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SOME RESULTS ON THE BOUNDEDNESS OF
SOLUTIONS OF A CERTAIN THIRD ORDER
NON-AUTONOMOUS DIFFERENTIAL EQUATIONS WITH
DELAY

D.O. ADAMS AND A.L. OLUTIMO

ABSTRACT. This paper considers the boundedness of solutions for a
third order non-autonomous delay differential equations of the form

" +(alt,x, 2’ 2" 2" (t=r))+m(t, z, 2 2" 2" (t—r)))2” +b(t) g2’ (t—r))

+e(t, @, 7 2", 2" (t — ) h(x) = p(t, z,2",2"),

where a, m, b, g, c, h and p are real valued functions which depend on the
argument displayed explicitly. Some criteria on the regularity of solu-
tions for the same equation were also investigated. The results obtained
improved and extend some earlier results.
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1. INTRODUCTION

In this paper, we consider the boundedness of solutions of a certain third
order nonlinear non-autonomous delay differential equations of the form

2"+ (a(t, z, x/, x”, 1:”(15 _ T)) + m(t, z, x/, x”, l'”(t _ 7")))1‘//

(1) +bt)g(@'(t — 1)) +c(t,z, 2", 2", 2" (t — r))h(z) = p(t,z, 2, 2")
and its equivalent system

o=y

y =z
() 2 = —(alt, 2,9, % 2t — 1)) + mlt, 2,2 2(¢ — 1)))7 — (t)g(y)

+b(t) / 7 (y(8))2(s)ds — clt, 2, , 2 2(t — P)h(z) + plt, 7,5, 2).

t—r
where 7 is a constant delay, » > 0 and a,m, b, g,c, h and p are real valued
functions which depend on the argument displayed explicitly. The primes in
equation (1) denote differentiation with respect to t. It is assumed that b(t)
is continuous on RT, R* = (0, 00) and a(t, z,y, z, 2(t — 1)), m(t,z,y, z, 2(t —
), c(t,z,y,z,2(t —r)), g(y) and h(z) are continuous in their respective

db(t
arguments on RT x R* and R respectively. The derivatives V' (t) = % and

J(y) = dil(y)

——~2~ exist and are continuous for all ¢ and y respectively.
Y
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It is worth mentioning that there exist numerous papers on the qualitative
properties of solutions of certain nonlinear differential equations of third
order without delay (see for instance Reissig et.al [20], Adams [2] as a survey
and the papers Adams et.al [1], Ademola et.al [3], Mehri and Shadman [14],
Ogundare [15], Tung [24] and some references cited therein). While some
results achieved on the same subject of qualitative behaviour with respect
to certain nonlinear differential equations of third order with delay include
but not limited to Graef and Tung [7], Olutimo [16], Olutimo and Adams
[17], Oudjedi and Remili [19], Tung [22], [26].

In the article published in 2009, Omeike [18] considered the third order
non-autonomous nonlinear differential equations with delay:

(3) T +a(t) T +b(t)g(x) + c(t)h(z(t — 7)) =0
and
(4) T +a(t) T +b(t)g(z) + c(t)h(z(t — 1)) = p(t),

where r is a positive constant a(t),b(t), c(t), g(t), h(z) are real valued func-
tions continuous in their respective argument. The author gave sufficient
conditions for the asymptotic stability and boundedness of solutions for the
above equations. Equations of the form (3) and (4) in which a(t), b(t)
and ¢(t) are constants had earlier been studied by Sadek [21] and Zhu [28].
They obtained conditions that ensure the uniform boundedness and uni-
formly ultimate boundedness of solutions. Tung [23] considered real third
order nonlinear delay differential equation of the form

T +f(t,z,z, 2 (t—71))+b(t)g(x (t —71)) + c(t)h(x) = e(t)

and established sufficient criteria for boundedness of solutions.

However, the motivation for this paper come from the papers of Tung
([24], [23]) and Adams et.al [1]. These authors made use of energy function
to establish results for the nonlinear differential equations being considered.

Non-autonomous differential equations with delay can exhibit highly com-
plicated dynamical behaviour especially in after effect, nonlinear oscillation
and differential equations with deviating arguments (see [17]). By employing
energy function, we establish the boundedness and regularity of solutions of
equation (1). Our results in this paper extend and improve on Tung ([24],
[23]) and some earlier results.

2. PRELIMINARIES AND NOTATIONS

We will have to give some basic notations and definitions for the general
non-autonomous delay differential equation (see Burton [4] and also Tung
23], El’sgol’ts [5], El'sgol’ts and Norkin [6], Kolmanovskii and Myshkis [9],
Kolmanovskii and Nosov [10], Krasovskii [11], Makay [12], Mohammed [13],
Yoshizawa [27] and the references cited therein). Consider the general non-
autonomous delay differential system

(5) z= f(t,x), v(0) =z(t+0), —r<6<0,t>0,

where f : [0,00) x Cg — R is a continuous mapping, f(¢,0) = 0, and sup-
pose that f takes closed bounded sets into bounded sets of R™. Here (C, ||.||)
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is the Banach space of continuous function ¢ : [—r,0] — R™ with supre-
mum norm, 7 > 0, Cy is the open H-ball in C; Cy := {¢ € (C[-r,0],R") :
lloll < H}. Standard existence theory (see [4]) shows that if ¢ € Cy and
t > 0, then there is at least one continuous solution z(t, zg, ¢) such that on
[to, to + ) satisfying equation (5) for t > to, x¢(t, ) = ¢ and « is a positive
constant. If there is a closed subset B C Cg such that the solution remains
in B, then « = oo. Further, the symbol |.| will denote the norm in R™ with
[ = max [z;].

1<j<n
Definition 1. (See [4].) A continuous positive definite function W : R" —
[0, 00) is called a Wedge.
Definition 2. (See [4].) A continuous function W : [0,00) — [0, 00) with
W(0) =0, W(s) > 0if s >0, and W is strictly increasing is a Wedge. (We
denote wedges by W or W;, where i is an integer.)
Definition 3. (See [4].) Let D be an open set in R” with 0 € D. A function
V :[0,00) x D — [0,00) is called
(a) positive definite if V' (¢,0) = 0 and if there is a wedge W7 with V (¢, z) >
Wi (|z),
(b) decrescent if there is a wedge Wo with V (¢, z) < Wa(|z|).
Definition 4. (See [4].) Let V (¢, ¢) be a continuous functional defined for
t >0, ¢ € Cgy. The derivative of V(tg,¢) along solutions of (5) will be
denoted by V(5) (to, ¢) and is defined by the following relation

V(t+ h,zen(to, ) — V(E, ze(to, @)
h b

Vis) (1:6) = lim sup

where x(to, ¢) is the solution of (5) with z,(to, ¢) = ¢.

3. MAIN RESULTS

Theorem 3.1. In addition to the basic assumptions imposed on functions
b, ¢, f, g, h, and p in equation (1), we assume that the following conditions
hold:

(i) b(t) >0, V'(t) >0 for all t € R*;
(ii) alt 2,9, 2,2(E 7)) > 4o for allt € RT and z,y,2z,2(t —r) € R

(z#0), where do is a positive constant;
(iii) m(t,z,y,2,2(t = 1)) >0 for allt € RT and z,y,z,2(t — 1) € R;
(iv) g(0) =0, yg(y) > 0 and 0 < ¢'(y) < )\for all y € R, where X is a

positive constant, and hm G(s) oo (G(s) :/ g(7)dr);

(v) |e (t x y,z z(t—r))| < go(t) where € L1(0 o) and t € RT;
(vi) 0 < —= < &y for allz € R (x # 0), where 01 is a positive constant;
x
(vii) |p(t x,y,2)| < e(t) for allt € RY and z,y,z € R;
(viii) There are arbitrary continuous functions ag, a1, 8 and ¢ on RT =

(0,00) such that o, a1 and @ are positive and decreasing functions
and {3 is positive and increasing for all t € R, RY = (0,00) and
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(ix) e(t) [ao(t)}%’ [al(t)b(t)}%,w(t)[ B(t) :|%€L1(O7OO)7

Vo) Laa(t) B(t) ao(t)b(t)
where L'(0,00) is the space of integrable Lebesgue functions.

xl x//

VBlao \/Bla1 \/b(t)

Then, for every solution of equation (1),

are bounded for all t € R provided that

< 2(50 b/(t) :|
= N0 " b + pd(t))

where p 1s a positive constant.

Remark. If a(t,z, 2’ 2", 2" (t — 7)) = 0 and c(t,z, o', 2", 2" (t — r)) = ¢(¢)
then equation (1) reduces to the nonlinear delay differential equation by
Tung [23] in which the assumptions (i), (ii), (iv), (vi) - (ix) remain valid.

Now, throughout all the main results established here, our main tool is
the continuous differentiable energy function E = E(t, z,y, z) defined by:

~ap(t) 24 ai(t)

O E= 0™ 50

1 0 t
y? + 22+ 2G(y) + u/ / 2%(u)duds,
b(t) —r Ji+s

where p is a positive constant; ap, ay, 8 and b are positive functions, both
ap and «; are decreasing functions while § and b are increasing functions

0 st
for all t € RT, RT = (0,00). Clearly, the term u/ / 22(u)duds is non-
—r Jt+s

negative.

Proof. Let (z,y,z) = (x(t),y(¢), z(t)) be an arbitrary solutions of equation
(2). Differentiating the functional E = E(t,x,y, z) along the equation (2)
and making use of the assumptions of Theorem 1, we have as follows:

T [0 g e [ - g e 2
aq (t) b (t) a(t,z,y,z,z(t — 1))
T B IO
m(t,x,y,z,2(t — 1)) 4 c(t,x,y,z,2(t — 1))
-2 0 25 =2 0] h(z)z
(7) +22 /t_ g (y(s))z(s)ds — 2%2 +przt —p ./t._ 22(s)ds.

Obviously, using the conditions imposed on the functions ag, «q, 3, b for all
t € RT and the assumption (iii), we have

<0

Bty B

040 _ o005 _ o) a8 ¥

B(t) Bt (1)
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and —2

m(tvxvya 2, Z(t B ’f’)) <0

b(?) =
Then
dE alt,z,y,z,2(t — 1)) ao(t) on(t)
[ ) R R AR DL
_ 2C(t, Z, y,bZ(,t)Z(t B T)) h(l‘)Z + 2z [_T g’(y(s))z(s)ds
- 2%:& + prz® — /H« 2*(s)ds.

By applying the assumptions (ii), (v) - (vii), we obtain

P a0 om0y pel)
+ 2z /t_r g (y(s))z(s)ds — 2%2 + prz?
(8) —,u/t_ 22(s)ds.

In view of the inequality 2|uv| < u® + v?, it can be shown from inequality
(8) that

(9) 2z /ti d (y(s)z(s)ds < Arz? +)\/t 22(s)ds.

-

And in view of the functional E = E(t, z,y, z), it is obvious from (8) that

B L m)
17 B(t) \3

| |—E2<oi(tt))

and

2| < b2(H)E? < b%(t)(% + g)

Therefore, the following terms from inequality (8) become

“O(t) ao(t)\2
25w @lvl =2 (al(t)> E
(10) 2”1(%)| IE <2(7alg()g(t))§E
le(t)| let)] | le(®)]
2 500) el < b2 (t) - b2 (t)
S1(t)(t) Bt) N2
2 1b(t) z]|2] < 261 (t)p (t)( o (t)) E
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Subject to the above inequalities (9) and (10), inequality (8) now gives
dE ] b'(t
< [ 5 9 (t)

+)\r+ur}z +2(a0(t)>%E

dt = b(t)  b2(t) a1(t)
a1 (t)b(t) % le(t)] |e(t)\ B(t) \3
#2(E0) tor o BT 000 (Sn) B

) [u ] / 22(s)ds

Let u = A. Hence, we obtain from inequality (11) that

12y (00, o0 OO O] 160

dt =~ "\ (t) B(t) ba(t)  b2(t)
Blt) Nz
(12) +251(t)80(t)(m) £,
provided
- 250b(t) + V' (t)
SV
Now, let
_o[(®)yz  ar®bt)\z  le(t)] Blt) 2
(13) @(t) = 2[(@?@)) +( 1/5(15) ) o ” )+61(t)s0(t)(a0(t)b(t)) }
It follows from (12) and (13) that
dE le(t)]
(14) — < [bﬁ(t)] + D(1)E.
Integrating (14) between 0 and ¢, we obtain
Bt..,2) — B0.20).0).20)) = | Ly,

0 /b(s)
+ / B(5)E(s, 2(s), y(5), () )ds
JO

By using assumption (ix) of Theorem 3.1 and the Gronwall-Ried-Bellman
inequality, we have

E(t,z,y,z) < Aexp (/(f@(s)ds)
* le(s)l 4

T

Then, the Theorem 3.1 yields ®(t) € L!(0,00), hence the boundedness of
the function E. That is, it can be easily concluded that

ao(t) 5 on(t) . 1
x4, and —z
B(t) 66" b(t)
are bounded. Thus, this result guarantees the boundedness of

CI}'/ x//

VB/oo' /B and Vo(t)

which proves the theorem. O

for a positive constant A, where A = F(0,z(0),y(0),2(0)) +
Jo

2
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Theorem 3.2. Let the assumptions (i), (i), () - (vii) of Theorem 3.1
remain valid. Thus:

(x) there exist a positive constant H such that m(t,x,y,z,z(t—7r)) > H
for allt € RT and z,y,z,2(t — 1) € R (2 £0) and V' (t) + Hb(t) > 0
for allt € R;

(xi) there are arbitrary continuous functions «g, a1, B and p on RT =
(0,00) such that ag, oy and ¢ are positive and decreasing, 3 is pos-
itive and increasing for all t € RT, and

e2(t) e(t) ap(t)\3  [oa(t)b(t)\3
V({t) + 2Hb() /bt az(t), (ao ) ’ ( : ) ’

so(t)(—ajt()tg(t)f € L}(0, 00).

Then, the conclusion of Theorem 8.1 holds.

Proof. As known, the function E defined in equation (6) is positive definite.
Now subject to the assumption of Theorem 3.2, a calculation from equations
(6) along with (2) shows that

dE _ (aqp(t) _ ao()B'(@)) 2 ()  aa(®)F )y » V() »
(S0 a0 mip0)
dt ﬂ(t) B3(t) B(t) BA(t) (1)

b(t) —(a(t,z,y, 2, 2(t — 7)) + m(t,z,y, 2, 2(t — 1)) 2>

c(t,x,y,z,2(t —7))h(x)z + 22 /ti g (y(s))z(s)ds

b(t)
ap(t) ai(t) '
+2 50 Ty + 2 30 Yz + b(t)p(t Ty, 2)z + prz? _'u/t,rZQ(S)dS'
Then
(il—? < —;:;((i)) 22— %m(t z,y, 2z, 2(t — 1))z — b(z)c(t x,y, 2z, 2(t — r))h(z)z
o () ai(t) 2 ,
+2z./t_rg (y(s))z( B00) Yy + 2 ﬂ(t) Yz + — (t) p(t, 2y, 2)z + prz?
—,u/t_ 2%(s)ds.
Now, using the assumptions (iv) - (vii) and (x), we have
dE H b (t) ap(t) as (t)
g < —2@2*2—}—/17%2—%—)\7"22 — 2t )z2+2 50( ) xy +2 ﬂl(t) yz
+2%61xz+ Q%z —,u/t ) 2(s)ds + /\/t rzg(s)ds
=— L )w}z —iz2 b/(t)z ()| 17
b(t) bit)”  BA(t) /3(t)
ai(t) p(t) le(t)] '
15) 250 le| + 2l + 25 [ =] [ s
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Choosing pu = A, it follows from (15) that

dE < H 2 b/(t) 2 O(()(t) Oq(t)

@ ST e T T P
o(t) le(t)]

(16) + 25y dilellz |+2b(t) 2]
provided that r < (%(t)) which we can now assume. Thus, we have from
inequality (16) that
dE / || t)| 2 e*(t)
PR UORELON 6o b(i) t)-i-Hb(t)) V(1) + Hb(t)

ao(t) a1 (t) o(t)

+25(t) z[ly +2 3 lyllz] +2 ()5\ z||z|

e? o 3 a 3 3
< gy 2 Cu) + (D) + a0 () 17

Therefore,

dE e2(t) le(?)]
(17) dt s b'(t) + Hb(t) * {@(t) B b%(t)}E’

where ®(t) is defined in equation (13). Now, as in the proof of Theorem 3.1,
integrating (17) from O to ¢, later using the assumption (xi) of Theorem 3.2
and the Gronwall-Ried-Bellman inequality, one can deduce the boundedness
of the function E. The proof of Theorem 3.2 is now complete. 0

The next is concerned with the regularity of solutions of the non-linear
delay differential equation (1).

Theorem 3.3. Let all assumptions of Theorem 3.2 hold. Then every solu-
tion of the equation (1) satisfies

(loéé(iz))ém € L*(0,00) and (‘all(t)‘)%x/ € L*(0,00).

If in addition, we now assume

l.u. L *)

LAV —— t>
ORS00 e

then

z" € L?(0,00).
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Proof. Now, following the procedure used in the proof of Theorem 3.1 and
Theorem 3.2 above, except for some minor modification, we obtain as fol-
lows:

I (S0P (940 IO VO T

at ~\ B B0 Bty B OO
le®)] | oo\ | raa@®b)\E | le(t)] B(t) 3
+ﬁ@+4<(94% m>)*dﬁ@+& (& bw)}
_ (o0t _ a0®F M) %@_mmmw2_vmg__gg
‘(m> 5%))_%ﬂ® 82(1) )y EOS0
+ ﬂ + ®(t)E,
26z (t)

where ®(t) is given by equation (13).
Hence, it follows that

ao(t)B 1B'(t)  ai(t)
(0@ Mt) ( (1) &wWQ
(8) b();(zl)fib() <_ Cif eét()tl)ﬂ)(t)E

Integrating both sides of inequality (18) from 0 to ¢, we have

/t Kao(T)/)”(T) B aﬁ(T))xg N (m(T)/?”(T) %(T)) 2
0

B%(1) B(r) B(1) B()
V(1) +2Hb(r) ] B el "t o \dr
— }d < E(0)— E(t) + /O b(T)d +k /0 ®(r)d

where it is assumed that E(t,z,y,2) = E < k, t > 0. In view of the as-
sumptions of Theorem 3.3, and the boundedness of the function F, we can
conclude that

t
/Iao(Tl 22dr < oo, /‘ 1(7)| y2dr <ooand/z2d7'<oo,t20.
0

The proof of Theorem 3.3 is now complete. (]

Example. Here we consider a suitable application to Theorem 3.1, the
third order nonlinear differential equation

"

x +[ (1+t2+$2+(l‘/)2+(w”)2+(.T”(t—’i’))%il
+ @2+ +a? + (@) + (@) + (2"t —r)H)]a" + (2 +1)%
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Obviously, equation (19) is a special case of (1), and its equivalent system
become

2’ =y,
y' =z,
(20) =+ P2t -r)
— 2+ + 22+ + A+ (t—))z
1
— (4 1)y — GRS + e(t).
Let 1 1 1
= o=, =t +1)  and p = ——.
(&%) (t2+1)77 aq (t2+1)51 ﬁ ( + ) and ¢ (t2+1)9

Clearly, g, a1, and ¢ are positive and decreasing functions while 3 is postive
and increasing for all t € RT, R* = [0, 00] and

(‘”0“))% — L oerio,)

o (t) t2+1
<a1g()t(;(t))% _ @ —Il— g e L0, 00)
‘p(t)<a0?t()tz(t))% -z i o € L0, 00).
e(t) e(t) e(t)

; : _ _ 1
Now, if we take e(t) such that 0 ORI E € L' (0,00)

then every z(t) of equation (19), we can have the following conclusion

T xl xll

(21 1)B2 (21 1)11/2 and (2 1 1)5/2

are bounded for all ¢ > 0. In view of the above choice, we have from (6)
that

ao(t) o ai(t)

1 -0 't
E(t,z,y,2) = z° + 24 22+ 2G(y) + / / 2% (u)duds
bow2) =5 5w Y T PO )L
_ 1 2 2 2, 2
= (t2+1)13x + (t2_|_1)11y + (t2+1)5z +y
0 ot
(21) +[L/ / 22 (u)duds.
—r Jt+s

Then, the function E = E(t,z,y, z) is a positive definite function.

Now, differentiating the function F in (21) along the above system (20),
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we obtain as follows

dE W%t 2t , 10t
— =— - Y- - z
dt (t2+ 1)1 (t2 4+ 1)1 (t241)5
2
— m(2+t2 +CU2 +y2 +22 +Z2(t—r))22
2
(AP 2y 22+ ()P
(t24+1)5
L2 L2 2 L 2e(t)
€T zZ — Tz T g R
@B Y T R T e 2+ 15

t
+ urz? — ,u/ 2%(s)ds.
t—r
Following the assumptions imposed on the functions «g, a1, 8, b and the
assumption (iii) as in the proof of Theorem 3.1, we now achieve the following
inequality

dE 2
Eg m(l—ﬁ—ﬂ—l—xz—l—y?+22+z2(t77“))71+,ur 22
2 2 2 2¢(t)
29) 4+ t ylle| - =Y
(22) + (t2+1)13\$||y|+ (t2+1)11|yH2| (t2+1)14\33||z\+ (t2+1)5\2\
Clearly, inequality (22) implies that
10 < 2l + o loll2] — iy ol 2
— < |z ———yl|z| — 7 |7||2
it = @+ BT e VIE T
2e(t)
(23) +m|z\

provided that the assumption

b | 2048422 +y? 22+ 22 )
- p(t? +1)° '

Comparing the inequalities (10), (12) with the equation (13), we can now
deduce from inequality (23) that

dE e(t
(24) e < P(t)E + W,
B 2 1 e(t) !
where ®(t) = 2 @) + E+1)3 202 +1p2  (@Z+1)p]

Integrating inequality (24) from 0 to ¢, we have

E(t) — E(0) < /0 &(r)E(r)dr + /0 %d“

Now, applying the Gronwall-Ried-Bellman inequality, we have

E(t) < Qexp ( /0 <1>(T>d7>,

247



¢
where Q = E(0) +/ e(r) dr. Thus, ®(t) € L'(0,00) implies the

0 (24 12
boundedness of EZ and hence the boundedness of

T l'/ .’,E//

(2 +1)13/2 (12 4 1)11/2 and (2112

Hence, this shows the useful application of Theorem 3.1.
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