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BOUNDS AND COLOR ENERGY OF DERIVED GRAPHS

GOWTHAM H. J., SABITHA D’SOUZA, AND PRADEEP G. BHAT

ABSTRACT. Let G be a finite connected simple graph. The color energy
of a graph G is defined as the sum of absolute values of color eigenvalues
of G. The derived graph of a simple graph G, denoted by G, is a graph
having same vertex set as G, in which two vertices are adjacent if and
only if their distance in G is two. In this paper, we establish an upper
and lower bounds for color energy of a graph and obtain color energy of
derived graphs of some families of graphs.
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1. INTRODUCTION

Let G = (V, E) be a graph with n vertices and m edges and let A(G) be
its adjacency matrix. Since A(G) is symmetric, its eigenvalues are real. The
eigenvalues A, Ag, ..., A, of A are assumed in non increasing order. The
energy of a graph G was first defined by Ivan Gutman [10] in 1978 as sum

n

of absolute eigenvalues of G. i. e., E(G) = Y_ |\;|. For details on energy of

i=1
a graph refer [3, 4, 5, 9, 11, 14, 16, 17].

A coloring of a graph G [12] is coloring of its vertices such that no two
adjacent vertices share the same color. The minimum number of colors
needed for coloring of a graph G is called chromatic number of G and is
denoted by x(G).

In 2013, C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth, [1]
have introduced the energy of colored graph. The entries of color adjacency
matrix A.(G) are as follows: If ¢(v;) is the color of vertex v;, then

1, if v; and v; are adjacent with c(v;) # c(v;),
a;; = ¢ —1, if v; and v; are non-adjacent with c(v;)=c(v;),
0, otherwise.

The eigenvalues {A1, A2, ..., An} of Ac(G) are called color eigenvalues of G.
The color energy of a graph denoted by E.(G) is defined as sum of absolute

n
values of color eigenvalues of G, i.e., E.(G) = 3 |\i|. Also, these authors
i=1

have introduced a concept of complement of a colored graph, denoted as G,
has same vertex set and same coloring of G with the following conditions:
(i) v; and v; are adjacent in G., whenever v; and v; are non-adjacent in
G with c(v;) # c(vj).
(ii) v; and v; are non-adjacent in G, whenever v; and v; are non-adjacent
in G with ¢(v;) = ¢(v;) or if v; and v; are adjacent in G.
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The matrix of G, of order n is denoted by A(@), whose entries are

1, if v; and v; are adjacent in G, with c(v;) # c(v;),
a;; = ¢ —1, if v; and v; are non-adjacent in G. with ¢(v;)=c(v;),
0, otherwise.

Some well known properties of graph color eigenvalues are

n

YoA=0, > N =2m+m)
i=1

i=1

’ . . . . . .
where m, is the number of pairs of non-adjacent vertices receiving same
color in G.
And

det(Ac) = [ M-
i=1

For recent mathematical works on color energy of a graph see [2, 6, 7).

This paper is organized as follows. In section 2, we present important
results which are used in subsequent sections. In Section 3, we obtain some
upper bounds for E.(G). In Section 4, we establish color energy of derived
graphs.

2. PRELIMINARIES

Lemma 2.1. [8] (Cauchy interlace theorem) Let B be a n x n symmetric
matriz and let By, be its leading k x k sub matriz (that is, B, is a matriz
obtained from B by deleting its last n — k rows and columns). Then for
i=1,2,...,k,

Pr—i11(B) < pr_iv1(Br) < pp_iy1(B)
where p;(B) is the i'" largest eigenvalue of B.

Lemma 2.2. [13] Let 21, ,,...,2y be non-negative numbers and let

1N N ~
aZNZmZ— and 7=<Hmi>
i=1 i=1
be their arithmetic and geometric means. Then

! 2 1 )
N S P ey D v
= 1<]
Moreover equality holds if and only if x; = x9 = -+ = .

Definition 2.3. [12] Let G be a simple graph with vertex set V(G). The
derived graph of G, denoted by G is graph having same vertex set as G, in
which two vertices are adjacent if and only if their distance in G is two.

Definition 2.4. [15] A graph G in which a vertex is distinguished from other
vertices is called a rooted graph and the vertex is called root of G. Let G be
a rooted graph. The graph G™ obtained by identifying roots of m copies of
G is called a one-point union of m copies of G.



Bounds and color energy of derived graphs

3. UPPER AND LOWER BOUNDS FOR THE COLOR ENERGY OF A GRAPH

Theorem 3.1. Let G be a connected color graph with n vertices and m
edges. Let {\1,A2,A3,..., A} be the color eigenvalues of G. Let p; and
py be a set of positive and negative eigenvalues of G respectively. Then for
1<r<n

_ 2(m + m,)py <\ < 2(m—|—m/c)p2'
m—r+1l)n—r+1+p) ="~ r(r +py)
Proof. Consider right inequality and it is true for A\, < 0. Assume that
A, > 0. From the known equality 2(m+m.) = A2 + X3 +- - -+ A2, we obtain

MN=2mtm) - Y A= )AL

2;>0 ;<0
i#r

n
Since, it is well known that Y A, = 0 and right side of above relation is
i=1

maximized when \; = Ay =--- = X, and for \, <0, \, = _)‘TT.
Do
Thus
/ 2,2 9 ’
< 2maml) b DA AT gy < [Py
Do r(r +py)

The left side inequality is obvious when A, > 0. In similar manner, when
A, <0,

’ _)\72”(71—7”—1-1)2

A2 < 2m -+ ) —(n— 2
Py
or
\2 < 2(m—}—m/)p1
"Tn—r+L)n—r+1+p)’
Since A, <0,

> _ 2(m+mc)p1 .
= (m—r+1)(n—r+1+p)

]

In Theorem 3.1, as p; and py are unknown values, whenever \. > 0, the
value of py <m —r and whenever A, <0, the value of p; <7 — 1.

Corollary 3.2. For a colored graph G and for 1 <r <n
_[2(m+m)(r—1) < < 2(m+mc)(n—r).
nn—r+1) nr

Theorem 3.3. Let G be a colored graph of order n > 2 with m edges and
2 /
Amtme) oy

n

n<2(m+m,) and A, >

2

, i 2 4 2(m +m,) 2(m +m.) i
E.(G) > \JZ(m +m,) +n(n— 1)|det Ac|n + CESCES) |: ( = > - ( " ) :| .
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Equality holds if G = (K,,)

c*

Proof. Let Aj, Ay, ..., Ap be the color eigenvalues of G.
By Lemma 2.2, we have

N NO\F
(1) dw=N (H%) e S -
i=1 i=1

1<j

Putting N = @

and taking
(I17x25 . '71:71) = (|)‘1H)‘2|7 ‘)‘1”)‘3'7 LR ‘)‘1”)‘71' ‘)‘QH/\S" LR ‘)‘2||/\n‘7 LR ‘)‘n—lH)‘nD
in inequality (1), we get

S iyl = 2D (ﬂw>+ﬁ > (Y- v’

1<i<j<n i<j,k<l

(6,5)#(k.1)
@) ) 2
2
2 3 Wbyl z - Dldet At + porr— 30 (I = A
1<i<j<n i<j,k<l
(6.5)#(k.1)

From Corollary 3.2,

An <

w3

2Amt ) v o [HmEml1)  20m+m)
n B n(n+1) n

for even and odd n, respectively.

, 2 ’
Since, n =2(m+m,) and A > M,
n
2 . 2 .
P ) O Y e ULakiLO R Y
n 2 n

Since m > 1, by Lemma 2.1.
An < Ag(Ag) = 1.

Hence |A,| > 1. Since n > 3 and m > 2,

3 <\/\Ai\|xj| - \/|)\k|/\l>2 > (\/W— IA[%WHARI) +

i<j,k<l
(4,9)#(k,1)
2
> (il = VIR
i<jk<l
(4,4)#(1,n)

(kD#([3.m1)

> Il (VI - )
(3) > |: /2(7”:7”;) _ (2(mt7n;)>£:|2.
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Using inequality (3) in inequality(2), we get

192
2 4 2(m +m, 20m +m,) \*
> 3 |A,-||A_7->n<n1>detAc|n+(n+1)(n2){ E: c>(< : c’) ]

1<i<j<n

n
Adding > A2 = 2(m + m,,) to both sides,

i=1
’ 192
2 / 2 4 2(m+my)  f2(m+m)\*
E.(G)” >2(m+m.)+n(n— 1) det Ac|™ + mIDm=2) |: " - ( " > :I .
Equality holds if G = (K,),. O

Theorem 3.4. Let G be a connected nonsingular colored graph of order n
2(m + m)
n

with m edges and n < 2(m +m.) and A, > . Then

EAG) < 2(m -+ m) - 2t <2<m F) 1) . (2T<Lnfj Al ) |

Equality holds if G = (Ky)..
Proof. Since G is nonsingular, we have |\;| >0, i =1,2,...,n. Thus

n

[det Ac| = [ Ixl > 0.

i=1

Consider the function
flx)=2> -2z —Inz, >0
for which
/ 1
=2r—1——.
flay=or-1-1

Thus f(x) is an increasing function on z > 1 and f(z) is decreasing function
on0 < x < 1. Thus f(x) > f(1) = 0 implies < x> —Inx for = > 0, equality
holds if and only if z = 1.

E(G) =X+ |\l
=2

<A+ (A =In )

1=2
=M +2m+m) = A =] A+ A,
=1
(4) =2(m+m,)+ X — A} —In|det Ac| + In )\,

2 !
Since, A, > 2™+ Me)

n
Consider the function

g(z) = 2(m +m.) +z —2° —In|det A.| + Inz.
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g(z) is an increasing function in 0 < z < 1 and decreasing function for

x> 1.
Since,
> 2(m+m,) > 2_mZ )
n n
We have
,N 2
2 / 2 2(1 1
o) >g< (m—O—mC)) —mtml) + (m+m,) ( (m—O—mC)) B
n n n
In|det A, +1n <M>
n
=2(m+m,) — (2(m+m‘3)> (2(m+mc) - 1>
n n
|det A |n
) _ln(Q(m—i-m;) '

In view of inequality (5), equation (4) reduces to

Eu(G) < 2(m +m) — 2(m +m,) (2(m+m/c) _1> N (M)

n n 2(m +m,,)

Equality holds if G = (Kj)c. O

4. COLOR ENERGY OF DERIVED GRAPHS

Theorem 4.1. For n > 3, the characteristic polynomial of a derived color
graph S} of a star graph Sy, is (A+1)"3[A3 — (n—3)A2— (n— D)A+ (n—3)].

Proof. Let S} be derived color graph of star graph S,,. Since X(S};) =n-—1,

we have
V1 v v3 V4 Un—1 Un
w [0 =1 1 1 1 17
va -1 0 0 0 0 0
v 1 0 0 1 1 1
A, ( st ) o 1 0 1 0 1 1
- 1 0 11 -+ 0 1
Un 1 0 1 1 -~ 1 0

Consider det ()\I — A;(SIJ).

Step 1: Replace R, by R; = R, — R, , for i = v,,vs,...,v, 1,v,. Then,
det(M — A(S))) = (A + 1) 3 det(C).
Step 2: In det(C), replace C; by C; = C; + Cy, for i = v,_1,v,_o,...,05.
Then it reduces to a new determinant,
Al 2—n
det(D)=|1 A 0
-1 0 A=n+3
Hence, det(D)= \? — (n — 3)A2 — (n — A + (n — 3).
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Substituting det(D) in step 1, we get det(Al — A(S))) = (A + 1)"3[A3 —
(n—3)A2 — (n— 1A+ (n—3)]. O

Theorem 4.2. For n > 3, the energy of derived color graph SgnT of crown
graph S9. is 4(n —1).

Proof. Let SgnT be derived graph of crown graph. Since X(SgnT) is n, we
have

A (SgnT> = { (J—_Ij)n I (J_—L})n Lnxzn

where J denotes matrix with all entries equal to unity, I is an identity
matrix.

The result is proved by showing AZ = A\Z for certain vector Z and by
making use of the fact that geometric multiplicity and algebraic multiplicity

of each eigenvalue X is same, as A, (S%j) is real and symmetric.

Let Z = B,(] be an eigenvector of order 2n partitioned conformally with

A (SS,]) .
Note that
© (A -am) 5] = [ S0 PRIy

Case 1: let X =1, and Y = (n — (A + 1))1,, where X is any root of
equation

(7) M4+ (2-2n)A+n? —2n=0.
From Equation (6),

(J—=A+DD1, —I(n—A+1))ly=n-A—D1l,—(n—A—1)1,=0
and
IL,+(J—A+DDH(n—A+1))1, =1+ (n—X—1)%1,
=[N+ (2-2n)\ +n? - 201,

=0, follows from equation (7).

Hence, n and n — 2 are eigenvalues of A, SgnT), each with multiplicity at

least one.
Case 2: Let X = X; be an eigenvector vector with first element 1 and
ith element —1, for i = 2,3,...,n and remaining elements zero. Now

Y; = —(A+ 1)X;, where \ is any root of A\? +2)\ = 0.
Noting JX; = 0 and from Equation (6),

(J-2-DX;+I0+1D)X; =-A+1DX; +(A+1)X; =0
and

—LX;+[J = A+ LI+ 1D)X; = (A +20)X,.

205
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From Equation (7), A2 +2X\ = 0. Thus A = 0 and A = —2 are eigenvalues,
each with multiplicity at least (n — 1), as there are (n — 1) independent
vectors of the form Xj. .

Since order of the graph is 2n, spectrum of SgnT is

0 -2 n-2 n oty
{ nel n-1 1 1 } Hence, E.(S3,') = 4(n —1). O
Theorem 4.3. Forn > 3, energy of a derived color graph Klm of a cocktail
party graph K, o is 4(n —1).

Proof. Let Kr];x2 be derived color graph of cocktail party graph of order 2n.

Since x(K. ) is 2, we have
-7, I
A (Kt _ ( n n
¢ ( nX?) |: ITL ‘ <I - J)TL :|2n><2n

The result is proved by showing AZ = A\Z for certain vector Z and by
making use of the fact that geometric multiplicity and algebraic multiplicity

of each eigenvalue X is same, as A, (Klw) is real and symmetric.

Let Z = ﬁi] be an eigenvector of order 2n partitioned conformally with

A (KTTLXQ :
Note that
(8) (4c (K] 2) = M) Bf] _ “;t 8;31)_);;)?/

Case 1: let X =1, and Y = (n+ (A — 1))1,,, where X is any root of
equation

(9) M —(2-2n)A —n(2—n) =0.
From Equation (8),
~(JJ+A-DD1, +In+ A=), =—-nm+A-D1,+(n+A-11,=0
and
I, —(J+A=DDn+N=1)1, =[1—(n+X—1)?1,
=\ = (2-2n)\ +n* - 201,

=0. follows from equation (9).

Thus we conclude that —n and 2 — n are eigenvalues of A, (K:Lw)’ each
with multiplicity at least one.

Case 2: Let X = X, be the vector with first element 1 and *" element
—1, for i = 2,3,...,n and remaining zero. Now Y; = (A — 1)X;, where X is
any root of A2 — 2\ = 0.

Noting JX; = 0 and from Equation (8),
—(J+A-1DX;+ I -1D)X; == -1DX; + (A -1)X; =0
and
LXi—[J+ A =DL]JA-1)X; = (A2 —2))X;.
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From Equation (9), A2 — 2\ = 0. Thus A = 0 and \ = 2 are eigenvalues,
each with multiplicity at least (n — 1), as there are (n — 1) independent
vectors of the form Xj.

Since order of graph is 2n, spectrum of K:LX2 is
{ 0 2 2—n —n

ne1 n—1 1 1 } Hence, EC(K;EXQ) =4(n-1). O

Remark 4.4. Color energy of SgnT and K);XQ are same, but color spectrum
of these graphs are different. Hence SSnT and K:sz are non co spectral color
equi-energetic graphs.

Theorem 4.5. For m > n, the characteristic polynomial of a derived color
graph S of double star graph S B8 AN+ 1) (N4 2)m NS —
(m+n—3)A2+ ((n—2)m— (2n — 2))A + n(m — 2)].

Proof. Let Sjn,n be the derived color graph of double star graph. Since
X(Sh.n) is m, we have

(J_ I)nxn J,

+ nx(m—n) nxn
Ae (Sm,n) = J(m—n)xn (J B I)(m—n)x(m—n) O(m—n)xn
_Inxn Onx(m—n) (‘] - I)nxn (m4n)x (m+n)

Consider det (/\I — A, (Sjnn>)

Step 1: Replace R, by R; =R, -R, ,fori=12,....,n—1,n+1,... m—
1,m+1,...,m+n—1. Then, det ()\I — A, (Sjnn» will reduces to
new determinant, say det(C).

Step 2: In det(C), replacing C; by C; = C; + Cipg+ -+ Chyy, for

i=1,2,...,m+n—1, a new determinant, det(D) is obtained.

Step 3: In det(D), replacing R; by R, = R, — (A + )R, ., for i =
1,2,...,n—1, we get det(E).

Step 4: On expanding the det(E) along the rows R,, for i = 1,2,...,n —
ILn+1,....m—1m+1,...,m+n— 1, we obtain

A—-m+2 —-m+n+1 1
det(E) = A"(A+1)™ " A +2)" P A —m+1 A-m+n+1 0
A—n+2 A—n+1 A—n+1

= XA+ A+2)" N = (mA+n—3)N2 + ((n—2)m— (2n—
2)A +n(m —2))].
Thus, det ()\I ~ A, (SI,W)) = N+ D) A+ 27 N — (m+ o —
3N+ ((n—2)m — (2n — 2))A +n(m — 2)]. O
Theorem 4.6. If K]{”L is the derived color graph of one point union of
complete graph of order m(n—1)+1, then characteristic polynomial of K,TT
is (A +2n—3)""2 (A= 1) 2m\3 4 (m(1 —n) +4n — 6)A2 + (2n — 5n +
3)m — (4n? — 13n 4+ 10)A + ((n? — 2n + )m — (3n% — Tn + 4)].
Proof. Let K;"T be the derived color graph of one point union of complete
graph of order m(n — 1) + 1. Since x(K™) is m, we have

207
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011 “Lixm-n 01 (non U U
’l(n-l)xl I-. (n—1)x(n—1) “(n—1)x(n-1) “(n=1)x(n—1) “(n=1)x(n—1)
A (Km'i') — O(n—l)xl 'l('n—l)x(n—l) I- ‘I)(n—l)x(n—l 'l(n—l)x(n—l) '/(n—l)x(n—l)
C n B . i .. H H
O(n—l)xl ‘/(n—l)x(n—l) J(n—l)x(n—l) (I_J)(n—l)x(n—l) ‘/(n—l)x(n—l)
Ogn-1)x1 ‘/(n—l)x(n—l) J(n—l)x(n—l) ‘/(nfl)x(nfl) (- 'I)(n—l)x(n—l)

Consider det (A — A, (K['T)).

Step 1: Replace R, by R; = R,— R, ;, fori=m(n—1)+1,...,(m—1)(n—
4+3,(m-1)(n-1)+1,...,(m—2)(n—1)+3,...,2(n—=1)+1,...,
(n—1)4+3,(n—1)+1,...,3. Then,
det ()\] — A( :{”)) = (A —1)=Dm det(C).

Step 2: In det(C), replacing C; by C’; = C;+Cy 4, fori= (n—1),...,1,2(n—
1),...,(n=1)+2,3(n=1),...,2(n—=1)+2,....,mn—1),...,(m—
1)(n — 1) + 2, we get a new determinant, let it be det(D).

Step 3: Expanding det(D) over last row, we get

A4+n—-1 n-1 0 0 0 0
0 A—1 1—n 1—-n .- 1—n 1—n
1—n 1-n A4+n—-2 1—-n .- 1—n 1—n
det(E) = . . .
1-n 1-n 1-n 1-n -+ AX+n-2 1-n
1-n 1-—n 1-—n 1-n .- 1—-n A+n—

2 m+1)x(m1)
Step 4: In det(F), replacing R; by R; = R, — R, , for i = m + 1,m,m —

1,...,1and C; byC;=Ci+Ci+1+---—|-Cm,fori=3,4,...,m—1
and simplifying we get

Ad4n—-1 n—-1 0
det(E) = (A4 2n — 3)™2 0 A-1 —(m—-1)(n-1)
l-n 1-n A+n@B-m)+m-—4

= (A+2n—3)"2\3 + (m(1 —n) +4n — 6)A% + (2n% — 5n +
3)m — (4n? — 13n + 10)A + ((n? — 2n + 1)m — (3n? — Tn + 4))].
Substituting det(E) in step 2, we get det (\I — A, (K™1)) = (A + 2n —
3)"=2 (A= 1) =27\ 4 (m(1 —n) +4n — 6)A> + (2n® — 5n + 3)m — (4n? —
13n+10)A + ((n? — 2n 4+ 1)m — (3n% — Tn + 4)].
0
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