BOUNDS AND COLOR ENERGY OF DERIVED GRAPHS

GOWTHAM H. J., SABITHA D'SOUZA, AND PRADEEP G. BHAT

ABSTRACT. Let G be a finite connected simple graph. The color energy of a graph G is defined as the sum of absolute values of color eigenvalues of G. The derived graph of a simple graph G, denoted by G^{\dagger} , is a graph having same vertex set as G, in which two vertices are adjacent if and only if their distance in G is two. In this paper, we establish an upper and lower bounds for color energy of a graph and obtain color energy of derived graphs of some families of graphs.

2010 Mathematics Subject Classification. 05C15, 05C50.

KEYWORDS AND PHRASES. derived graph, color energy, color complement.

1. Introduction

Let G = (V, E) be a graph with n vertices and m edges and let A(G) be its adjacency matrix. Since A(G) is symmetric, its eigenvalues are real. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of A are assumed in non increasing order. The energy of a graph G was first defined by Ivan Gutman [10] in 1978 as sum of absolute eigenvalues of G. i. e., $E(G) = \sum_{i=1}^{n} |\lambda_i|$. For details on energy of a graph refer [3, 4, 5, 9, 11, 14, 16, 17].

A coloring of a graph G [12] is coloring of its vertices such that no two adjacent vertices share the same color. The minimum number of colors needed for coloring of a graph G is called chromatic number of G and is denoted by $\chi(G)$.

In 2013, C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth, [1] have introduced the energy of colored graph. The entries of color adjacency matrix $A_c(G)$ are as follows: If $c(v_i)$ is the color of vertex v_i , then

$$a_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } v_j \text{ are adjacent with } c(v_i) \neq c(v_j), \\ -1, & \text{if } v_i \text{ and } v_j \text{ are non-adjacent with } c(v_i) = c(v_j), \\ 0, & \text{otherwise.} \end{cases}$$

The eigenvalues $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ of $A_c(G)$ are called color eigenvalues of G. The color energy of a graph denoted by $E_c(G)$ is defined as sum of absolute values of color eigenvalues of G, i.e., $E_c(G) = \sum_{i=1}^n |\lambda_i|$. Also, these authors have introduced a concept of complement of a colored graph, denoted as $\overline{G_c}$ has same vertex set and same coloring of G with the following conditions:

- (i) v_i and v_j are adjacent in $\overline{G_c}$, whenever v_i and v_j are non-adjacent in G with $c(v_i) \neq c(v_j)$.
- (ii) v_i and v_j are non-adjacent in $\overline{G_c}$, whenever v_i and v_j are non-adjacent in G with $c(v_i) = c(v_j)$ or if v_i and v_j are adjacent in G.

The matrix of $\overline{G_c}$ of order n is denoted by $A(\overline{G_c})$, whose entries are

$$a_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } v_j \text{ are adjacent in } \overline{G_c} \text{ with } c(v_i) \neq c(v_j), \\ -1, & \text{if } v_i \text{ and } v_j \text{ are non-adjacent in } \overline{G_c} \text{ with } c(v_i) = c(v_j), \\ 0, & \text{otherwise.} \end{cases}$$

Some well known properties of graph color eigenvalues are

$$\sum_{i=1}^{n} \lambda_{i} = 0, \qquad \sum_{i=1}^{n} \lambda_{i}^{2} = 2(m + m'_{c})$$

where m_c' is the number of pairs of non-adjacent vertices receiving same color in G

And

$$\det(A_c) = \prod_{i=1}^n \lambda_i.$$

For recent mathematical works on color energy of a graph see [2, 6, 7].

This paper is organized as follows. In section 2, we present important results which are used in subsequent sections. In Section 3, we obtain some upper bounds for $E_c(G)$. In Section 4, we establish color energy of derived graphs.

2. Preliminaries

Lemma 2.1. [8] (Cauchy interlace theorem) Let B be a $n \times n$ symmetric matrix and let B_k be its leading $k \times k$ sub matrix (that is, B_k is a matrix obtained from B by deleting its last n - k rows and columns). Then for $i = 1, 2, \ldots, k$.

$$\rho_{n-i+1}(B) \le \rho_{k-i+1}(B_k) \le \rho_{k-i+1}(B)$$

where $\rho_i(B)$ is the ith largest eigenvalue of B.

Lemma 2.2. [13] Let x_1, x_2, \ldots, x_N be non-negative numbers and let

$$\alpha = \frac{1}{N} \sum_{i=1}^{N} x_i \quad and \quad \gamma = \left(\prod_{i=1}^{N} x_i\right)^{\frac{1}{N}}$$

be their arithmetic and geometric means. Then

$$\frac{1}{N(N-1)} \sum_{i < j} (\sqrt{x_i} - \sqrt{x_j})^2 \le \alpha - \gamma \le \frac{1}{N} \sum_{i < j} (\sqrt{x_i} - \sqrt{x_j})^2.$$

Moreover equality holds if and only if $x_1 = x_2 = \cdots = x_N$.

Definition 2.3. [12] Let G be a simple graph with vertex set V(G). The derived graph of G, denoted by G^{\dagger} is graph having same vertex set as G, in which two vertices are adjacent if and only if their distance in G is two.

Definition 2.4. [15] A graph G in which a vertex is distinguished from other vertices is called a rooted graph and the vertex is called root of G. Let G be a rooted graph. The graph G^m obtained by identifying roots of G copies of G is called a one-point union of G copies of G.

3. Upper and lower bounds for the color energy of a graph

Theorem 3.1. Let G be a connected color graph with n vertices and m edges. Let $\{\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n\}$ be the color eigenvalues of G. Let p_1 and p_2 be a set of positive and negative eigenvalues of G respectively. Then for $1 \le r \le n$

$$-\sqrt{\frac{2(m+m_c^{'})p_1}{(n-r+1)(n-r+1+p_1)}} \leq \lambda_r \leq \sqrt{\frac{2(m+m_c^{'})p_2}{r(r+p_2)}}.$$

Proof. Consider right inequality and it is true for $\lambda_r \leq 0$. Assume that $\lambda_r > 0$. From the known equality $2(m+m_c') = \lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2$, we obtain

$$\lambda_r^2 = 2(m + m_c^{'}) - \sum_{\substack{\lambda_i > 0 \\ i \neq r}} \lambda_i^2 - \sum_{\lambda_i < 0} \lambda_i^2.$$

Since, it is well known that $\sum_{i=1}^{n} \lambda_i = 0$ and right side of above relation is

maximized when $\lambda_1 = \lambda_2 = \cdots = \lambda_r$ and for $\lambda_i < 0$, $\lambda_i = -\frac{\lambda_r r}{r_0}$.

Thus

$$\lambda_r^2 \leq 2(m + m_c^{'}) + (r-1)\lambda_r^2 - \frac{\lambda_r^2 r^2}{p_2} \quad or \quad \lambda_r \leq \sqrt{\frac{2(m + m_c^{'})p_2}{r(r + p_2)}}.$$

The left side inequality is obvious when $\lambda_r \geq 0$. In similar manner, when $\lambda_r < 0$,

$$\lambda_r^2 \le 2(m + m_c') - \frac{\lambda_r^2(n - r + 1)^2}{p_1} - (n - r)\lambda_r^2$$

or

$$\lambda_r^2 \le \frac{2(m + m_c^{'})p_1}{(n - r + 1)(n - r + 1 + p_1)}.$$

Since $\lambda_r < 0$,

$$\lambda_r \ge -\sqrt{\frac{2(m+m_c^{'})p_1}{(n-r+1)(n-r+1+p_1)}}.$$

In Theorem 3.1, as p_1 and p_2 are unknown values, whenever $\lambda_r > 0$, the value of $p_2 \le n - r$ and whenever $\lambda_r < 0$, the value of $p_1 \le r - 1$.

Corollary 3.2. For a colored graph G and for $1 \le r \le n$

$$-\sqrt{\frac{2(m+m_c^{'})(r-1)}{n(n-r+1)}} \le \lambda_r \le \sqrt{\frac{2(m+m_c^{'})(n-r)}{nr}}.$$

Theorem 3.3. Let G be a colored graph of order n > 2 with m edges and $n \le 2(m + m'_c)$ and $\lambda_1 \ge \frac{2(m + m'_c)}{n}$. Then

$$E_c(G) \geq \sqrt{2(m+m_c') + n(n-1)|\det A_c|^{\frac{2}{n}} + \frac{4}{(n+1)(n+2)}\left[\sqrt{\left(\frac{2(m+m_c')}{n}\right)} - \left(\frac{2(m+m_c')}{n}\right)^{\frac{1}{4}}\right]^2}.$$

Equality holds if $G = \overline{(K_n)_c}$.

Proof. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the color eigenvalues of G. By Lemma 2.2, we have

(1)
$$\sum_{i=1}^{N} x_i \ge N \left(\prod_{i=1}^{N} x_i \right)^{\frac{1}{N}} + \frac{1}{N-1} \sum_{i \le j} (\sqrt{x_i} - \sqrt{x_j})^2.$$

Putting $N = \frac{n(n-1)}{2}$ and taking

$$(x_1, x_2, \dots, x_n) = (|\lambda_1| |\lambda_2|, |\lambda_1| |\lambda_3|, \dots, |\lambda_1| |\lambda_n|, |\lambda_2| |\lambda_3|, \dots, |\lambda_2| |\lambda_n|, \dots, |\lambda_{n-1}| |\lambda_n|)$$

in inequality (1), we get

$$\sum_{1 \leq i < j \leq n} |\lambda_i| |\lambda_j| \geq \frac{n(n-1)}{2} \left(\prod_{i=1}^N x_i \right)^{\frac{1}{N}} + \frac{2}{n^2 - n - 2} \sum_{\substack{i < j,k < l \\ (i,j) \neq (k,l)}} \left(\sqrt{|\lambda_i| |\lambda_j|} - \sqrt{|\lambda_k| |\lambda_l|} \right)^2$$

$$(2) 2 \sum_{1 \le i < j \le n} |\lambda_i| |\lambda_j| \ge n(n-1) |\det A_c|^{\frac{2}{n}} + \frac{4}{(n+1)(n-2)} \sum_{\substack{i < j,k < l \\ (i,j) \ne (k,l)}} \left(\sqrt{|\lambda_i| |\lambda_j|} - \sqrt{|\lambda_k| |\lambda_l|} \right)^2.$$

From Corollary 3.2,

$$\lambda_{\frac{n}{2}} \leq \sqrt{\frac{2(m+m_c^{'})}{n}} \quad \text{and} \quad \lambda_{\frac{(n+1)}{2}} \leq \sqrt{\frac{2(m+m_c^{'}(n-1))}{n(n+1)}} < \frac{2(m+m_c^{'})}{n}$$

for even and odd n, respectively.

Since,
$$n = 2(m + m_c^{'})$$
 and $\lambda_1 \ge \frac{2(m + m_c^{'})}{n}$,

$$\lambda_1 \geq \frac{2(m+m_c^{'})}{n} \quad \text{and} \quad \lambda_{\lceil \frac{n}{2} \rceil} \leq \sqrt{\frac{2(m+m_c^{'})}{n}} \quad for \quad n \geq 3.$$

Since $m \geq 1$, by Lemma 2.1.

$$\lambda_n \le \lambda_2(A_2) = -1.$$

Hence $|\lambda_n| \geq 1$. Since $n \geq 3$ and $m \geq 2$,

$$\sum_{\substack{i < j, k < l \\ (i,j) \neq (k,l)}} \left(\sqrt{|\lambda_i| |\lambda_j|} - \sqrt{|\lambda_k| |\lambda_l|} \right)^2 \geq \left(\sqrt{|\lambda_1| |\lambda_n|} - \sqrt{|\lambda_{\lceil \frac{n}{2} \rceil} ||\lambda_n|} \right) + \sum_{\substack{i < j, k < l \\ (i,j) \neq (1,n) \\ (k,l) \neq (\lceil \frac{n}{2},n \rceil)}} \left(\sqrt{|\lambda_i| |\lambda_j|} - \sqrt{|\lambda_k| |\lambda_l|} \right)^2 \\
\geq \left[\sqrt{\frac{2(m+m'_c)}{n}} - \left(\frac{2(m+m'_c)}{n} \right)^{\frac{1}{4}} \right]^2.$$
(3)

Using inequality (3) in inequality (2), we get

$$2\sum_{1\leq i< j\leq n} |\lambda_i||\lambda_j| > n(n-1)|\det A_c|^{\frac{2}{n}} + \frac{4}{(n+1)(n-2)} \left[\sqrt{\frac{2(m+m_c')}{n}} - \left(\frac{2(m+m_c')}{n}\right)^{\frac{1}{4}} \right]^2.$$

Adding $\sum_{i=1}^{n} \lambda_i^2 = 2(m + m'_c)$ to both sides,

$$E_c(G)^2 > 2(m + m'_c) + n(n-1)|\det A_c|^{\frac{2}{n}} + \frac{4}{(n+1)(n-2)} \left[\sqrt{\frac{2(m+m'_c)}{n}} - \left(\frac{2(m+m'_c)}{n}\right)^{\frac{1}{4}} \right]^2.$$
 Equality holds if $G = \overline{(K_n)_c}$.

Theorem 3.4. Let G be a connected nonsingular colored graph of order n with m edges and $n \leq 2(m + m_c^{'})$ and $\lambda_1 \geq \frac{2(m + m_c^{'})}{n}$. Then

$$E_c(G) \leq 2(m + m_c^{'}) - \frac{2(m + m_c^{'})}{n} \left(\frac{2(m + m_c^{'})}{n} - 1\right) - \ln\left(\frac{n|\det A_c|}{2(m + m_c^{'})}\right).$$

Equality holds if $G = (K_n)_c$.

Proof. Since G is nonsingular, we have $|\lambda_i| > 0$, $i = 1, 2, \ldots, n$. Thus

$$|\det A_c| = \prod_{i=1}^n |\lambda_i| > 0.$$

Consider the function

$$f(x) = x^2 - x - \ln x, \quad x > 0$$

for which

$$f'(x) = 2x - 1 - \frac{1}{x}.$$

Thus f(x) is an increasing function on $x \ge 1$ and f(x) is decreasing function on $0 < x \le 1$. Thus $f(x) \ge f(1) = 0$ implies $x \le x^2 - \ln x$ for x > 0, equality holds if and only if x = 1.

$$E(G) = \lambda_{1} + \sum_{i=2}^{n} |\lambda_{i}|$$

$$\leq \lambda_{1} + \sum_{i=2}^{n} (\lambda_{i}^{2} - \ln |\lambda_{i}|)$$

$$= \lambda_{1} + 2(m + m'_{c}) - \lambda_{1}^{2} - \ln \prod_{i=1}^{n} |\lambda_{i}| + \ln \lambda_{1}$$

$$= 2(m + m'_{c}) + \lambda_{1} - \lambda_{1}^{2} - \ln |\det A_{c}| + \ln \lambda_{1}$$

$$(4)$$

Since, $\lambda_1 \geq \frac{2(m+m_c^{'})}{n}$ Consider the function

$$g(x) = 2(m + m'_c) + x - x^2 - \ln|\det A_c| + \ln x.$$

g(x) is an increasing function in $0 < x \le 1$ and decreasing function for $x \ge 1$.

Since,

$$x \ge \frac{2(m + m_c')}{n} \ge \frac{2m}{n} \ge 1.$$

We have

$$g(x) \ge g\left(\frac{2(m+m_c^{'})}{n}\right) = 2(m+m_c^{'}) + \frac{2(m+m_c^{'})}{n} - \left(\frac{2(m+m_c^{'})}{n}\right)^2 - \ln|\det A_c| + \ln\left(\frac{2(m+m_c^{'})}{n}\right)$$

$$= 2(m+m_c^{'}) - \left(\frac{2(m+m_c^{'})}{n}\right)\left(\frac{2(m+m_c^{'})}{n} - 1\right)$$

$$-\ln\left(\frac{|\det A_c|n}{2(m+m_c^{'})}\right).$$
(5)

In view of inequality (5), equation (4) reduces to

$$E_c(G) \le 2(m + m'_c) - \frac{2(m + m'_c)}{n} \left(\frac{2(m + m'_c)}{n} - 1\right) - \ln\left(\frac{n|\det A_c|}{2(m + m'_c)}\right).$$
 Equality holds if $G = (K_n)_c$.

4. Color energy of derived graphs

Theorem 4.1. For $n \geq 3$, the characteristic polynomial of a derived color graph S_n^{\dagger} of a star graph S_n is $(\lambda+1)^{n-3}[\lambda^3-(n-3)\lambda^2-(n-1)\lambda+(n-3)]$.

Proof. Let S_n^{\dagger} be derived color graph of star graph S_n . Since $\chi(S_n^{\dagger}) = n - 1$, we have

$$A_{c}\left(S_{n}^{\dagger}\right) = \begin{array}{c} v_{1} & v_{2} & v_{3} & v_{4} & \dots & v_{n-1} & v_{n} \\ v_{2} & 0 & -1 & 1 & 1 & \cdots & 1 & 1 \\ -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ v_{n-1} & 0 & 1 & 1 & \cdots & 0 & 1 \\ v_{n} & 0 & 1 & 1 & \cdots & 1 & 0 \end{array} \right]$$

Consider det $\left(\lambda I - A_c\left(S_n^{\dagger}\right)\right)$.

Step 1: Replace R_i by $R'_i = R_i - R_{i-1}$, for $i = v_4, v_5, \dots, v_{n-1}, v_n$. Then, $\det(\lambda I - A(S_n^{\dagger})) = (\lambda + 1)^{n-3} \det(C)$.

Step 2: In $\det(C)$, replace C_i by $C_i' = C_i + C_{i+1}$, for $i = v_{n-1}, v_{n-2}, \ldots, v_3$. Then it reduces to a new determinant,

$$\det(D) = \begin{vmatrix} \lambda & 1 & 2-n \\ 1 & \lambda & 0 \\ -1 & 0 & \lambda - n + 3 \end{vmatrix}$$

Hence, $det(D) = \lambda^3 - (n-3)\lambda^2 - (n-1)\lambda + (n-3)$.

Substituting
$$\det(D)$$
 in step 1, we get $\det(\lambda I - A(S_n^{\dagger})) = (\lambda + 1)^{n-3} [\lambda^3 - (n-3)\lambda^2 - (n-1)\lambda + (n-3)].$

Theorem 4.2. For $n \geq 3$, the energy of derived color graph S_{2n}^{0} of crown graph S_{2n}^{0} is 4(n-1).

Proof. Let $S_{2n}^{0}^{\dagger}$ be derived graph of crown graph. Since $\chi(S_{2n}^{0}^{\dagger})$ is n, we have

$$A_c\left(S_{2n}^{0\dagger}\right) = \left[\begin{array}{c|c} (J-I)_n & -I_n \\ \hline -I_n & (J-I)_n \end{array}\right]_{2n\times 2n}$$

where J denotes matrix with all entries equal to unity, I is an identity matrix.

The result is proved by showing $AZ = \lambda Z$ for certain vector Z and by making use of the fact that geometric multiplicity and algebraic multiplicity of each eigenvalue λ is same, as $A_c\left(S_{2n}^0^{\dagger}\right)$ is real and symmetric.

Let $Z = \begin{bmatrix} X \\ Y \end{bmatrix}$ be an eigenvector of order 2n partitioned conformally with $A_c \left(S_{2n}^{0\dagger} \right)$.

Note that

(6)
$$\left(A_c \left(S_{2n}^{0 \dagger} \right) - \lambda I_{2n} \right) \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} (J - (\lambda + 1)I)X - YI \\ -IX + (J - (\lambda + 1)I)Y \end{bmatrix}$$

Case 1: let $X = \mathbf{1}_n$ and $Y = (n - (\lambda + 1))\mathbf{1}_n$, where λ is any root of equation

(7)
$$\lambda^2 + (2 - 2n)\lambda + n^2 - 2n = 0.$$

From Equation (6).

$$(J - (\lambda + 1)I)\mathbf{1}_n - I(n - (\lambda + 1))\mathbf{1}_n = (n - \lambda - 1)\mathbf{1}_n - (n - \lambda - 1)\mathbf{1}_n = 0$$

and

$$I\mathbf{1}_n + (J - (\lambda + 1)I)(n - (\lambda + 1))\mathbf{1}_n = [1 + (n - \lambda - 1)^2]\mathbf{1}_n$$

= $[\lambda^2 + (2 - 2n)\lambda + n^2 - 2n]\mathbf{1}_n$
= 0, follows from equation (7).

Hence, n and n-2 are eigenvalues of $A_c\left(S_{2n}^{0}\right)$, each with multiplicity at least one.

Case 2: Let $X = X_i$ be an eigenvector vector with first element 1 and i^{th} element -1, for i = 2, 3, ..., n and remaining elements zero. Now $Y_i = -(\lambda + 1)X_i$, where λ is any root of $\lambda^2 + 2\lambda = 0$. Noting $JX_i = 0$ and from Equation (6),

$$(J - \lambda - 1)X_i + I(\lambda + 1)X_i = -(\lambda + 1)X_i + (\lambda + 1)X_i = 0$$

and

$$-I_n X_i + [J - (\lambda + 1)I_n](\lambda + 1)X_i = (\lambda^2 + 2\lambda)X_i.$$

From Equation (7), $\lambda^2 + 2\lambda = 0$. Thus $\lambda = 0$ and $\lambda = -2$ are eigenvalues, each with multiplicity at least (n-1), as there are (n-1) independent vectors of the form X_i .

Since order of the graph is
$$2n$$
, spectrum of $S_{2n}^{0}^{\dagger}$ is $\left\{ \begin{array}{ccc} 0 & -2 & n-2 & n \\ n-1 & n-1 & 1 & 1 \end{array} \right\}$. Hence, $E_c(S_{2n}^{0}^{\dagger}) = 4(n-1)$.

Theorem 4.3. For n > 3, energy of a derived color graph $K_{n \times 2}^{\dagger}$ of a cocktail party graph $K_{n\times 2}$ is 4(n-1).

Proof. Let $K_{n\times 2}^{\dagger}$ be derived color graph of cocktail party graph of order 2n. Since $\chi(K_{n\times 2}^{\dagger})$ is 2, we have

$$A_c\left(K_{n\times 2}^{\dagger}\right) = \left[\begin{array}{c|c} (I-J)_n & I_n \\ \hline I_n & (I-J)_n \end{array}\right]_{2n\times 2n}$$

The result is proved by showing $AZ = \lambda Z$ for certain vector Z and by making use of the fact that geometric multiplicity and algebraic multiplicity of each eigenvalue λ is same, as $A_c\left(K_{n\times 2}^{\dagger}\right)$ is real and symmetric.

Let $Z = \begin{bmatrix} X \\ Y \end{bmatrix}$ be an eigenvector of order 2n partitioned conformally with $A_c\left(K_{n\times 2}^{\dagger}\right).$

Note that

(8)
$$\left(A_c \left(K_{n \times 2}^{\dagger} \right) - \lambda I_{2n} \right) \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -(J + (\lambda - 1)I)X - IY \\ IX - (J + (\lambda - 1)I)Y \end{bmatrix}$$

Case 1: let $X = \mathbf{1}_n$ and $Y = (n + (\lambda - 1))\mathbf{1}_n$, where λ is any root of equation

(9)
$$\lambda^2 - (2 - 2n)\lambda - n(2 - n) = 0.$$

From Equation (8).

$$-(J+(\lambda-1)I)\mathbf{1}_n+I(n+(\lambda-1))\mathbf{1}_n=-(n+\lambda-1)\mathbf{1}_n+(n+\lambda-1)\mathbf{1}_n=0$$
 and

$$I\mathbf{1}_n - (J + (\lambda - 1)I)(n + (\lambda - 1))\mathbf{1}_n = [1 - (n + \lambda - 1)^2]\mathbf{1}_n$$

= $[\lambda^2 - (2 - 2n)\lambda + n^2 - 2n]\mathbf{1}_n$
= 0. follows from equation (9).

Thus we conclude that -n and 2-n are eigenvalues of $A_c(K_{n\times 2}^{\dagger})$, each with multiplicity at least one.

Case 2: Let $X = X_i$ be the vector with first element 1 and i^{th} element -1, for $i=2,3,\ldots,n$ and remaining zero. Now $Y_i=(\lambda-1)X_i$, where λ is any root of $\lambda^2 - 2\lambda = 0$.

Noting $JX_i = 0$ and from Equation (8),

$$-(J + \lambda - 1)X_i + I(\lambda - 1)X_i = -(\lambda - 1)X_i + (\lambda - 1)X_i = 0$$

and

$$I_n X_i - [J + (\lambda - 1)I_n](\lambda - 1)X_i = (\lambda^2 - 2\lambda)X_i.$$

From Equation (9), $\lambda^2 - 2\lambda = 0$. Thus $\lambda = 0$ and $\lambda = 2$ are eigenvalues, each with multiplicity at least (n-1), as there are (n-1) independent vectors of the form X_i .

Since order of graph is 2n, spectrum of $K_{n\times 2}^{\dagger}$ is

$$\left\{ \begin{array}{cccc} 0 & 2 & 2-n & -n \\ n-1 & n-1 & 1 & 1 \end{array} \right\}. \text{ Hence, } E_c(K_{n\times 2}^{\dagger}) = 4(n-1).$$

Remark 4.4. Color energy of S_{2n}^{0} and $K_{n\times 2}^{\dagger}$ are same, but color spectrum of these graphs are different. Hence S_{2n}^{0} and $K_{n\times 2}^{\dagger}$ are non co spectral color equi-energetic graphs.

Theorem 4.5. For $m \ge n$, the characteristic polynomial of a derived color graph $S_{m,n}^{\dagger}$ of double star graph $S_{m,n}$ is $\lambda^{n-1}(\lambda+1)^{m-n-1}(\lambda+2)^{n-1}[\lambda^3-(m+n-3)\lambda^2+((n-2)m-(2n-2))\lambda+n(m-2)]$.

Proof. Let $S_{m,n}^{\dagger}$ be the derived color graph of double star graph. Since $\chi(S_{m,n}^{\dagger})$ is m, we have

$$A_{c}\left(S_{m,n}^{\dagger}\right) = \begin{bmatrix} \frac{(J-I)_{n\times n}}{J_{(m-n)\times n}} & J_{n\times (m-n)} & -I_{n\times n} \\ \hline J_{(m-n)\times n} & (J-I)_{(m-n)\times (m-n)} & 0_{(m-n)\times n} \\ \hline -I_{n\times n} & 0_{n\times (m-n)} & (J-I)_{n\times n} \end{bmatrix}_{(m+n)\times (m+n)}$$

Consider det $\left(\lambda I - A_c\left(S_{m,n}^{\dagger}\right)\right)$.

Step 1: Replace R_i by $R_i' = R_i - R_{i+1}$, for $i = 1, 2, \ldots, n-1, n+1, \ldots, m-1, m+1, \ldots, m+n-1$. Then, $\det\left(\lambda I - A_c\left(S_{m,n}^{\dagger}\right)\right)$ will reduces to new determinant, say $\det(C)$.

Step 2: In $\det(C)$, replacing C_i by $C_i' = C_i + C_{i+1} + \cdots + C_{m+n}$, for $i = 1, 2, \ldots, m+n-1$, a new determinant, $\det(D)$ is obtained.

Step 3: In $\det(D)$, replacing R_i by $R_i' = R_i - (\lambda + 1)R_{n+i+1}$, for $i = 1, 2, \ldots, n-1$, we get $\det(E)$.

Step 4: On expanding the $\det(E)$ along the rows R_i , for $i=1,2,\ldots,n-1,n+1,\ldots,m-1,m+1,\ldots,m+n-1$, we obtain

$$\det(E) = \lambda^{n} (\lambda + 1))^{m-n-1} (\lambda + 2)^{n-1} \begin{vmatrix} \lambda - m + 2 & -m + n + 1 & 1 \\ \lambda - m + 1 & \lambda - m + n + 1 & 0 \\ \lambda - n + 2 & \lambda - n + 1 & \lambda - n + 1 \end{vmatrix}$$

$$= \lambda^n (\lambda+1)^{m-n-1} (\lambda+2)^{n-1} [\lambda^3 - (m+n-3)\lambda^2 + ((n-2)m - (2n-2))\lambda + n(m-2)].$$

Thus,
$$\det \left(\lambda I - A_c \left(S_{m,n}^{\dagger} \right) \right) = \lambda^n (\lambda + 1)^{m-n-1} (\lambda + 2)^{n-1} [\lambda^3 - (m+n-3)\lambda^2 + ((n-2)m - (2n-2))\lambda + n(m-2)].$$

Theorem 4.6. If $K_n^{m\dagger}$ is the derived color graph of one point union of complete graph of order m(n-1)+1, then characteristic polynomial of $K_n^{m\dagger}$ is $(\lambda + 2n - 3)^{m-2} (\lambda - 1)^{(n-2)m} [\lambda^3 + (m(1-n) + 4n - 6)\lambda^2 + (2n^2 - 5n + 3)m - (4n^2 - 13n + 10))\lambda + ((n^2 - 2n + 1)m - (3n^2 - 7n + 4)].$

Proof. Let $K_n^{m\dagger}$ be the derived color graph of one point union of complete graph of order m(n-1)+1. Since $\chi(K_n^{m\dagger})$ is m, we have

$$A_{c}\left(K_{n}^{m\dagger}\right) = \begin{bmatrix} \frac{0_{1\times 1} & -1_{1\times (n-1)} & 0_{1\times (n-1)} & \cdots & 0_{1\times (n-1)} & 0_{1\times (n-1)} \\ -1_{(n-1)\times 1} & (I-J)_{(n-1)\times (n-1)} & J_{(n-1)\times (n-1)} & \cdots & J_{(n-1)\times (n-1)} & J_{(n-1)\times (n-1)} \\ \hline 0_{(n-1)\times 1} & J_{(n-1)\times (n-1)} & (I-J)_{(n-1)\times (n-1)} & \cdots & J_{(n-1)\times (n-1)} & J_{(n-1)\times (n-1)} \\ \hline \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \hline 0_{(n-1)\times 1} & J_{(n-1)\times (n-1)} & J_{(n-1)\times (n-1)} & \cdots & (I-J)_{(n-1)\times (n-1)} & J_{(n-1)\times (n-1)} \\ \hline 0_{(n-1)\times 1} & J_{(n-1)\times (n-1)} & J_{(n-1)\times (n-1)} & \cdots & J_{(n-1)\times (n-1)} & (I-J)_{(n-1)\times (n-1)} \end{bmatrix}$$

Consider det $(\lambda I - A_c(K_n^{m\dagger}))$.

Step 1: Replace
$$R_i$$
 by $R_i' = R_i - R_{i-1}$, for $i = m(n-1) + 1, \ldots, (m-1)(n-1) + 3, (m-1)(n-1) + 1, \ldots, (m-2)(n-1) + 3, \ldots, 2(n-1) + 1, \ldots, (n-1) + 3, (n-1) + 1, \ldots, 3$. Then,
$$\det\left(\lambda I - A(K_n^{m\dagger})\right) = (\lambda - 1)^{(n-2)m} \det(C).$$

Step 2: In $\det(C)$, replacing C_i by $C_i' = C_i + C_{i+1}$, for $i = (n-1), \ldots, 1, 2(n-1), \ldots, (n-1) + 2, 3(n-1), \ldots, 2(n-1) + 2, \ldots, m(n-1), \ldots, (m-1)(n-1) + 2$, we get a new determinant, let it be $\det(D)$.

Step 3: Expanding det(D) over last row, we get

$$\det(E) = \begin{vmatrix} \lambda + n - 1 & n - 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \lambda - 1 & 1 - n & 1 - n & \cdots & 1 - n & 1 - n \\ 1 - n & 1 - n & \lambda + n - 2 & 1 - n & \cdots & 1 - n & 1 - n \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 - n & 1 - n & 1 - n & 1 - n & \cdots & \lambda + n - 2 & 1 - n \\ 1 - n & 1 - n & 1 - n & 1 - n & \cdots & 1 - n & \lambda + n - 2 \end{vmatrix}_{(m+1) \times (m+1)}$$

Step 4: In det(E), replacing R_i by $R_i' = R_i - R_{i-1}$, for $i = m+1, m, m-1, \ldots, 1$ and C_i by $C_i' = C_i + C_{i+1} + \cdots + C_m$, for $i = 3, 4, \ldots, m-1$ and simplifying we get

$$\det(E) = (\lambda + 2n - 3)^{m-2} \begin{vmatrix} \lambda + n - 1 & n - 1 & 0 \\ 0 & \lambda - 1 & -(m-1)(n-1) \\ 1 - n & 1 - n & \lambda + n(3-m) + m - 4 \end{vmatrix}$$

$$= (\lambda + 2n - 3)^{m-2} [\lambda^3 + (m(1-n) + 4n - 6)\lambda^2 + (2n^2 - 5n + 3)m - (4n^2 - 13n + 10))\lambda + ((n^2 - 2n + 1)m - (3n^2 - 7n + 4))].$$
Abstituting $\det(E)$ in step 2, we get $\det(\lambda I - A_c(K_n^{m\dagger})) = (\lambda + 2n - 1)$

Substituting $\det(E)$ in step 2, we get $\det\left(\lambda I - A_c\left(K_n^{m\dagger}\right)\right) = (\lambda + 2n - 3)^{m-2} (\lambda - 1)^{(n-2)m} [\lambda^3 + (m(1-n) + 4n - 6)\lambda^2 + (2n^2 - 5n + 3)m - (4n^2 - 13n + 10))\lambda + ((n^2 - 2n + 1)m - (3n^2 - 7n + 4)].$

References

- [1] C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth, Color energy of a graph, Proc. Jangjeon Math. Soc. 16 (2013), 335-351.
- [2] C. Adiga, E. Sampathkumar and M. A. Sriraj, Color energy of unitary cayley graphs, Discuss. Math. Graph Theory 34 (2014), 707-721.
- $[3]\,$ R. Balakrishnan, $\,$ The energy of a graph, Linear Algebra Appl. 387 (2004), 287-295.
- [4] R. B. Bapat, Graphs and matrices, Springer Hindustan Book Agency, London, 2011.
- [5] R. B. Bapat and S. Pati, Energy of a graph is never an odd integer, Bull. of Kerala Math. Association 1 (2004), 129-132.
- [6] P. G. Bhat and S. D'Souza, Color Laplacian energy of a graph, Proc. Jangjeon Math. Soc. 18 (2015), 32-330.
- [7] P. G. Bhat and S. D'Souza, Color signless Laplacian energy of a graph, AKCE Int. J. Graphs Comb. 14 (2017), 142-148.

- [8] D. M. Cvetkoviác, M. Doob, and H. Sachs, Spectra of Graphs, Theory and Application, Academic Press, New York, 1980.
- [9] H. J. Gowtham, S. D'Souza and P. G. Bhat Laplacian energy of generalized complements a graph, Kragujevac J. Math. 42(2) (2018), 299-315.
- [10] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz. 5 (1978), 1-22.
- [11] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A kohnert, R.Laue, A.Wassermann (Eds.), Algebraic combinatorics and applications, Springer-Verlag, Berlin, (2001), 196-211.
- [12] F. Harary, Graph Theory, Narosa Publishing House, 1989.
- [13] H. Kober, On the arithmetic and geometric means and the Hölder inequality, Proc. Am. Math. Soc. 59 (1958), 452-459.
- [14] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2010.
- [15] S. Shee and Y. Ho, The cordiality of one-point union of n copies of a graph, Discrete Math. 117 (1) (1993), 225-243.
- [16] B. Zhou, On the energy of a graph, Kragujevac J. Sci. 26 (2004), 5-12.
- [17] B. Zhou, The energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118.

Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

 $Email\ address: \verb"gowthamhalgar@gmail.com"$

Email address: sabitha.dsouza@manipal.edu

 $Email\ address: {\tt pg.bhat@manipal.edu}$

ACCEPTED DATE: 14 SEPTEMBER 2018