB,
Jo
is called the quadratic variation process of (B,);~q. Note that (B), can be re-

N 2
garded as the limit in L%, () of (Bt]-YH - Btz_v> where ¥ = {t 1, .t} is
=0 ‘ ¢

a sequence of partitions of [0,T] such that u(m) tends to 0 when N goes to
infinity.

Burkholder-Davis—-Gundy (BDG) inequalities play an important role in
the study of G'—stochastic differential equations. There has been an in-
creased interest in the following lemmas, see [5] and [17]:

Lemma 2.8. Let p>1, n € ML (0,T) and 0<s<t<T. Then

[naw[|<cie-o [ simria

where C > 0 is a constant independent of 7.

21) E [ sup

s<u<t
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Lemma 2.9. Let p > 2, nEMg(O,T) and 0<s<t<T. Then

/ nrdBT

where Cy > 0 is a constant independent of 7.

P it
(2.2) E [ sup } < Cy It—slg‘l/ E [In,,["] du

s<u<t

3. EXISTENCE AND UNIQUENESS THEOREM

In this section, we give the existence and the uniqueness of the solution
to the SG—SDE (1.2), where the initial conditions X, Yy € M (0,T;R?),
and f;, ¢; : Ryx RYx R — R for i =1,2,3.

The Caratheodory approximation scheme for (1.2) is given as follows: For
any integer k > 1, we define

XF =X, Y=Yy ift €]-1,0]
and
(3.1)
XF=Xo+ [ 1 (s,Xf_%,Y;’“_ )ds+f0tf2 (s,Xk I,Yj_%) d(B),

1
; 1
+ fy fs (s, X% 1 YE L) dB,
Y;k = Yb + Iotg]_ (s,Xi%,yk

+ Jy g8 (5. X5 YE ) aB,
k k
if ¢ €0, 7).

We make the following assumptions: For h = f;, g;, respectively, ¢ =
1,2,3
(A1)

(3.2) b (b, 9) < o (8) (1+ ol + IyP?)

for each =, y € R and t € [0, 77, where ¢ is a positive and contin-
uous function on [0, 7.

(A2)
(33) btz 1) —h(bon ) < () (Jz2 — o + o2 — i ?)

for each 1,41, 22, y2 € R? and t € [0, T)], where ¢ is a positive
and continuous function on [0, 7.
In the following we equip the space of processes in M(% (()7 T; Rd) X Mé (O, T Rd)
with the norm

)ds+ Jy g2 (s.XE,YE L) d(B),

1 1
k k

1
(X, Y)[| = B2

sup (1 + W)}
0<t<T

Note that this space is a Banach space.
Now we give our main results:

Theorem 3.1. Under the assumptions (3.2) and (3.3), the system (1.2) has
a unique solution q.s.

(X,,Y;) € M (0, T, ]Rd> x M2 (O,T; ]Rd)
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In order to prove Theorem 3.1,we need some lemmas:

Lemma 3.2. For all integer k> 1 and 0 < s<t<T
T

2 2
(3.4) sup E UXZ“ + ‘Ytk‘ ] < Kexp (C/
0<t<T Jo

o (t) dt)

where K = [1 +4(E {|X0|2} +E [|Y0|2} )] and C is a constant depending
only on Cy, Cy and T.

Lemma 3.3. For all integer k> 1 and 0 < s <t < T,

2
(3.5) E UXZ“ - xH 4+ ‘Yt’“ _yk

2
] < Ky (@ () — B (s))

where ® (t) = /Ot ¢ (s)ds and K; = 3C (1 + K exp (C’ijgo (t) dt)) .

Proof. (of the lemma (3.2)). By using the formula (3.1) and the fact that
n 2 n

(Zai) < nd a? for each positive constants a;, i = 1,2,...,n, we have

= =1

1
for all ¢ € [0,T7,

2 . 't 2
‘th‘ < 4|X0|2+4‘/ f1<8,Xf_1,Yf_1)d3
Jo k k
" 2 ot 2
+4‘/ fo (s, x84 E ) d(B),| +4 / fo (s, x5 ¥E ) aB,
Jo % % Jo k k
and
2 . 't :
‘Yt’“‘ < 4|Y0|2+4‘/ g1 (SzXf_laY;k_l)ds +
Jo k k

2

ot 2 t

k k k k
| [ (st 2y )am, +4‘./0 o (0.7 Y2y ) B,
which implies that, by using the Lemmas (2.8) and (2.9), the G—Holder
inequality and the assumption (3.2),

sup E Uxt’ﬂ <4E {|X0|2} +

0<t<T
2
]) ds

< 4E {|X0|2} +C'3./0‘t<p('u) (1+ sup B “Xff 1 + sup ]E[

0<v<s 0<v<s

03‘/0%(5) (1 +E ij_%

2
} +E UYS’“_l
k

vF

1)

2
]+ suplE[

0<v<s

where C3 = 4 (T + CiT + C5). Similarly, we have

2
sup E UYt’“’ } <4E [|Y0|2]+Cg/ o (v) <1+ sup E “Xff vk

ot
0<t<T 0 0<v<s

1)
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Thus

k|2 k|2
14+ sup E ’Xt ’ + sup E ‘Y,; ‘
0<t<T 0<t<T

vF

ot
< K+C’/ ¢ (v) (1+ sup]EUX{f
J0

2
]—i— supE{
0<v<s

0<v<s

1)

2 2 t
1+ sup E UX;”’ ] + sup E UY}’”‘ } < Kexp{C’/ cp(s)ds}
J0

0<t<T 0<t<T

where C' = 2C3.We conclude, by Gronwall’s lemma, that

and consequently

k2 yk)? T
sup E ‘Xt‘ +‘Y;’ < Kexp C/
0<t<T Jo

o (t) dt}

Proof. (of the lemma (3.3)). We have

ot
xfoxt = [ (exh v )

o k k ! k k

+/S fa (w,Xw_%,Yw_%)d(B)w-l—/s fa <w7Xw_%,Yw_%> B,
and so, we have for each 0 < s <u <t <T:
]

[ (bl )

E [ sup ’Xf; — Xk
s<u<t

< 3E

T

+3E | sup

s<u<t

2

+3E | sup

s<u<t

./S.u f3 (w,Xi_%7y£_%) B,

Thanks to the lemmas (2.8), (2.9) and the assumption (3.2), we obtain that

z] < 3T /'tE “fl (w»ij_%,Yif_Qﬂ .

E [ sup ‘X{f—Xf
s<u<t

t k k 2 ! k k ’
war [ B Uﬁ (w, X5 vE L) } w3y [ B UfS (X0 vy ] =

1)

2
]+EUYU§_1

k &

< C"/:go(w) (1 +E UX{Z_; 2} +E UYj_l

k k

cowv-e)+0 [ o (st

e

483
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By using lemma (3.2), we have

| < c(ivxen{e [ cwal)@o o)

Ky
<

< S@H)-3 ()

where Ky = 3C (1 + K exp {C’jo e (t })

By the same way, we have

E [ sup ‘Xff .
s<u<t

IN

K
8| sw v -y < B -oe)
s<u<t 2
Thus
2 2
E UXZ“—X? + |y -k ] < K1 (@ () @ (s)
The proof is complete. O

Proof. (of the theorem 3.1). We will prove the theorem in three steps:

Step 1. Suppose that (X;4,Y7:) and (X34, Ys,) are two solutions of the
system (1.2) with initial conditions (X7,0,Y1,0) and (X2, Y2,0) respectively.
Then we have

X1 — Xogf*
" 2
< 4|X10— Xao)*+4 ‘ / fi1(s,X16,Y1,6) — f1(s5,X2,5,Y2,)ds
Jo

t 2
4 / f2 (5>X1,Sa Yl,S) - f2 (S’XZ,Sa YZ,S) d <B>s
JOo

ot 2
+4‘/ f3 (S7X1)S’Yla'5) - f3 (SaXZ,SaYZ,s) st
0

By using the Lemmas (2.8), (2.9) and the assumption (3.3), we have for 0 <
r<t<T,
T

-t
7 [ B (I (5, X0 Yi) = i (5. X Yo ] ds
0

E “ /0 (f1 (5, X1,0,Ya0) — fi (5, X0, Ya0)) ds

IA

IA

ot
T [ (6 B[ Xo = Xl 4 V0 = o ds
0

2

E | sup

0<r<t

/ Jo (5 X10 Vi) = fo (5, X, You) d (B),

IN

ot
OT [ B [1fa (5, X1 Yi) = fo (5, X, Yo ] ds
0

IN

t
T [ (9B [P = Xauf? + Wi~ Yaul] s,
J0
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and
o 2
E | sup / F3 (5, X1.0,Yie) — f3 (5, X, Vo) dBs
0<r<t|J0
¢ 2
< O [ B[Ifals Xuw Vi) = a (5. Xou Vo) ] ds
0
ot
< O [ VOB X - Xauf + Vi - Yol ds
JO
Therefore

3 031
0<r<t

t
< 41X10 — Xa0* + Cs / P (s)E [|X1,s — Xoo|* + |YV1s — Yaul*| ds
Jo

where C3 = 4 (T + CT + CQ).
By the same way, we have

E [ sup [Y1, — Y2,r|2]

0<r<t
ot
< 40— Yool + o [ 6 (5)B [[Xas— Xaul + Vo = Youl?] ds
0
Finally, we obtain that

E [ sup (|X1,r - )(2,7"|2 + |Y1,’I‘ - Y2,r|2>:|

0<r<t

< 4 (|X1,0 — Xao)* + Y10 — Y2,0|2>

t
+C [0 (6)B[1X0s = Xl 4 ¥is = Vo] ds
0

where C' = 2C5.
By using Gronwall’s lemma, we have

" [ Sup <|X1,r — Xo, | + Y1, — Y2’r|2>]
0<r<t

-t
< 4 (|X1,0 — Xopl* + Y10 — Y2,0|2) exp (C/ ¥ (s) ds)
0

Now taking (X1,0,Y1,0) = (X2,0, Y2,0) , we see that for ¢t =T
E [ sup (|X1,r — Xo, [ + Y1, — Y2,|2)} =0
0<r<T
which
(X141, Y1) = (Xa4,Ya1) g.s. for each t € [0, 7]

Step 2: We will prove that (Xf, Yt’”) k1

is an M2 (0, T;RY) x M, (0, T; RY)
Cauchy sequence for each t € [0,T]. By the same arguments used in step 1,

485
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we have for each m > n,

E

sup (X7 = X724 [V =)
0<t<T

3., (7
—O/ Y(s)E UX;”_I - X'
4 JO m n

2
+

IN

Since

2
o]
m n|2 m n|2
2E sup (|Xu _Xu| +|Yu _Yu| ):|
L0<u<s

IN

+2E [(‘Xg_ L - X",

m n

2
n n
LA

)]

then, by using the lemma (3.3), we have

E

0<t<T

sup (X7 = X724 v = v P)

0<u<r

+%CK1 [@ G-%) —Q(s—%ﬂ /(;Tw(r)dr

Thus, by Gronwall’s lemma,
_ T
<K (l — l) exp (30 / P (s) ds)
n m 2 Jo

Where K = 3K1CT sup [¢(t)] sup [ ()]
0<t<T 0<t<T
which means that (th, Ytk)

< 3¢ T¢( E XM - X2y —vr?) | d
—5 0 T) sup |u_u|+|u_u| T+

E

sup (X7 = X724 V" = v P)
0<t<T

4> 18 a Chauchy sequence.
Step 3: We will prove that the limit (X;,Y;) in Mg (0, T; Rd) x M2 (0, T; Rd)
of (XF,Y[) is the solution of the system (1.2) . For the existence, let (Xo,Yp) €

M, (0,T; RY) x M2 (0, T; R?) be an initial condition such [|X0|2 + |Y0|2] <
0.

2
‘Xu _ xk

2 U
< 3 ‘/ fi (s XE L YE L) = fu(s, X Yo ds
JO k

1
k

2
+3

/ f2 (SaXf_laYsk_l> _f2 (S7XS7Y:9)d<B>s
0 k k

u 2
s3] [ (X8 - XY a,
Jo k

k
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By using the lemmas (2.8), (2.9) and the assumption (3.3), we have

E l sup (]X!f ~ X, 2)}

0<u<T
T 2
C/ ¢(8)EUX§_1—X3’ +‘Ysk_1—Ys
JO k k

IN

2
]ds

2
]ds

IN

T 2
20 [ v )m ||xiy -t [rk, - v
JO k k

T k 2 k 2
+20/ zp(s)EUXs ~ X 4 vy, ]ds
Jo
Thus, by using the lemma (3.3),
2
E | sup (‘Xff—Xu >}
0<u<T
M T 2 2
< —+2C/ w(s)E[sup (‘ij—Xu +|vE -y, )]ds,
k Jo 0<u<s

where M = I?C’j;)T@b(s) dsexp{C’ijgo(s) ds}. Similarly, we have the

same formula with E | sup <|YJC Y, | 2) instead of E
0<u<T

0<u<T
which implies that

2 2
E| sup (‘X{j—Xu +|vE -y, >
0<u<T
M T . 2 . 2
< ?+2c/ w(s)]E[sup (’Xu—Xu +|vE -y, )]ds
J0

0<u<s

and consequently, by suing Gronwall’s lemma,

2 2 K T
E| sup (‘Xff - X,| +|YF-v, ) < —exp (§C’/ ¥ (s) ds)
0<u<T k 2" Jo
The proof is now complete. a
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