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A HYBRID METHOD TO SOLVE THE MULTI-OBJECTIVE
COMBINATORIAL AUCTIONS

CHAHRAZAD ADICHE AND MEZIANE AIDER

ABSTRACT. In this paper, we present a hybrid method for solving the multi-
item multi-unit Winner Determination Problem of Combinatorial Auctions in the
multi-attribute (multi-objective) context. Indeed, the bids may concern several
specifications of the item, involving not only its price, but also its quality, the
delivery conditions, the delivery deadlines, the risk of not being paid after a bid
has been accepted and so on. The problem is intractable and is equivalent to
a Multi-Objective Multi-Constraint Knapsack Problem, a well known NP-Hard
Problem. We propose a hybrid method, based on the Multi-Objective Branch-
and-Bound approach and the Random Walk Tabu Search metaheuristic. The
Multi-Objective Branch-and-Bound used here is referred to be the process of the
principal research. We present a novel rule to automatically rank bids while taking
into account the Decision Makers’s (DM’s) preferences on objectives that are most
relevant. A fuzzy dominance relation, on the discrete set of weight vectors, is
then computed and used to rank bids and select a feasible solution (a subset
of accepted bids). Numerical experiments are reported on data sets available
in the literature, in the case of three objective functions, three items and the
number of bids varying from 10 to 50. The obtained results show the efficiency
of our Extended Multi-Objective Branch-and-Bound method that outperforms
the existing Multi-Objective Branch-and-Bound methods both in terms of CPU
time and ratio of dominated partial solutions. Furthermore, the hybrid method
generates a larger number of efficient bids in reasonable time for all instances.
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1. INTRODUCTION

The auctions research started essentially in 1961 with the economist Nobel Prize
Laureate William S. Vickrey [37], but the early work on auctions first appeared
in operations research journals with Friedman [10] and Rothkopf [29]. Since then,
the field of auctions studies has grown to more wide multidisciplinary fields like
economics, game theory, operations research, computer science, decision analysis,
multicriteria decision making, etc. Numerous applications have been reported in
the literature for combinatorial auctions. They have been employed in a variety
of industries (truckload transportation, bus routes, industrial procurement) [4], in
airport arrival and departure slots [28], in telecommunication (allocating radio spec-
trum) [5], in electronic business (eBAY) [24], in public sector for procuring meals
for schools [17], etc.

In combinatorial auctions, the auctioneer has a set M = {ai,az,..., @i, ..., amn}
of m items to sell, and the bidders submit a set B = {b1,b2,...,b;, ..., by} of n bids.
A bid b; is a tuple (S;,¢;), where S; C M is a combination of a package of items and
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¢; is a price for the total package S; proposed by the j-th bidder. The compelling
motivation for the use of combinatorial auctions is the presence of complementarities
among the items that differ across bidders (the value of the total package is larger
than the sum of the values of its components taken separately). For example:

e A mobile phone operator may value licenses in two adjacent cities more than
the sum of the individual licenses values.

e A trucker’s cost of handling shipments in one lane depends on its loads in
other lanes.

This problem is known as the Winner Determination Problem of Combinatorial
Auctions (WDP of CAs) and the selection of the winning bids becomes in this case
more complicate (NP-hard problem [30]).

Most studies in the literature focus either on multi-item combinatorial auctions
with price only (single-attribute) ([7], [6], [23], [38]) or on single-item (but non-
combinatorial auctions) with multi-attribute auctions. However, both auctions types
alone are already very complicated and the most research on this area focuses on
the computational issues.

The WDP in the Single-unit case consists to label the bids j = 1,...,n as winning
(xj = 1) or losing (x; = 0), so as to maximize the auctioneer’s revenue under the
constraint that each item can be allocated to at most one bidder:

n

max Z(z) = chzj
J=1
(WDP) subject to
doap <1 i=1,....,m
j/iGSj
zj € {0,1} j=1,...,n

(WDP) is intractable. The branch and bound algorithms ([31], [32], [33]) are
the most common used methods in the single unit case. Exact methods guarantee
that an optimal solution is found but do not guarantee the running time! Recently
heuristics and approximate methods have been introduced to solve the WDP in
combinatorial auctions ([3], [8], [12], [15]).

The availability of multiple units of each item to the WDP involves too many
possible combinations to evaluate and so, causes new levels of complications in the
auctions process. The auctioneer has some number p; : of available units of each
item a; (¢ = 1,...,m). The bidders submit a set of bids {b1,b2,...,b;,...,b,}.
A bid is a tuple b; = ({A},A?,...,A;, - AT'}; ¢), where )\’7 is the (non negative
integer) number of units of the item a; (i = 1,...,m), required by the j-th bidder
(j =1,...,n) and ¢; is a price for the total package proposed by the j-th bidder.
The corresponding model is given by (WDP),,:

max Z(z) = chxj.

j=1
(WDP), subject to .
Z)\;{Ej < ui t=1,...,m
j=1

z; € {0,1} j=1,...,n
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Several exact approaches have been used for solving (WDP),: dynamic pro-
gramming [30], linear programming [26], integer programming [1] and constraint
programming [13].

The present work focuses on the allocation problem that has to be solved, in an
exact and in an approximate ways, by the auctioneer after all bids are submitted.
Furthermore, the submitted bids have to be done taking into account multiple, often
conflicting, decision criteria. Thus far, there have not been much work on multi-
objective multi-item multi-unit combinatorial auctions and the most of works in this
area use the weighted sum approach to translate the multi-objective into an utility
objective function ([2], [34]) or use a single objective branch-and-bound algorithm
based on the € — constraint method [4].

The problem is modeled as a Multi-Objective Multi-Constraint Knapsack Problem
(MOMCKP). Indeed, literature search revealed deep connection between these two
problems ([14], [16], [17], [27]). We then develop a hybrid MOBB & RWTS approach
for the Multi-Objective WDP of CAs (MOWDP of CAs). It combines and exploits
the advantages of the Multi-Objective Branch-and-Bound (MOBB) method and the
Random Walk Tabu Search (RWTS) metaheuristic. We use here a MOBB method
that generalises Ulungu’s MOBB [36] to the multi-constraint knapsack problem case
with more than two objectives. We compare the performance of our Extended
MOBB method to the Florios’s et al. MOBB method [9]. The branching sequence
has a great impact on the speed convergence of the MOBB approach. We present a
novel rule to automatically rank bids while taking into account the DM’s preferences
on objectives that are most relevant. We then compute a fuzzy dominance relation,
on the discrete set of weight vectors, and use it to rank bids and to select a feasi-
ble solution (a subset of accepted bids). Seeing that real world MOWDP of CAs
instances are not available for solver benchmarking, we validate the performances
of the MOBB & RWTS hybrid method on some MOMCKP benchmark instances
available in the literature ([18],[19]).

The remainder of this paper is organized as follows. Section 2 presents a multi-
objective formulation for a combinatorial auctions problem extending the existing
single-objective models and defines the concepts of Pareto dominance and fuzzy
dominance that we will use to solve the problem. Section 3 describes the com-
ponents of the proposed hybrid method, defined by the Extended MOBB and the
RWTS metaheuristic. Section 4 presents computational results of both the exact
and the hybrid proposed methods and analyzes their performances. Finally, Section
5 concludes with some important obtained results and gives some directions of future
works.

2. MULTI-OBJECTIVE MULTI-ITEM MULTI-UNIT COMBINATORIAL AUCTION
WDPs

We are interested by the problem of CAs in which multiple items are sold and
bidders submit bids on packages rather than just individuals items. The seller
expresses his preferences upon the suggested complementary items and the buyers
are in competition with all the specified attributes done by the seller. Indeed, for
cach bid, the auctioneer fixes some specified attributes (e.g. maximize the revenue,
minimize the payment time, minimize the risk of not being paid after a bid has been
accepted, etc). The multi-objective formulation of (WDP), is:
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n
“opt”Z]‘"'(x)=Zc_’;xj k=1,....,p
j=1
(MOWDP), subject to .
Z)\;'TJ < Hi i:l,...,m
j=1

z; € {0,1} j=1,...,n

where
o c;? is the value of the bid j ( = 1,...,n) for the criterion k (k= 1,...,p).
e The decision variables are defined as follows:
v { 1 if the bid b; is accepted (the winner offer);
] 0 otherwise.

So, (MOW DP),, consists in finding the accepted bids which, for example, simul-
taneously maximize the revenue of the seller and minimize the payment time, under
the constraints that at most the available number of units of each item is allocated.

An acceptable bid (non risk of overlapping with other bids) for which the vector of
specifications (revenue vector) is not dominated by any other vector of specifications
of bids, is an efficient solution for the (M OW DP),, problem.

2.1. Pareto Dominance. The general multi-objective combinatorial optimization
problem can be expressed as:

“max”F(z) = (fl(x)vfz(x)a SRR fp(x))
(MOCO) ¢ subject to
xesS
where p, (p > 2) is the number of objective functions, = = (x1,29,...,2,) is the
vector representing the decision variables, S is the (finite) set of feasible solutions
in the solution space R™. The set Z = F'(S) represents the feasible points (outcome
set) in the objective space RP and z = (21, 22,..., 2P), with 2* = fi(z), for z € S, is
a point of the objective space.

Note that in (MOCQ), the term “max” appears in quotation marks because, in
general, there does not exist a single solution that is maximal on all objectives. As
a consequence, several concepts must be established to define what an “optimal”
solution is. The more used one is the dominance relation also known as Pareto
dominance (see Figure 1).

We recall some basic notions in the theory of multi-objective optimization. For
more details, see [35].

Definition 1. We say that a point z = (2%,22,...,2P) dominates a point w =
(w',w?,...,wP) and we write z = w if and only if for all k € {1,...,p}, 2F > w*
with for at least one 1 € {1,...,p} such that 2 > w'.

Definition 2. A solution z* € S is called (Pareto) efficient for (MOCO) if and only
if there does not exist any other feasible solution x € S, such that F(x) dominates
F(z*). The point F(x*) is then called a non-dominated point.

The set of efficient solutions, also called the Pareto optimal set, is often denoted
by E and the image of E in Z is called the non-dominated frontier or the Pareto
optimal front, and is denoted by Zg.
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FIGURE 1. Dominations in the Pareto sense in a bi-objective space.

Note that if z,y € S are such that F'(z) dominates F'(y) we usually say that x
dominates y and we also write x > y.

In (MOCO), we can optimize separately each of the objectives by solving the
following problems:

max f*(z) k=1,...,p
(COP(k)){ subject to
z€eS

Assume that the optimal solutions of the above problems are zF*, k = 1,...,p.
Then, the optimal value of objective k is given by f¥* = fk(zk*).

Definition 3. The point F* = (f', f%*,..., fP*) is called the ideal point in the
objective space.

In general, an ideal point is not a feasible solution. Otherwise, the objectives
would not be in conflict with one another.

2.2. Fuzzy Dominance. The concept of Pareto dominance is refined by introduc-
ing the DM’s preferences which are the key aspect that must be taken into account in
a multi-criteria choice and a ranking process. In this work, we suggest to determinate
a fuzzy subset of non-dominated bids according to the DM’s preferences on objectives
that are most relevant. The fuzzy dominance degree of each bid is then computed
and used to rank bids and to select a feasible solution (a subset of accepted bids). Let
us consider a set B = {by,ba,...,b,} of bids and a discrete set IT = {r!, 72, ... ,’/TL}
of weight vectors that model the DM’s preferences on the objectives. To each bid
bj, we associate the vector [U(b;)]' = (U (b;),U%(bj),..., UL(bj)), representing the

multiple utilities of the bid b; according to the various weight vectors w2 7rL,
with:
P
(1) U'bj) =U(bj,n') = mhc"(b;), 1=1,...,L.
k=1

To explore the discrete set of weight vectors, we propose to determine the least
dominated bid. The credibility of the proposition “b; is at least as good as by,” is
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computed by the following proposed fuzzy dominance relation on B x B :
(2) pp(bj; bn) = max(Py(bj, bn) — Pu(ba, bj), 0).

where Py (bj,by) represents the proportion of utility for which by, is not preferred
to b; and is defined by:

LI UYby)>U b .
(3) PU(ijbh):{ LRzl 310 U (b)) + 0 < U (0w

0, otherwise.

and v is a threshold of veto (for example, v = 0.2).

If for one weight vector {°, the difference between U (bj) and Ulo(bh) is too
unfavorable to b;, then we refuse any credibility to the upgrade of b;, by b; whatever
are the performances of these two bids for the other weight vectors.

For a fixed bid bj, D(b;) = {br, € B : up(bj,bn) > 0} represents the fuzzy subset
of bids by, dominated by b;. Its complementary, defined by the membership function:
1 — pup(bj,bp), is the fuzzy subset of bids non-dominated by b;.

The intersection of all the fuzzy subsets of the bids non-dominated by b;, when
b; goes through B gives the subset of the bids that are dominated by no other one.
The corresponding membership function is defined by:

(4) NP (b,) = inf{1 — pp(b;,by),b; € B}.
uNP (by) can be interpreted as the degree of truth of the assertion:
“by, is dominated by no bids in B”.

When we look for the best bids (problem of optimization), it is thus logical to
choose the one for which the value of VP is closest to 1. If we aim to obtain a
complete ranking of bids, it is necessary to proceed by successive steps. This can
be done by eliminating the bids already ranked and by recomputing p¥? at every
time.

3. HYBRIDIZING BRANCH & BOUND AND TABU SEARCH

We develop a hybrid approach (MOBB & RWTS) which combines the MOBB
scheme and the RWTS metaheuristic. The MOBB used here generalizes Ulungu’s
MOBB [36] to the multi-constraint knapsack problem case with more than two
objectives. Similarly to the single objective case, the branching sequence has a great
impact on the convergence of the algorithm (Martello and Toth [20]; Nemhauser and
Wolsey [25]). In this context, a novel branching rule based on the fuzzy dominance
relation between bids is proposed, specific for the MOWDP of CAs and can be
applied to the general case of 0 — 1 Multi-Objective Programming problems. On
the other hand, the MOBB method was originally developed for generating the set
of Pareto optimal solutions in Mixed Integer Multi-Objective Linear Programming
problems of small and medium sizes (Mavrotas and Diakoulaki [21, 22]). It must
be noted that the main difference between the mixed integer and the pure integer
case is that in the latter, the solution of a Multi-Objective Linear Programming
(MOLP) problem in the final nodes is degenerated to simple function evaluations as
all binary variables are fixed (there are no continuous variables). Thus, the whole
process is significantly faster, as the time consuming part of the generation of the
Pareto optimal solutions in each final node’s MOLP is avoided. To reduce the
running time in solving large NP-hard MOWDP of CAs, we propose to generate
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the new successor nodes, when the Extended MOBB algorithm progresses deeper
down the tree, by the RWTS metaheuristic. Indeed, solving the (MOWDP), in
combinatorial auctions using an exact method may be computationally too long
since the number of combinations to be evaluated grows exponentially with the size
of the problem!

3.1. Extended Multi-Objective Branch-and-Bound method. In the branch-
and-bound scheme, the solution space is explored by dynamically building a tree
and by using the following three basic procedures: separation, evaluation and ster-
ilization.

Procedure of separation. The branching sequence is crucial for the performance
of the method. Let 6 be the order according to which variables (bids) of a partial
solution will be assigned a value. The order 6 can be defined by the decreasing values
of ué—VD = uNP(b;), j=1,...,n (Formula 4) or as in Florios et al. [9] according to
the decreasing values of the following heuristics rules:

. _7 i
(5) Ave_sort; = o kZ Z 3 , com,

k
e
(6) maz; = - gl,ale, - )\—%, j=1,...,n,
(7> S]:ZX](L)7 j:17""n7
L

where X( ) is the value of the j — th decision variable in the L — th Pareto optimal
solution of the relaxed problem. So that larger the sum, more frequent is the presence
of the specific variable in the Pareto optimal solution.

Partial solutions (nodes of the search tree) are created by assigning zeros and ones
to subsets of bids denoted Sy and (1, respectively, and according to the defined order
6. Bids not assigned either zero or one define the set F = {1,2,...,n}\ {80 U b1}

For testing the feasibility of the solutions, we define the matriz of conflicts between
bids (two bids are in conflict if the quantity of a certain item needed by both these
two bids is not available). The problem corresponding to the partial solution (31, 8o)
is again a MOWDP:

“opt” ZF(z) = ZC§+ZC§x1 k=1,...,p

JEP JEF
subject to
(MOW DP)y; ] . B ,
Z)\jxj < i=1,...,m
JEF
zj € {0,1} jerF
where:
(8) =i — Y Npyi =

JE€P
A solution obtained by assigning a value to all the free variables is called a completion
of a partial solution.
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Procedure of evaluation. An evaluation function is a vector that is simultaneously
fast to calculate and close to the Pareto front. We can evaluate the subset S’ of S if
we know how to determine a vector g(S’) = (¢'(5"),...,¢"(5")) in such a way that
there exists no solution 5 € S’ such that Z(35) dominates g(S’). If S’ = @, then the
only possible evaluation is g(S’) = —oo for a maximization problem (g(S’) = +o0
for a minimization problem).

For each node S’ of the tree, we associate a vector valued bounds. To compute
the bounds, we define for k =1,...,p:

. Z cé? : the value of the bids that have already been assigned value 1.
JEB

o ZF(8"): the value of the optimal solution according to the k-th objective.

The values of Z cf and of (Z’“*(S/) + Z cf) (k = 1,...,p) represent both
Jj€P1 Jj€p1
an estimation and an evaluation of the subset S’ respectively. If we consider two
objectives, the first is to maximize and the second is to minimize, the lower bound
Z(S") and the upper bound Z(S’) at the partial solution S’, are given by:

) 2(8) = 2= (z,) = (D b (22(8) + 3. &));

J€EBL Jjeh

(10) 2(8)=z=(z1.2) = (2" + Y o). Y ).

JjeB Jjeh

The components of both the lower bound Z(S’) and the upper bound Z(S’) at
the partial solution S’, are respectively given according to Table 1.

TABLE 1. Lower and upper bounds at a partial solution

Bounds maximization problem | minimization problem
Lower bound estimation evaluation
Upper bound evaluation estimation

Procedure of sterilization. A subset S’ of the set S of solutions of a multi-
objective combinatorial auctions problem is said to be pruned if S’ = () or there
exists s* € S so that s* dominates any solution of S’.

The vector valued bounds, defined above, allows us to prune a partial solution s,
when no completion of S’ can possibly contain an efficient solution. So, we do not
need to develop further the exploration of such a node.

Extended MOBB Algorithm. Without loss of generality, assume that the bids
b1, ba,. .., by are sorted in such a way that:

(11) NP (1) > NP (b) > . > WP (),

The first bid to choose and to include in the selection is the one with the largest NP
value. Then, the bid having the second largest u’¥? in the collection is accepted if
its acceptance does not create any conflict with bids already selected, otherwise it
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is rejected. And so on, until all bids are reviewed. We get a subset of bids that may
be a feasible solution to (MOWDP),,. Let . = min{l : u # X'}, with

! 1 l
)= (M N
j=1  j=1 j=1

and
it = (pa, g2, )
Thus, [, is the smallest index [ such that

l
Fig | iy < YN
j=1

Note that the critical bid is b;,. So, the subset S’ = {b1,b2,...,b,_1} of bids is a
feasible solution because all bids in S’ are not in conflict i.e. they have not items
in common. The Extended MOBB method starts by fixing many bids according to
the 6 order, defined by the proposed fuzzy rule (Formula 4), to quickly find a good
feasible solution. Thus, many branches of the tree can be pruned early.

The list A of nodes is maintained as a LIFO stack (Last In First Out). When
a node is pruned, the algorithm backtracks and creates a new node by moving the
last bid in 81 to By9. In addition, all bids in By after this new bid become free. If,
however, n was the last bid in S, the algorithm removes all bids {v,...,n} in 8 (v
is the smallest one) and defines 3y to be all previous elements of Sy up to v — 1 and
to include v. When a node is not pruned, the algorithm progresses deeper down the
tree and creates a new successor node. Indeed, as many bids as possible are included
in 1, according to order 6, i.e. as they appear in F. But if the remaining vector
7t does not allow bid [ to be added to S, the first possible bid r of F, which can
be added to B is sought and bid r is added to B1. Of course, all bids {7,...,r — 1}
must be added to Bg. The method is summarized in Algorithm 1.
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Algorithm 1 Extended MOBB for (MOW DP),,.

Require: Data of (MOWDP),,.
Ensure: A set of efficient solutions.
Initialization: Create the root node Ny as follows:

Bl = w, ﬂo = @, F = {1,...,77,}, L= (z)7 N:Z {No}

while N # () do
Choose the last node N € N.
Compute z (lower bound at the partial solution).
Add z to L if it is not dominated.
Compute Z (an upper bound at the partial solution).
if {j € F : bid j is not in conflict with 51} = ¢ OR Z is dominated by some
y € L then
(Case 1.)
Prune the node N. N := N\ {N}.
Go backwards of the node N (node N is pruned).
Create a new node N’.
Update B1, Bo and F.
N :=NU{N'}.
if the set 81 of N’ is smaller than 31 of the predecessor nodes of N, which
are not predecessors of N’, then
Fathom these nodes.
end if
if (81 = ¢) then
Compute the upper bound, Z, at this partial solution.
if there is a solution in £ which dominates Z then
STOP (no new node can be created).
end if
end if
else
(Case 2.)
Go deeper down the tree (node N is not pruned).
Create a new node N’.
Update 1, Bo and F.
N :=NU{N'}.
end if
end while

Didactic Example. The Extended MOBB method presented in Algorithm 1 is
illustrated by means of a multi-objective combinatorial auctions problem with three
objective functions, three constraints and seven binary variables. Let be:

o M = {a1, a2, a3} the set of three items to be auctioned.

e 11 =5, ug =10 and pg = 7 (number of available units).
The offers bj, j = 1,...,7 upon the set M and their revenue 3-vectors ¢; (to be
maximized) are given as follows:

o by = ({1,2,3};¢c1 = (10,5,12)). This means that the bid b; contains one

unit of item aq, two of as and three of ag and ¢; is its revenue vector.
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FIGURE 2. The conflict graph of the example: a vertex ¢ is adjacent
to a vertex j if the bids ¢ and j can not be chosen together

The problem can be formulated by the following mathematical program:
max Z(z) = 10m1 + 6x2+ Tz + 924+ 6z5 + 1326 + Hag
max Z2(z) = 5xy + 10zy + 14w3 + 1724 + 925 + G626 + 1627
max Z3(x) = 1221 + 8w+ 5z3+ 4z + 3z5+ llwg + 4zy

subject to
1+ X0+ 4dxs+ x4+ Dxs+ xeg+ 207 < 5
2x1 + 3xo+ Oxs+ 3x4+ 25+ 4dxg+ w7 < 10
3r1 + 272+ 4w3+ r7 < 7
x1, Za, x3, T4, Ts, T, x7 € {0,1}

The order 0 = {x4,z¢, 1, T7, T3, T5, T2} is computed according to the fuzzy first
rule (Formula 5).

e The node Ny is created, 81 := 0, 8o := 0, F := {4,6,1,7,3,5,2}, z := ( 0 ),

7::<§>,£:=®,N::{N0}. 0

e The node N is created, 81 = {4,6,1}, F :={7,3,5,2},
o= (2,1,4), 2' = (32,28,27), L = {(32,28,27)'},
{j € FI)j <u}=0 then the node N; is pruned.
e The node Ny is created, 81 := {4,6}, 8o := {1}, F := {7,3,5,2},
= (3,3,7), 2 := (22,23,15), the computation of the Z does not allow to
prune this node.
e The node N3 is created, 81 := {4,6,2}, 8 := {1,7,3,5}, F := 0,
= (2,0,5), 2' = (28,33,23) = 7, £ := {(32,28,27)", (28,33, 23)}.
{j € FI»j < u}=0, then the node N3 is pruned.
e The node Ny is created, 81 := {4}, By := {6}, F := {1,7,3,5,2},
b= (4,7,7), 2t .= (9,17,4). Thus, Ns is pruned because (3 of Ny is smaller
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than By of the predecessor of N3, which is No, and the computation of Z does
not allow to prune this node.

The node Nj is created, py := {4,1}, B := {6}, F := {7,3,5,2},

1t = (3,5,4), 2 := (19,22,16), the computation of Z does not allow to prune
this node.

The node Ng is created, 31 := {4,1,2}, 8o := {6,7,3,5}, F := 0,

bt =(2,2,2), 2t .= (25,32,24) = 7.

L:={(32,28,27)",(28,33,23)", (25,32,24)'}, {j € F|\; < u}=0,

then the node Ng is pruned.

The node N7 is created, 1 := {4}, Bo := {6,1}, F := {7,3,5,2},

mt = (4,7,7), 2t :== (9,17,4), N5 is pruned since 8 de N7 is smaller than 3;
of Nj, the predecessor of Ng. The computation of Z does not allow to prune
this node.

The node Ng is created, 81 := {4, 7}, Bo := {6,1}, F := {3,5,2},

= (2,0,6), 2" := (14,33,8) = z', {j € F : \; < i}=0. Then the node Ng
is pruned.

The node Ny is created, 81 := {4}, Bo := {6,1,7}, F :={3,5,2},

b= (4,7,7), 2t := (9,17,4), the computation of Z does not allow to prune
this node.

The node Nyg is created, 81 := {4,3}, 8o := {6,1,7}, F := {5,2},
m=1(0,1,3), 2" := (16,31,9) = z', {j € F : \; < }=0. Then the node Nyg
is pruned.

The node Ny is created, 1 := {4}, 8o := {6,1,7,3}, F := {5,2},

= (4,7,7), 2" :== (917,4), ' := (18,32,13),and is then dominated by bids
in £ then the node Ny is pruned.

The node Nys is created, 81 := 0, 8y := {4}, F := {6,1,7,3,5,2},

= (5,10,7), z¢ := (0,0,0), the nodes Ny, N7, Ny are pruned since 81 de
Nig is smaller than g1 of predecessor of Nyj.

the computation of Z does not allow to prune this node.

The node Ny is created, 3y := {6,1}, 8o := {4}, F := {7, 3,5,2},

1t = (3,4,4), 2t := (23,11,23) = z', the computation of Z does not allow to
prune this node.

The node Ny is created, 81 := {6,1,2}, By := {4,7,3,5}, F := 0,

ot =(2,1,2), 2t := (29,21,31) = 7,

L :={(32,28,27),(28,33,23)%, (25,32,24)%, (29, 21, 31)}

{j € F: \j <7u}=0 then the node Ny is pruned.

The node N5 is created, fq := {6}, Bo := {4,1}, F := {7,5,3,2},

o= (4,6,7), 28 = (13,6,11), ¢ = (23,25,21), the node Nj3 is pruned
because (1 of Nij is smaller than the predecessor of N14 which is Ni3.

Z is dominated by bids in £ then the node Ni5 is pruned.

The node Nig is created, 31 := 0, 8y := {4,6}, F := {1,7,3,5,2},

it = (5,10,7), 2! = (0,0,0), z¢ = (21,28,23), 7 is dominated by bids in £
then the node Nyg is pruned. We can not create an other node. Then Ny is
pruned and the algorithm stops.

The solution process of the Didactic Example is illustrated by Figure 3.
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29
21
31
FIGURE 3. Tree of the branch-and-bound search of the Didactic Example

The nodes are indexed in the order according to which they are created, and are
represented by the sets 1, S and L. There are four efficient combinatorial auctions,
summarized in Table 2.

TABLE 2. Solutions of the Didactic Example

N° | Efficient combinatorial auctions | Revenue vector
1 {b4, be, bl} (32,28,27)
2 {b4, b, b2} (28,33,23)
3 {b4, b1, b2} (25,32,24)
4 {bﬁ, b1, bg} (29,21,31)

3.2. Tabu Search method. In the resolution of multi-objective combinatorial op-
timization problems by metaheuristic methods, we are always brought to compare
solutions. Every new solution is compared with all the previous computed solutions
in the temporary set of potentially efficient solutions. As we progress in the reso-
lution, the cardinal of this set increases. This slows down the process of resolution.
Tabu Search (TS) is a local search strategy [11] used for intensifying the research
and well designed for escaping from local minima. We propose one adaptation of
the TS method to (MOW DP),, using a fuzzy dominance relation in the process of
comparison between solutions. The main components of a T'S procedure are:
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Research space. One feasible solution is given by a binary vector x = (z1, za, ..., Zn)
which verifies all constraints i.e.,

n
Jj=1

Research space S is then composed of all these binary vectors, i.e.:

S=Rzef{0,1}" | Y Na; <piie{l,...,m}
j=1

An initial solution is generated at the same way as in the Extended MOBB Algorithm
(see Subsection 3.1.).

Neighborhood. The neighborhood A of our problem is defined in the following
way: let z and 2’ in S, x and 2’ are neighbors if and only if they differ exactly in
one component. It results that from a current solution x, it is possible to obtain a
neighbor solution ' (' € M(x)) by adding or removing a bid such that ' remains
feasible (it does not conflict with all previous accepted bids). The movement from
z to z’ is then characterized by the integer j which is considered to be the attribute
of movement and represents the index of the component x; that was changed i.e.,
(zj:0—=1orl—0).

Evaluation of the Neighborhood. The evaluation between two neighbors x =
(®1,%2,y...,2y) € S and 2’ = (2], 2%,...,2) € N(z), is based on a fuzzy dominance
relation. The corresponding membership function, pp(z’,z) (Formula 2), measures
the credibility of the proposition

“x’ is at least as good as x”.

Management of the tabu list. Every time a movement is applied to go from
the current solution z, to the neighbor solution z’. To avoid cycling cases in which
we would come back to z and oscillate between 2’ and z, the indication of the
attribute of the movement is registered in a tabu list. So, the inverse movement
(which corresponds on the way back to the departure configuration) is forbidden for
a certain number of subsequent moves. Note ND the fuzzy set of the temporary
potential non-dominated solutions. For any y € ND, we compute up(z’',y). ND «
ND\{y € ND : up(z',y) > 0} (we remove from ND the fuzzy subset of solutions
dominated by z').

RWTS algorithm. Contrary to the basic tabu search algorithm, where the diver-
sification is ensured only by the tabu list, RW'TS algorithm consists of realizing from
time to time a move which is no more guided by the evaluation function and then
constitutes a diversification diagram. At every iteration of the RWTS algorithm, a
real value rw € [0,1] is randomly generated. Let us put g € [0, 1] the value thresh-
old, then, if rw > ¢ the algorithm will select the best movement, otherwise, the
algorithm will make a feasible random movement. The RWTS algorithm can be so
described by Algorithm 2.
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Algorithm 2 RWTS algorithm with a fuzzy dominance relation

Require: A number of iterations nb — iter, A random threshold g.
Ensure: A fuzzy set ND of potentially non-dominated solutions.
1: for i =0 to nb — iter do

2:  Generate a random value rw € [0, 1].

3: if rw < g then

4: choose a random allowed move j7*.

5: else

6: choose the best allowed move j*.

7 end if

8: Update the tabu list with 5*.

9: Perform the chosen move j* in z: let 2’ be the obtained solution.
10: Update the fuzzy set of non-dominated solutions with z’.
11: end for

A hybrid approach, presented in Algorithm 3, combines the MOBB method pro-
vided in Algorithm 1 and a RWTS metaheuristic presented in Algorithm 2. In our
proposed hybrid approach, the previous described Extended MOBB method is re-
ferred to be the process of the principal research. When a node of the spanning
tree is not pruned and its neighborhood is explored, we suggest to use the RWTS

metaheuristic in order to reduce the size of the search space.
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Algorithm 3 Hybrid MOBB & RWTS algorithm.

Require: Data of (MOW DP),, problem.
Ensure: A set of potentially efficient solutions.
Initialization: Create the root node Ny as follows:

51 = @7 60 3:(/)7 F= {17"'1’”’}’ L= (b’ N = {NO}

while ' # ) do
Choose the last node N € N.
Compute z (lower bound at the partial solution).
Add z to L if it is not dominated.
Compute Z (an upper bound at the partial solution).
if {j € F: b; is not in conflict with 81} = 0 Or Z is dominated by some w € £
then
(Case 1.)
Prune the node N. N := N\ {N}.
Go backwards of the node N (node N is pruned).
Create a new node N'.
Update p1, Bp and F.
N :=NU{N'}.
if the set 81 of N’ is smaller than 31 of the predecessor nodes of N, which
are not predecessors of N/, then
Fathom these nodes.
end if
if 1 = () then
Compute the upper bound, Z, at this partial solution.
if there is a solution in £ which dominates Z then
STOP (no new node can be created).
end if
end if
else
(Case 2.)
Go deeper down the tree (node N is not pruned).
Create a new node N’ by RWTS method.
Update B1, Bo and F.
N :=NU{N'}.
end if
end while

4. EXPERIMENTAL RESULTS

Real world MOWDP of CAs instances are not available for solver benchmarking.
As literature search revealed deep connection between the WDP of CAs and Knap-
sack Problems, the performances of the proposed methods were validated on a set
of MOMCKP instances.

We focus our experiments on a three objectives (p = 3), three items (m = 3) and
n = 10, 20, 30, 40, 50 bids. However, the results remain valid for a larger number of
objectives. A tabu list length is fixed to 15 for all the instances and the threshold
value for random walk ¢ is set to 0, 15. Except for the exact algorithm, each instance
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is re-run ten times with the hybrid (MOBB & RWTS) algorithm, and each run
terminates after nb—iter = 1000 iterations. The algorithms have been implemented
in C++ language, using a Pentium PC with dual core processor, FSB 800 Mb,
DDRI1 2 Go in Windows operating system.

The two MOBB methods are executed on the same machine. The Extended
MOBB is compared, on all branching heuristics (Formulas 5-7), to the Florios’s et
al. MOBB [9] according to five Evaluation criteria: Generated nodes, Dominated
nodes, Non Dominated nodes, set of Efficient solutions (£) and CPU Time (seconds).

The experimental results are provided in Tables 3-12 respectively.

TABLE 3. 3kpl0: Florios’s et al. MOBB [9].

Branching Evaluation criteria
heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions
No-SORT 614 117 31 9 0.05
AVG-SORT 390 7 13 9 0.04
MAX-SORT 702 170 38 9 0.06
Relax-Sum-Round 376 76 10 9 0.04
TABLE 4. 3kpl0: Extended MOBB.
Branching Evaluation criteria
heuristics senerated Dominated Non Dominated Efficient  CPU(s)
nodes nodes nodes solutions
NO-SORT 184 75 13 9 0.01173
AVG-SORT 145 57 9 9 0.01043
MAX-SORT 227 91 12 9 0.01029
Relax-Sum-Round 147 58 9 9 0.00863
Fuzzy-RAND 137 52 9 9 0.00844

The experiments of the Tables 3, 4 are performed on an Intel machine Pentium (R)
CPU p6200 @2.13 GHz with 2 GO RAM and OS is Microsoft Windows 7 Professional
in order to be able to compare the two approaches since the execution time on a
more powerful machine is exactly equal to zero seconds.

TABLE 5. 3kp20: Florios’s et al. MOBB [9].

Branching Evaluation criteria

heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions

No-SORT 8262 2710 91 61 1.82

AVG-SORT 7032 2497 78 61 0.82

MAX-SORT 8262 2710 91 61 0.88

Relax-Sum-Round 10494 3488 58 61 1.21
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TABLE 6. 3kp20: Extended MOBB.

Branching Evaluation criteria
heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions

NO-SORT 11052 6987 140 61 0.43
AVG-SORT 5018 3239 72 61 0.19
MAX-SORT 5301 3465 71 61 0.21
Relax-Sum-Round 6827 4249 65 61 0.26
Fuzzy-RAND 3481 2133 88 61 0.15

TABLE 7. 3kp30: Florios’s et al. MOBB [9].

Branching Evaluation criteria

heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions

No-SORT 518170 214006 1190 195 83.16

AVG-SORT 518170 214006 1190 195 83.92

MAX-SORT 317424 115670 482 195 56.46

Relax-Sum-Round 252140 105738 237 195 49.38

TABLE 8. 3kp30: Extended MOBB.

Branching Evaluation criteria
heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions

NO-SORT 491647 366335 1129 195 25.73
AVG-SORT 291526 207965 417 195 15.21
MAX-SORT 301271 223766 757 195 16.49
Relax-Sum-Round 224478 167537 255 195 13.45
Fuzzy-RAND 195203 139362 473 195 10.94

TABLE 9. 3kp40: Florios’s et al. MOBB [9].

Branching Evaluation criteria

heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions

No-SORT 6052616 2860391 4488 389 1813.31

AVG-SORT 4260944 2002044 1385 389 1197.92

MAX-SORT 3038572 1429995 2462 389 815.09

Relax-Sum-Round 1781504 812882 560 389 522.83

TABLE 10. 3kp40: Extended MOBB.

Branching Evaluation criteria
heuristics Generated Dominated Non Dominated Efficient CPU (s)
nodes nodes nodes solutions

NO-SORT 7640324 6236885 3937 389 750.11
AVG-SORT 4069419 3142036 1372 389 275.00
MAX-SORT 3896463 3246504 2387 389 276.90
Relax-Sum-Round 1992094 1590024 598 389 149.90
Fuzzy-RAND 1811364 1465302 1183 389 146.16

For the instance 3kp50 (Table 11 and Table 12), we do not have the order of
consideration of the bids according to the Relax-Sum-Round heuristic. This can not
influence the performance of the Florios’s et al. MOBB because the MAX-SORT
heuristic seems to be the best one for this approach.
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TABLE 11. 3kp50: Florios’s et al. MOBB [9].

Branching Evaluation criteria
heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions
No-SORT 458980078 229175911 16881 1048 > 432000.23
AVG-SORT 141600928 70315836 2811 1048 119796.57
MAX-SORT 78531540 38940050 4178 1048 76910.68
Relax-Sum-Round - - - - -
TABLE 12. 3kp50: Extended MOBB.
Branching Evaluation criteria
heuristics Generated Dominated Non Dominated Efficient CPU(s)
nodes nodes nodes solutions
NO-SORT 798660547 706934379 16118 1048 166564
AVG-SORT 411712286 307918571 2802 1048 47866.60
MAX-SORT 379178309 288296690 4146 1048 43598
Relax-Sum-Round - - - - -
Fuzzy-RAND 63779291 52990362 3017 1048 10077.90

Compared to the Florios’s et al. MOBB method, on the branching heuristics (For-
mulas 5-7), the obtained results from our Extended MOBB method outperform those
obtained by Florios’s et al. MOBB method in Ratio of Dominated nodes and CPU
time evaluation criteria.

TABLE 13. Results of the Ratio of Dominated nodes (%).

Ratio of Dominated nodes (%)
Instances | Florios’s et al. MOBB Extended MOBB
min  mean max min mean max
3kp10 10.05 19.55 24.22 | 37.06 (118.01) 38.93 (119.38) 40.76 (1 16.54)
3kp20 32.80 33.59 3551 | 61.27 (+24.47) 62.55 (+28.96) 65.36 (+29.85)
3kp30 36.44 40.24 A1.94 | 71.34 (+34.90) 72.54 (+32.30) 74.63 (+32.69)
3kpd0 45.63 46.74 A7.26 | 77.21 (+31.58) 80.69 (+33.95) 83.32 (+36.06)
3kp50 49.58 4972 49.93 | 74.79 (+25.21) 80.60 (+30.88) 88.51 (+38.58)
The closer to 100 is the Ratio of Dominated nodes the better is the speed of

convergence of the MOBB method. Our Extended MOBB method improves, on av-
erage, the Ratio of Dominated nodes between +19.38% and +33.95% (see Table 13)
which allows to significantly reduce the size of the tree since all these nodes will be

sterilized.
TABLE 14. Results of the CPU Time (seconds).
CPU Time (s)
Instances Florios’s et al. MOBB Extended MOBB
min mean max min mean max Fuzzy-Rand

3kp10 0.04 0.038 0.06 0.00863  0.01027  0.01173  0.00844 (-78%)
3kp20 0.82 1.18 1.82 0.19 0.27 0.43 0.15 (-87%)
3kp30 49.38 68.23 83.92 13.45 17.72 25.73 10.94 (-84%)
3kp40 522.83 1087.29 1813.31 149.90 362.98 750.11 176.16 (-84%)
3kp50 76910.68 > 209569 > 432000 43598 86009.53 166564 10077.90 (-95%)

As it is observed in Table 14, our Extended MOBB seems to be comparable,
to the Florios’s et al. MOBB, for the small sizes and becomes clearly more faster
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than Florios’s et al. MOBB for large sizes. Furthermore, the use of the proposed
fuzzy branching heuristic accelerates significantly the MOBB convergence. Indeed,
compared to the mean time consumed in seconds by Florios’s et al. MOBB our
Extended MOBB method with fuzzy branching heuristic improves the CPU Time
between —78% and —95%.

The complete set of efficient bids can be generated in reasonable computational
time only for small problems. For large problems, it seems better to use approximate
methods. The performance of the proposed hybrid method is evaluated in terms of
proportion of efficient solutions, generated by the set of Non Dominated solutions
(ND), and computational time represented by CPU Time and measured in seconds.
The numerical results are reported in Table 15.

TABLE 15. Performance of Hybrid MOBB & RWTS compared to
Extended MOBB with Fuzzy-Rand heuristic.

Evaluation Criteria
Instances |E| % CPU Time(s)
Extended Hybrid Extended Hybrid
MOBB MOBB & RWTS MOBB MOBB & RWTS
min mean max

3KP10 9 1.00 0.00844 0.00185 0.00187 0.00254
3KP20 61 0.88 0.15 0.01699 0.02430 0.03791
3KP30 195 0.84 10.94 1.02998 1.39047 1.86323
3KP40 389 0.71 176.16 3.75808 8.45568 15.81212
3KP50 1048 0.64 10077.90 | 66.32464 155.19966 310.39932

5. CONCLUSION AND PERSPECTIVES

The proposed hybrid method (MOBB & RWTS) for multi-item multi-unit WDP
of CAs in the context of multi-attribute (multi-objective) is based on the MOBB
approach and RWTS metaheuristic. The MOBB used here is referred to be the pro-
cess of the principal research. Literature search revealed deep connection between
the WDP of CAs and Knapsack Problems. We have extended the Ulungu’s MOBB
method to the multi-constraint case with more than two objectives, in order to make
it possible of handling more than one item (multi-item). A didactic example was
presented to illustrate this generalization. The extended MOBB method was com-
pared to Florios’s et al. MOBB on some branching heuristics. The results show
that our Extended MOBB outperforms Florios’s et al MOBB and confirm that the
branching sequence has a great impact on the convergence of the MOBB approach.
A novel branching rule based on the fuzzy dominance relation between bids was
proposed. It accelerates significantly the MOBB convergence. In addition, this im-
provement is more effective when the size of the problem becomes more large. The
complete set of efficient bids can be generated in reasonable computational time only
for small problems. For large problems, it seems better to use approximate meth-
ods. One adaptation of the RWTS metaheuristic using a fuzzy dominance relation
in the process of comparison between solutions was proposed for (MOW DP),, and
incorporated into the Extended MOBB. To solve large scale NP-hard combinatorial
auctions, the use of hybrid methods seems to be the most promising approach to
(MOWDP),, problems. These methods generate good approximated solutions in
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a short computational time. In future works, we propose to develop other mecha-
nisms of diversification and intensification more successful than the RWTS and to
incorporate them into the multi-objective branch-and-bound. Also, the speed of the
algorithm can be improved by developing better bounds for the studied problem to
discard partial solution that cannot lead to new non dominated criterion vectors.
More experiments are needed for large sizes and relations with other combinatorial
problems (bin packing, etc) will be examined.
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