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A NOTE ON TYPE 2 DEGENERATE EULER AND
BERNOULLI POLYNOMIALS

GWAN-WOO JANG AND TAEKYUN KIM

ABSTRACT. Recently, several authors have studied degenerate Bernoulli
and Euler polynomials in connection with many special numbers and poly-
nomials. In this paper, we study the type 2 degenerate Bernoulli and Euler
polynomials and give some properties for these polynomials. In particu-
lar, these polynomials are closely related to central factorial numbers of
the second kind. In addition, we give some identities of these polynomials
associated with the central factorial numbers of the second kind.

1. Introduction

It is well known that the Euler polynomials are defined by the generating
function to be

2 .- t"
o lezt = ZE:;($)H, (see[l — 15)). (1.1)
n=0 :

When z =0, E = E*(0) are called the Euler numbers.

The type 2 Euler polynomials are also defined by the generating function to
be

e sec hE = Lem = i E (:U)ﬁ (seel6]) (1.2)
2 et4e s _n=() "l R '
When z =0, E,, = E,(0) are called the type 2 Euler numbers.

The stirling number of the first kind is defined by
(x)n = Zsl(n’l)mlv (366[14715])7 (13)
1=0

where (z)o =1, (z)p =z(x—1)---(z —n+1), (n > 1).
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In the point of view of inverse of (1.2), the stirling number of the second kind
is defined as

= Z Sa(n,)(z);, (n>0), (see[l4]). (1.4)
1=0

The Bernoulli polynomials are given by the generating function to be

t o e t"
pr— t_ Z)Bn(a:)m, (see[l — 15]). (1.5)

When z =0, B,, = B,,(0) are called the Bernoulli numbers.

Recently, the type 2 Bernoulli polynomials are introduced by

Zb (seel6,7]). (1.6)

1
2 n—=0

e%
When z =0, b, = b,(0) are called the type 2 Bernoulli numbers.

For A € R, L. Carlitz considered the degenerate Bernoulli polynomials which
are given by the generating function to be

t @
1+ AM)x - (seel2]). 1.7
T Zﬁ A 2] (17)
When z =0, 8,1 = Bn.2(0) are called the degenerate Bernoulli numbers.
He also introduced the degenerate Euler polynomials which are given by the

generating function to be

2

m (1+ )% = an A (seel2]). (1.8)

In the special case, ¢ = 0, e,,0 = €,,1(0), (n > 0) are called degenerate Euler
numbers.

For n > 0, the central factorial is defined as
20 =1, g :x(x+g_1)(x+g_2)...(w_g+1), (n>1).

The central factorial numbers of the second kind is defined by

2" = "T(n, k)™, (n>0), (seel8)). (1.9)
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From (1.9), we can derive the generating function of the central factorial
numbers of the second kind as follows:

1, . ik "
H(ez e E) = ZT(n,k)H, (k >0). (1.10)
It is known that the degenerate Changhee polynomials of the second kind is

defined by the generating function to be

x

2 (1+ Xlog(1+1t))* ZChn,\ . (see[5)).
L+ (14 Xlog(1 +1)) n=0

=

(1.11)

When x = 0, Chy, » = Chy, 2(0) are called the degenerate Changhee numbers of
the second kind (see[5]).

The degenerate Dachee polynomials of the second kind is defined by the gen-
erating function to be

log(1 +t) R S
(1+>\10g(1+t))% _1( + Alog(1 + 1)) "z::o na( )n! (1.12)

When z =0, D, » = D, x(0) are called the degenerate Daechee numbers of the
second kind, (see[13]).

In [7], the degenerate central factorial polynomials of the second kind are
given by the generating function to be

1 1 1 x
(L +A8)2x — (L+ )" #) 1+ a0 = ZT2)\ n, klw (1.13)

where k is non-negative integer.

When z = 0, Tr z(n,k) = Tox(n,k|0), (n,k > 0), are called the degenerate
central factorial numbers of the second kind.

Note that limy__,0 T x(n, k) = T'(n, k), (n,k > 0).

In this paper, we consider the type 2 degenerate Bernoulli and Euler poly-
nomials and investigate some properties for these polynomials. In addition, we
give some identities for the type 2 degenerate Bernoulli and Euler polynomials
associated with special polynomials.
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2. Type 2 degenerate Bernoulli and Euler polynomials.

For A € R, we define type 2 degenerate Euler polynomials which are given by
the generating function to be
’ll

2 .
14 At)% 2.1
(1+At)i+(1+/\t)—% 2_: na @1)

When z = 0, E, » = E, »(0) are called the type 2 degenerate Euler numbers.
Now, we define coshy(t) which are given by

(L+A)X + (1+ A1)~

oo

coshy (t) = 5 , (AeR). (2.2)
By (2.2), we easily get
sec hy(t) = o (@) coshy (—t) = cosh_(t). (2.3)
From (2.1) and (2.3), we have
t ) 0 tn
sec hoy (= . 2.4
2 (3) = (1+At)% + (1 + M)~ Ez: Al (24)

In the viewpoint of (1.2), we define the type 2 degenerate Changhee polyno-
mials which are given by the generating function to be

>8

2 i
— — (1 + Alog(1 + 1)) ch,,\(x)—,-
(1+Alog(1+1))>* + (1+ Alog(1+1)) ? n=0 G
(2.5)
When z = 0, C), » = Cy, A(0) are called the type 2 degenerate Changhee numbers.
By replacing t by log(1 +t) in (2.1), we get

2 (1+ Mog(1 + 1))
(1+ Alog(1+1)) = + (1 + Alog(1 + t))*%

=Y B )k‘(log (1+1)) ZE“ ZSlnk (2.6)

= Z(ZEL)\( )Sl(n ]{3))—71‘

Therefore, by (2.5) and (2.6), we obtain the following theorem

>»|"

Theorem 2.1. For n > 0, we have

ZE]‘)‘ Slnk)
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In (2.5), by replacing t by e — 1, we get

2
(14 Xt)zx + (1 +At)—%

_ZCM ZSznk ZZC“ Sgnk))n

n==k n=0 k=0
Therefore, by (2.1) and (2.7), we obtain the following theorem

Theorem 2.2. Forn > 0, we have

Epa(x ZCkA )Sa(n, k).

From (1.2) and (2.1), we note that

o0

> Eo) = e = Y B (G - )’

Tt _t L
(] 2

n=0
= kEk )\ Z )\"SQ TL k}
k=0
st tn
=> Z)\" *So(n, k) Ey (@) -
n=0 k=0 "

x ].
L+ AR = ZC“ (e =1

Therefore, by comparing the coefficients on the both sides of (2.8), we obtain

the following theorem
Theorem 2.3. Forn > 0, we have

En(z) =Y A"*Sy(n, k) Ey A (),
k=0

and

E, = Z )\”_kSQ(n, k’)Ek’/\.
k=0

Let us take t = —2¢, A = 2, and = —% in (2.1). Then we have

2 2
1 Pl -
(1—4t)a 4+ (1 —4t)~1 1+V1 -4t
.- 1 t"
_ n
= > (2 Bua(-3)

(2.9)
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It is well known that the Catalan numbers are given by the generating function
to be

2
TTVi=T ZC" o (see[4,9]). (2.10)

Therefore, by (2.9) and (2.10), we obtain the following theorem
Theorem 2.4. For n > 0, we have

Co = (-2 Bnal—3)

That is,

1 2n 1
— _2 n " — ).
n+1 ( n ) (=2)" B 2)
The M-analogue of falling factorial sequence, (z),,», are defined by
(@or=1, @ =2(x=A)(z—=2X)---(z— (n—1)A), (n>1).

Note that limy_,1(2)nx = (@), (n > 0).
By (2.1), we get

'S 00 1 gm 00 1 mtm
2= (;El )(mZ::o 5 mATl +m§=:0 5 T(m—1) A) (1) m)
= Z (Z (7) (%)n—l,)\El,)\ + <7> Eia( (n—1- 1))\)71_” (2.11)
n=0 [=0 1=
X (71)7%1) jl_n'

Thus, by (2.11), we have

i(7>(1 ) e z,\EM+Z< )EM (= 1= 1A), (=D (2.12)

=0
= 2(50,7“ (TL 2 O)a
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where ), ; is the kronecker’s symbol.
We observe that

: . £(e+3)
—(1+ At)> 14 M)A
(14 At)zx + (1 + At)~ 7( ) (1+ M) ( )
: £(o+1)
= 1 14+ Xt)>
(1+)\t)i—1+2( )
— - m (1 +/\t)% m %(er )
=20 (220" 4 a0)
- 1 1 1 m+41 (2’13)
= S D2l (L A (14207 (1 A ()
m=0 :
- meo—m - m + ]‘ tn
= 2 Tl )

— i ( Z (_1)m2_mm'T2 /\(n m|:c + mTH)> ﬁ

n!

Therefore, by (2.1) and (2.13), we obtain the following theorem.

Theorem 2.5. Forn > 0, we have

1
E, \(z Z( 1)™27"m!Ty A(n m|z + T+)

m=0

For r € N, the higher-order type 2 degenerate Euler polynomials are defined
by the generating function to be

v - tn
(1+ )% ZE( . (2.14)

2
((1 +At)zx + (1 +/\t)*%)

When z = 0, Enrz\ = ET(K(O) are called the higher-order type 2 degenerate Euler
numbers.
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First, we observe that

2 r (LAY 1 -r
= (14 At)% +1
((1+>\t)%+(1+>\t)—%) ( ) ( 2 )
- r+l-1 1.1 1 _ !
= (1+ A% g( z )( 5) ((L+M)zx — (1+ At)72x)
x (1+ )\t)%
= -1 1 v 2.15
= (’"Jr; )( =N +At)%u—((1 F AT — (14 M) %) (2.15)
1=0
= r+l—1 7'—|—l t"
S (RS T S ANCR L
=0 n=l
o0 n
r+l-1 r+1
=S (2 () -y e h) 5
n=0 [=0
Therefore, by (2.14) and (2.15), we obtain the following theorem
Theorem 2.6. For n > 0, we have
(r) " /r +1-1 1. r—+1
ER@ =3 < ) (- D ),
In particular,
r " r4l—1 r—i—l
B =3 (71T (- it .
1=0
First, we define the degenerate of sinht which are given by
1
sinhy (t) = §((1+)\t)% — (1 +At)~%). (2.16)

—t

Note that limy__,osinhy(t) = sinh ¢ = £=¢
Now, we define the type 2 degenerate Bernoulli polynomials which are given by
the generating function to be

t
1+ M) — (1 +>\t)—f%

L+ M)% = ZBM (2.17)

When z = 0, B, » = B, A(0) are called the type 2 degenerate Bernoulli numbers.
Form (2.16), we note that

oo

%csch%(%)(l —‘y—)\t)} = ZBn /\( )

t’ll

= (2.18)

n=0
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By replacing t by +(e* — 1) in (2.17), we get
X

e —1 t wt = el k
(5 )(e _ e—%)e - ;)B’“(W G
e’} . oo Ann
= Bea@A D Sa(n k) w (2.19)
k=0 n=k
o0 n t’ll
=3 (D A"FBiA(2)Sa(n, k) —
n=0 k=0 v
Also, by (1.6) and (2.19), we have
M -1 t ot 1 t (M)t ot
() =) = m(a= ) )
I & t"
=3 2 (o) = (@) 3y
i (2.20)

t'r’L

_ % > (bar+2) — b)) =

% (b,n+1()\ +x)— bn+1($)) "

n+1 nl’
Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.7. Forn > 0, we have

bn—i—l()\ + .’E) - bn—i—l(x
n+1

) _ > AEBy A (2)Sa(n. k).
k=0

In the viewpoint of (1.2), we define the type 2 degenerate Daehee polynomials
which are given by the generating function to be

lig(1+t) — (1+)\log(1+t))§
(L+Alog(L+1))>* — (1+ Alog(1+1t)) 2

o0 tn
= Z dn,)\(x) m
n=0 :

(2.21)
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When z =0, d,,x» = dn.A(0) are called the type 2 degenerate Daehee numbers.
From (2.21), we can derive the following equation.

t

(1+A)x =) d (e — 1
(1+At)%—(1+/\t)*% Z el )y
(2.22)
t n
—de)\ ZSQYLK—':Z de)\ Sgnk))
n=0 k=0
Therefore, by (2.17) and (2.22), we obtain the following theorem.
Theorem 2.8. For n > 0, we have
de A(2)S2(n, k).
By (2.17), we get
log(1 +t) z
1+ Alog(1l+1))x
(1+ Alog(1+ )% — (1 +A1og< To)& Al
— 1 tn
:ZBk,\( )k—(log (L+1) ZBk)\ Z (n,k)a (2.23)

=
Il
o

n=k
tn
Bk,,\(ib")51 (’I’L, k)) ﬁ

pllqg
NE

(

“
Il
o

7 0

—

Therefore, by (2.21) and (2.23), we obtain the following theorem.

Theorem 2.9. Forn > 0, we have

ZB]{)\ Slnk)

For a € R, let us define the type 2 degenerate Daehee polynomials of order
which are given by the generating function to be

( log(1+1)
(1+ Xog(1 +1)) = _ (1+ Xlog(1 +1))

= S d )"

n=0

) (1+ Mlog(1 +t))§

L
X

(2.24)

When z =0, dff‘;\ = d;a;\ (0) are called the type 2 degenerate Daehee numbers.
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For k € N, let @« = —k, x =0 in (2.24). Then we have
id(_“ g ((1 + Mog(1+6) % — (1+ Alog(1+1)) > >’f
n,A\ E =

log(1 +1t)

n=0

(log 1+1) )W Z Toa(m k) (log(1+t))
_ (lz:Bl(z—k+1)%> (t_’c > Tya(m, k) Z Sl(i,m)%)
=0 m=k i=m (225)
o8] 1 1> i
- (SR EE S mamsem )
00 n itk n
:Z(Z ( () Tox(m, k)S1(i + k,m)

n=0 =0 m=k (H;k)

('n z k+1 "
x B <1>) ’

where B,(La)(x) are the Bernoulli polynomials of order o which are given by

(et—l) _Z B

n=0

Therefore, by comparing the coefficients on the both sides of (2.25), we obtain
the following theorem.

Theorem 2.10. For m,n,k € NU {0}, we have
n itk (n)

-3

=0 m=k (Hl_k)

Now, we define the type 2 degenerate Bernoulli polynomials of order a(€ R)
which are given by the generating function to be

t o 2 N ple) N
(( Af)ﬁ—(uxf,)—%) (L+20) ;}BM( Jar (226)

Ty x(m, k)Sy (i + k,m)B"7FH1 (1),

When z =0, Bna; Bna; (0) are called the type 2 degenerate Bernoulli numbers
of order a.
In particular, o = k € N, we have

t t t ! c
(5)" esehar(3) x eschar(z) x -+ x esehaa(5) = ZB,%”,
n=0

k—times
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where cschy(t) = m
From (2.24), we note that

t
((1 +At)ax — (1 +/\r)—%)

b e e n (227)
a £ R
= d@)  Sa(nk) = (D 52(n,k)d,(€,§(w))m.
k=0 n=~k n=0 k=0

Therefore, by (2.26) and (2.27), we obtain the following theorem.

Theorem 2.11. For n > 0, we have
n
B () =" Sa(n, k)d (@),
k=0

and

S

(@) =3 Si(n.k)B ().
k=0

For k € N, let « = —k and = 0 in (2.26). Then we have

ZB ((1+At)%—(1+xt)-%)’“
n=0
t" 15 ,\(n+k,k)n' t"
T k)— = k! _ .

Z 2a(m k) ZO R T
1 ’I’L
= Z —=Toa(n+k, k)
n=0 ( k )
Therefore, by comparing the coefficients on the both sides of (2.28), we obtain
the following theorem.

Theorem 2.12. For n,k > 0, we have

n+k _k
( . )Bfmk) = Tox(n+ k. k).
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