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BACKWARD BIFURCATION OF AN SIR-SI MODEL WITH
VACCINATION AND TREATMENT

EDWIN SETIAWAN NUGRAHA, NUNING NURAINI, AND JANSON NAIBORHU

ABSTRACT. In the presence of treatment, most epidemic models demon-
strate behavior of backward bifurcation. This is important in epidemiol-
ogy because it provides significant information for disease control. How-
ever, most models consider only one single population. In this paper, an
extended model of two populations in the form SIR-SI involving vaccina-
tion and treatment is analyzed. The analysis of local and global stability
of equilibria is discussed. By using the center manifold theorem, this
model has backward bifurcation behavior when the number of infected
people exceeds the treatment capacity. Vaccination decreases the basic
reproduction number, but does not affect the backward bifurcation be-
havior. This study also showed that under vaccination and treatment,
an endemic equilibrium always occurs when Ry > 1.
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1. INTRODUCTION

Infectious diseases are a major challenge to survival and threaten the
health of hundreds of millions of people around the world. They killed
more than 17 million people a year, including about 9 million deaths in
young children [16]. Today, another serious problem is the development of
resistance of some microbes and bacteria to antibiotics. This leads to longer
duration of the disease, more testing and more costly medicine use [15].

Mathematical models are important tools for understanding the transmis-
sion mechanism of infectious diseases. This approach can provide advice for
prevention and control strategies to reduce disease. The SIR, compartment
model of epidemic disease was first proposed by McKermack and McK-
endrick [20]. Subsequently, other researchers have developed the model by
involving various factors (age, seasonality, treatment, vaccination), see for
example [2, 3, 7,12, 17, 19, 24, 25, 26, 28], and applied it to study the trans-
mission of various infectious diseases, see for example [4, 8, 10, 14, 18, 21].

The development of the treatment function in the SIR model is done as
follows. One of the early treatment functions was proposed in 1992 and is
formulated as follows

(1) T(I) = kI
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where k is a positive constant and I is the number of the infected population
[1]. In [23], the treatment function is expressed by

- {3 128

In [17, 24], the treatment function is proportional to the number of infected
individuals when it is below the treatment capacity and constant when the
number of infected individuals reaches the treatment capacity. The following
treatment function was used

v1, 0<I<Ip
(3) T(I) =
v Iy, I>Iy.

The results showed that the existence of a bistable endemic equilibrium and
backward bifurcation occurs when Iy is small [24]. A backward bifurcation
SIR model by involving the saturated incidence rate, ASI/(1+ kI), and the
saturated treatment function

rl

(4) Tu>:1+al

are discussed in [27]. The model showed that delays in treatment affect
global dynamics behavior. Backward bifurcation occurs when the delay is
long. The model from [27] was extended by adding an expose compartment
[27]. It suggests that a diseases can be controlled by increasing the efficiency
and the capacity of its treatment. In [7], the authors introduced quadratic
treatment function

(5) T(I) = {rl — gI*,0}.

This describes a case where health resources have limitations such that when
the number of infected people increases and after treatment reaches its max-
imum, health resources continue to decline. In the model, treatment param-
eter r plays an important role in determining the dynamic behavior of the
system. At certain r values, the system has four equilibrium points and a
limit cycle.

Vaccination can strengthen the body’s immune system, which is very
important for preventing the spread of infectious diseases. It prevents the
deaths of more than 1.5 million children every year [15]. In the literature,
many studies on infectious disease epidemics and vaccination can be found,
see for example [2, 12, 19, 26].

An SEIR epidemic model that takes vaccination and treatment into ac-
count is presented in [11]. The results showed the existence of backward
bifurcation using the center manifold theorem and global stability of the
endemic equilibrium point using a geometric approach. This model does
not consider infectious diseases involving vectors. In reality, however, many
infectious diseases involve vectors, such as dengue, chikungunya, zika, cha-
gas and etc. To extend the SIR-SI model with vaccination and treatment in
[11], we propose the addition of a vector as the carrier of the disease. Here,
SIR represents the host dynamics and SI represents the vector dynamics.
The treatment function was adopted from [17, 24]. The vaccine is given to
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healthy people and is considered perfect so that people who are vaccinated
cannot get infected with the disease.

This paper is organized as follows. In the second section, we review SIR-
SI model with vaccination and treatment. Then, we discuss the formulation
of the basic reproduction number of this model. The fourth section discusses
finding the equilibria and their local stability. The next section discusses the
global stability of the disease free and endemic equilibria. The existence of
backward bifurcation in this model is discussed in the sixth section. Fur-
thermore, we present numerical results to support the analysis. The last
section discusses all results and concludes this paper.

2. MODEL

Host-vector models have been applied in various studies on the transmis-
sion of infectious diseases, for example such as dengue, chikungunya, zika,
and chagas [6, 8, 10, 14]. We adopted a basic host vector model in previous
work [10], which studied dengue transmission. Here, we do not consider
alternative hosts as a source of food for the vector. We will first explain this
model briefly. Based on their health status, the host population is divided
into three compartments, namely susceptible (S), infected (I) and recov-
ery (R). Meanwhile, the vector is divided into two compartments, namely
susceptible (S) and infectious (I). The susceptible compartment contains
healthy individuals and the infected compartment contains sick individuals.
The infection process occurs through the interaction between individuals in
the infected compartment of the vector and individuals in the susceptible
compartment of the host, or vice versa. Some susceptible individual will get
perfect vaccination so they become immune to the disease. Consequently,
the vaccination makes them move directly to the recovery compartment.
The model was also complemented with treatment given to individuals in
the infected compartment. Transmission of the disease in this model can be
seen in Figure 1. The diagram can be written as the following differential
equations

. I,S
Sp = punNp — /3h]\; " + ) Sh
h
. 1,5
Iy, = % — (un + o) In = T(Ip)
h
(6) Rh = aply + T(Ih) — pp Ry +uSy

. Bolpn Sy

Sy = /L’UNU L ]\? - ,UUSU

r 'UI S’U

IU = B ]\]}—Lh - MUIU

Indeces h and v in the this system are related to the host and the vector. Let
Sy + I, + Ry, :== Nj, and S, + I, := N,. By adding all the above equations,
it is easy to verify that Nj and N, are constant. Thus, System (6) has the
following biologically feasible region

Q = {(Sh. In, Ry, Sv, L) € R’ | Sy, + I, + Ry, = Np,, Sy + I, = Ny}
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FiGurE 1. Disease transmission diagram

and parameters Ny, Ny, 81, Bv, th, o, Ok, Yhyt > 0 with the following de-
scriptions: NNy, is the host population size, N, is the vector population size,
B is the human infection rate, 3, is the vector infection rate, uy, is the re-
cruitment/natural death rate of host per unit time, p, is the natural death
rate of vector per unit time, «y, is the recovery rate per unit time, u repre-
sents the susceptible fraction that gets a vaccination per unit time, v, is the
rate of treatment per unit of time. The function T'(I},) is formulated as in
(3). Thus, the term ~ Iy indicates the capacity of infected persons receiving
treatment. This function also indicates that the treatment is proportional
to the infected population. Since health resources are limited, if the infected
population exceeds the treatment capacity, the treatment will be constant.
In the next sections, we will analyze this system.

3. BAsic REPRODUCTION NUMBER

It is well known that the basic reproduction number plays an important
role in epidemiology. It describes whether the spread of a disease will con-
tinue or if the disease become extinct in the population. This parameter is
defined as the number of secondary infections when an infected individual
enters a virgin population (all individuals are healthy) during the period
of the infection. When all individuals are healthy or there is no infection,
this is represented by the disease-free equilibrium. Substituting I, = 0 and
I, = 0 into System (6) will easily give this equilibrium as follows

E0= { NhNh aoa UNh 7N’U70}'
pn+u " (s + u)

Furthermore, we derive the formulation of this parameter using the next
generation matrix; for more details see [22]. Now, we consider the case of
0< Iy <Iy Ifx=(Ip I, Sh,Sv, Ry), System (6) can be rewritten in the
following form

dx

7 o = F@) - V()
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where
Dt (b + an + ) In
%}{Sn HvIU
F= 0 , V= —urNp+ % + (pn +u) Sy
0 — iy Ny + %}ZSU + iy Sy
0 (ap + ) In + pn Ry — uSh

Due to there are only two infected compartments ( I, and I, ), thus m = 2.
Hence, evaluation of the Jacobian matrix F and V at Ej are given by

J&j
F— ey v — | (tan+am) 0

- Bo Ny 0 B 0 225 ’

Np,
It follows
1 0 0 Bhith
Vvl— ;6, 1 , Fvl= oMo (wn+u)(pntontyn) |

(un+an+vn) Np o 0

Here, the basic reproduction number is denoted by R¢ and is formulated as
the spectral radius of the next generation matrix. Hence, we have

s _ P 1y _ ,Uthvﬁhﬁv .
(8) Ro=p(FV™) \/Mth(.Uh"f_u)('uh—'—&hﬁ_ﬁyh)

Similarly, in the case of I, > Iy, we will have the same results as (8), but
~p, = 0. It is clear, in this case, that the presence of vaccination can reduce
the spread of the disease while treatment cannot. For the model analysis in
the next section, we introduce a new parameter Ry := 7?%. This is equivalent
to the basic reproduction number.

4. ANALYSIS OF EQUILIBRIA

In the case of 0 < I < Iy, the endemic equilibria satisfy the following
equations

prNp — 6h£hsz — (pn+u) S =0

m]{[i?j—(ﬂh+ah+’}’h)fﬁ =0
(9) (ap + ’yh)I,’:*— th; +uS; =0

Pt =0

By solving the first and last two equations in (9), we obtain

I No By
(I;Bv + ,quh)

2
(10) S Ny

= and [ =
" T8 + Nu(u+ ) v
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Substituting (10) in the second equation of (7) yields

(11)

I (=B (i + an =+ vn)

(/M)Nv

+ BuBottn NaptoNo — 116> Nt (n + 1) (s + o + 1)) = 0.

Bh + wpty Ny, + pp o Np) If

The following is the non-trivial solution of (11)

(12)

This gives the endemic equilibrium: Ey = {S}, I}, R}, S5, I}, where

Iy

WENE (pn +u) (Ro — 1)

- Bu (/

1Ny Bn + upn Ny + pnpoNg)

poNp (pn + w) (pn + o + 1) (Ro — 1)

Br (tnBo + oo + Y + pin))
o NE (1o (an + Ny + Nipin) + pn o)

ﬁv (UNhlLv + Nh,uh,uv + ﬁthNv)
(pn + an + 1) (Nppro(u + pn) + BrpwNy)

B (po(en + v + f1n) + Bofin)

upi2NE (4 + an 4+ vn) + BoknNn) + (o + 1) peoNi (i + u) (Ro — 1)

i (N (pn =+ ) o + o NoBr) Bu

From (12) and I} < Iy, the existence condition for E is

(13)

In the case of I} > Iy, the endemic equilibria satisfy the following equations

(14)

I1<Ry<P=1+

prNp —
Brly Sy,
Ny,
aply +
po Ny —
BoI}i Sy
Ny,

By (NvaBh + Nth(u + Nh)) Iy

2N (iy + )

Brl;Sh

— (pn +u)S; =0

— (pn +an) Iy —yplo =0

"/hIO_,UhRZ"-US;; =0
I*S*

ﬁ’U h*~v —/I/rUS,:ZO

— oLy = 0.

Some algebraic manipulations to (14) yield

a(I})* + oI} +c=0

(15)

where the coefficients are given by

a =Py (pun + an) (poNoBh + wpto Ny, + pin o Np)

b :Bv’)/h (NvaBh + uﬂth + .Uh,Uth) Iy - ,UU2N]3 (,uh + U) (:uh + ah) (RO - 1)

¢ =y Nj, (pn +w) -

In the case of Iy = 0, we obtain the explicit solution

I =

(1 + ) po® (Ro — 1)

b Bv ((,uh + ’LL) Ho + /'Lvaﬂh)'
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Equation (15) will has a real positive result if b < 0 and A = b — 4ac>0.
Note that b < 0 is equivalent to

BuYh <:u'vaﬂh + upy Np + Mhquh) Iy
po? NE (4 w) (i + )

(16) Ry>P, =1+

and A > 0 is equivalent to

(17)

\/I06v7h(/ﬁh + u) (///h + ah) (IU/UNUBh + upty Ny + Nhﬂth)

Ro > Py = P, +2
0o pioNp (pon + w) (pn + o)

If (17) is satisfied, then we have the two real solutions (15) below

B —b+ VA
2/3, (Nh + ah) (,U'vaﬂh + uptyNp + Nhﬂiho)

Iy

and

B -b— VA
28y (un + on) (o No B + upro Niy + pinpoNp)”

I

It follows that there are two endemic equilibria

Esi = {Shis Ini, Rhis Sviy i}

where
MvaNh
Sm’ =
Ihiﬁv + ,quh
I ,quthiﬂv

o Mo (Ihiﬁv + ,vaNh)
,Ufh,qu;% (Ihi/gv + NU)

Shi =
/%Nv[hiﬁhﬁv + //'th (ﬂh + u) (Ihiﬁv + :U"L/Nh)
Ry = upty Np Np (InifBo + pio) Yolo + aply
" (poNKILi BBy + N (i + w) (IniBy + 1o Np)) fih
and ¢ =1,2.

Since I} > Iy, we will have

(18) by + 2ﬁv (/Jh + ah) (ﬂvaBh + u:u'uNh + /Lh//'th) Iy < 0.
This implies

2/311 (/Jva,Bh + u/~L1)Nh + ﬂhl’f’uNh) Iy

19 Ro> P =P+
19) 102N (i, + w)

These results are collected in the theorem below
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Theorem 4.1. Let
B’U (,UvN'uﬁh + Mth(u + Mh)) Iy

P2NE (pn, + ) + po NS
Bovn (o NoBp + upo Ni + punptoNp) 1o

(o? NE (pu + ) (un + )
V1o Buyn (i + ) (pun + o) (1o No B + g Ni + pinpio Np)
poNp (ph, + w) (pn + an)

28y (o No B + wpty Ny + i i Nw) Io

- f1o2 N (pon + )

P = 1+

P, = 1+

Py = P42

P, = P

then
(1) System (6) always has disease-free equilibrium Ey.
(2) The endemic equilibrium Ey = {S}, I}, R}, S5, I} exist if and only
Zfl < Rg < P.
(3) The two endemic equilibria Ea; = {Shi, Ini, Rhiy Svis Lvi }, where i =
1,2, exist if and only if Ry > P3 and Ry > Py.
Now, we will use the theorem to derive the region of existence of endemic
point Es; in parameter space u and Iy for the following special case

Yu B (pn + u) pio®
Io (un + an) (upo Ny + Nppinpio + po Ny Bh)

This case implies Py > P3. If Theorem 4.1 for point (3) is satisfied when
u = 0, then Ry > P4 > P3. For u > 0, we obtain

dR dP. I , )
=0 <0, =2 <0, lim Ry =0, 1imp42610 w2
du du U—00 U500 1Ny \ i+ an i

Hence, Ry intersects Py at u = u* > 0. By solving Ry = P, for u, we obtain

« A NyBrBy — Ing By (o No B + i) NhQ"/h
e NE(Bo (20 + i+ 2 ) Lo + pro (1 + )
—Np, (i, + o) (2 By (Nnfin o + poNoBr) Ing + Npjupin?)
o NE(Bo (20 + v + 2 ) To + pro (pn + o))
Furthermore, the signs of the first and second derivative (21) to Iy are

du* d>u*
<0 and ——

dly dI3
Hence, the curve u* decreases and is concave up. Figure 2 illustrates this
curve, where endemic equilibria Fo; exist in Region L.

(20)

< 1.
By°

(21)

> 0.

In Figure 2, @ and I, respectively, are formulated as follows

tih o NoBoBr — o> Niy (i, + ovp)
to N (i + fon i)
I - 10 o N N Bo B — tnpo N (ptn + ) .
YnBo (o No BN + pinfin) +2 NuBy (i + an) (Nupin o + poo NoBr)
Now, we will discuss the stability of the equilibrium Ej in the following
theorem.
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Region 11

FIGURE 2. The existence of endemic equilibria Ey; in param-
eter space u and I

Theorem 4.2. If Ry < 1, then Ey is locally asymptotically stable and if
Ry > 1, then Ey is unstable and Ey is locally asymptotically stable.

Proof. Calculating the Jacobian matrix at Ey gives

M —o — _ Bapn 7
U= ph 0 0 0 (k) +u
0 —ph—an =y 0 0
(22) J(Ey) = U ap + Yh —Uh 0 0
_ N;\,r,fu 0 — iy 0
L0 e 0 0

where the characteristic of the polynomial (22) is given by

(23) Po(A) = (A + i + ) (A + po) (A + )
(A2 + (un + o+ Yh + o) A
o (ptn =+ an 4+ 1) (1 = Ro))

and the eigenvalues of J(Ey) are —up, — iy, —pp — u, and the roots of the
quadratic equation. Clearly, if Ry < 1, then the real part of the roots is
negative, which implies that Fy is locally asymptotically stable.

In order to prove the stability of endemic E7, we compute the Jacobian
matrix at the endemic point as follows

—I;Bh —u— pn 0 0 0 —BnS;
I;Bn —pp—an—v, 0 0 BrS;
(24)  J(E1) = u ap + Yh — Lk 0 0
0 -85 Bu 0 —1I7 By — o 0
0 S5 B 0 I; Bo —Hv

which implies the characteristic polynomial below

(25) Pr(A) = (A + pun) A+ 110) (a3 A3 4 a2 \? + a1\ + ag).
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Clearly, the eigenvalues are —puy,, — iy, and the roots of the following cubic

polynomial
(a3A® + apA\? + a1\ +ag) = 0
where
ag =1
_ Napo (pn+u) (Ro = 1) pro (pn +w) (n + an + ) (Fo — 1)
uNp, + Nppp, + Ny, 1hBo + o (fth + e+ h)

+u+ap+vn+ 2 pn + o

Nipio? (p, +u)® (jun, + o, + 1) (Ro — 1)°
(nBo + pio (i + cn + vn)) (WNp + Nppn + NofBh)
L ol (ut o+ + 2pn) (Ro = 1) (i +u)
uNp + Nppp + NofSp
L (n + on 4+ 90 + o) (B + w) (pn + on + y0) (Ro — 1)
pnBo + o (ptn + o + vn)
+ (pn +w) (pn + o + 0+ po)
(un + an +71)° Napo? (un +u)? (Ro — 1)°
By + pw (pn + an + 1)) (N + Npjin + Nofn)
p? (i + o + ) (un +w) (Ro — 1)
1k By + o (pn + e + Y1)
o HolNn (pn + w)® (in + an + ) (Ro — 1)
ulNp + Nppp + NS

a] =

If Ry > 1, then as,ai,a9 > 0. After some algebraic manipulations, we
obtain

o> N (2p, + o + Y + o + ) (pp + ap + 1) (n + u)2 (Ro — 1)2
(1 Bo + po (ptn + e+ v0)) (WNp + Nppn + NoBh)
" fo (10 + 2 + an + 0 + 1) (un + an + ) (un + 1) (Ro — 1)
pnBo + o (i + o + n)
(popn + ) (1 + an + =+ ) (Ro — 1)
u+ iy + B
(1 + an + )" No®po® (un +u)* (R — 1)
(1tn N By + Nipiy (i + an + 1)) (Nt + Nifinpro + poNoBh)
Nigeo® (i + an +)* (un, + ) (Ro — 1)
1 Np B + Niji (i + an + 1)
110Ny (g, + w)? (pn + g + 1) (Ro — 1)
uNp, + Nppun + Ny

asa1 >

+

+

=ag.

According to the Routh-Hurwitz criterion, we conclude that the real part of
the roots is negative. Thus, all eigenvalues are negative. This implies that
if Ry > 1, then Ej is locally asymptotically stable. O
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5. GLOBAL STABILITY

In order to analyze the global stability of Ey, we use the proposed theorem
by Castillo-Chavez et al., 2002 [4]. Consider the epidemic compartment
model below

dx
26 = =
(20) L
where x €R™*", It can be written in the following form
d
=T
(27) e

where y € R represents the non-infected compartments, I € R” represents
the infected compartments. Let Uy = {y*, 0} is the disease-free equilibrium.
If Uy is locally asymptotically stable and and System (26) meets the follow-
ing conditions

d
(H1) For d_st, = F(y*,0), y* is globally asymptotically stable
(H2) G(y,I) = AT - G(y,I), G(y,1)>0 for (y,1)eQ
where €2 is the region where the model form the biological region, then the
following theorem applies.

Theorem 5.1. The fized point Ug(x*,0) is a globally asymptotically stable
equilibrium of System (26) provided that Ry < 1 and that assumptions (H1)
and (H2) are satisfied.

In the case of System (6), we have y = (Sy, Rp, S,),I = (I, I,,), Uy = Ej
and

nNp — S 3
F(y,0) = | —pnRy+uSy, |, A= ( (ki +ﬂo‘h + 1) _5h ) ,
oy Ny — iy Sy v Mo
and
ﬁth 1-— %
G(y7 I) - Sh
In,{1-=2
ﬂv h Nh

In the case of N > N, inequality 0 Sf,—’;, 1%7,: <1 is satisfied, we conclude
that G(y,I)>0. Furthermore, it is easy to show that
Ny}

« _ g 4N uNp
pn +u” (pp + )’

dF
is globally asymptotically stable of e F(y,0). Then, according to the-

orem 5.1, thus if Ry < 1, then Uy is globally asymptotically stable and
if Ry > 1, then Uy is unstable. We summarize the above results in the
following theorem.

Theorem 5.2. If Ry < 1 and Ny > N, then Ey is globally asymptotically
stable.
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In order to determine the global stability of Eq, we define the following
Lyapunov function

(28) v_q<5—y—sny%>

I
+c1<Ll—1ﬁ IfIn h) <Rh—-Rh th15§>

I Rj,
Sy I,
+ c2 <S»U—S S*lns—v>+62 <I I;_I’:IHI_’Z‘>
Bul; Sy Brl; Sy,
where ¢; = and ¢y = —2",
1= N, 2 N,

Derivative V' with respect to time is a long solution of System (6)

. IFS* S I,
vV = Bol}iSy 1_2¢h ;LhNh—ﬁh—Sh—(p,h—l—u)Sh
Sh Ny,

Np,
51;[*5* I Bnl, S,
1— ) (E2hte2h I
Nh i N, (pn + an + ) In

R*
<1 - R_> ((an + 1) In — pnLn)
h
/3h Sy BuInSy
Nh ( - S_v) (NUNU Nh ,quv>

LGS (L) (BDiSe
N, 1, N, Hoyly | -

By using the following equilibrium condition

Bl S; . BuliS: .
Ny = R ) Sf S = (an o+ o+ m) I
h h
;S I*S*
(an +’Wz)Ih = l‘th» PNy = ﬂUN + pw Sy, ﬂv}\;lh C = /lv1—37
we will have
o (pn +w)B ISy (Sh — S)? Mh
vV = SN, (R Rh)
Mvﬁhl—;s}t %12 ﬂhﬂu]’}t]’;S}tS; S;:
P wOh (g, gxy2 4 BRPvTh v PhPe (g Ch
SN, v TS T S,
BB IRISESE (I |, BB IiLSiSE (| S
N2 Iy N Sy
7/8}11/37.)];:]115}15:; ﬁ N ﬂhBUIhI:S]’;S’U E + /3hﬂvI}TI:SZSZ
N} I N? I, N}
=+ w)B ISy (S — Sp)? w2 HoBrlySy "2
- SV S REEY -GN (58

BT 13S; S (5 Sy I¥ LS I,S,IF 5;)

N2 S, I, I:S;I, L;S;L, Sy
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By introducing function g(x) = 1 — z + lnz, we obtain
Sy Iy LSyl InS.Iy Sy
Sy I, IxSiL,  IFS:il, S,

Sy Iy I,SpI; IS, I Sy
o(50)+o ()~ Gisin )+ (sin) ()
Because g(x) is monotone decreasing for all z > 0, then g(z) <0 for all
z > 0, hence we have V < 0. V =0, if only if S}, = S}, I, = I}, I, = I}. We
conclude that the largest compact invariant set in {(Sy, I, I,) € Q | V = 0}
is the singleton E;. The LaSalle-Lyapunov theorem [13] implies that Ej is

globally asymptotically stable in 2. The results of this analysis are stated
in the following theorem.

Theorem 5.3. If Ry > 1, then Ej is globally asymptotically stable.

6. BACKWARD BIFURCATION

Before we show the existence of backward bifurcation, we will briefly
review the application of the center manifold theorem developed by Castillo-
Chavez and Song, 2004 [5]. Consider the following general system of ordinary
differential equations with a parameter
dx(t)

"0 = f(z.6)
where function f(z,6) : R*xR — R" with f€C?. Assume that x = 0 is an
equilibrium of System (6), that is, f(0,6) =0 for all 4. Let

be the Jacobian matrix of f(x,6) at (0,0).

(30)

Lemma 6.1. Assume that

(H3) Zero is a simple eigenvalue of @ and all other eigenvalues have nega-
tive real part;

(H4) Q has (non-negative) right vector w = (w1, ws, ...,wn)T and left eigen-
vector v = (v1,vs, ...,v,)T corresponding to zero eigenvalue.

Let fr(x,0) denote the k — th component of f(x,0) and

a= Z vkwiijgl;j(O, 0) b= zvkwiwgf)(& 0)
ky,j=1 ki

then, the local dynamics of system (6) around x = 0 are totally determined
by the signs of a and b.
(1) Ifa> 0 and b > 0, then when 0 < 0 with [0|<1, x = 0 is locally asymp-
totically stable and there exists a positive unstable equilibrium, and when
0 < 0«1, z =0 is unstable and there exists a negative unstable equilibrium
(2) Ifa <0 andb > 0, then when 6 changes from negative to positive, x = 0
changes its stability from stable to unstable. Correspondingly, a negative un-
stable equilibrium become positive and locally asymptotically.
Particularly, if a < 0 and b > 0, then a forward bifurcation occurs 6 = 0,
and if a> 0 and b > 0, a backward bifurcation occurs at 6 = 0.
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Now, we will examine the existence of the backward bifurcation in System
(6) with T(Ip) = yplo. Let 6 = j, is the bifurcation parameter and z =
(1,22, x3, T4, x5), where 1 = Sp, 22 = Ip,x3 = Rp, x4 = Sy, x5 = I,. We
can rewrite System (6) in the following form

. X5l
&1 =ppNp — ﬁth S +u) @ =
h
rs5T
2 :% — (pn + ap) w2 = T(z2) 1= fo
h
(31) T3 =apwe + T(72) — ppx3 + uzy = f3
. ToX
T4 =Ny — M — Moy 1= f4
i _Bomazs S
5 N, poTs = f5.

Ry =1 is equivalent to

g = 115 (i, + o) (pn + w)
! i NR BB

The Jacobian matrix at Fyp when Ry = 1 is given by

[ —u— 0 00—
0 —ph—ap 0 0 ke
(32) J(Ep) = u ap —up 0 0
S0 - 0
L0 S 0 0 |
with the characteristic polynomial
Po(A) = AMX + o+ w)(A A+ o)X+ o)A+ (o + o+ o))

The eigenvalues are 0, —pp,, — iy, —ptn, — W, —ptp, — @p — Yp — My One of the
eigenvalues is zero and the others are negative. So, the condition H3 in the
lemma above is satisfied. In order to satisfy the condition H4, we will de-
termine the right eigenvector (w) and the left eigenvector (v) corresponding
to zero eigenvalue. The right eigenvector w = (wy, ws, w3, wy, ws)! satisfies

Bhpn
—(pup +w)wy — ————ws = 0
(hn + ) (1n + u)
Brtin
—(un +ap)wy + ——ws = 0
R
uwi + apwe — ppwz = 0
—N,B*
Nil”wg—,uvwzl =0
N *
NoBy vy — pws = 0

Ny,
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is
M+ ap
U= fh
uU— ap
(33) W= (uay + wpn + appn + pn?) (o + )
P Bh

(wan 4+ upn + appn + pn?) (pn + w)
- B i
Next, we find the left eigenvector v = (vy,v2, v3,v4,v5)T, which is satisfies

(—u—pp)v1 +uvg =0
V2 (_/Lh - Oéh) + vz ap — U4N17/8’U + U5Nvﬁv =0

(34) — [y V3 = 0
—pyva =0
N, N,
_ BupnNpvr - BupnNiva T
n +u pht+u
and v-w = 1. We obtain v = (0, vs,0,0,v5)”, where
_ o _ KnBn
Vg = — y Vs = — 3 :
(pn + ) (an + pn + po) (n + 1)? (o + pn + o)
Calculating the partial derivative at Fy gives
Pho_ Ph o B Ph_ Ph b
8x18x5 31‘581‘1 Nh’ 31‘181‘5 8%58%1 Nh
Pl Pfi By Pfs P fs By
31‘281‘4 o 8%48332 o Nh’ 31‘2&1‘4 o 51‘481‘2 o Nh
Pf Pfr N, O f Ofs N,

02208, B0z Ny dx90B, 0Bu0r2 Ny

and all the other second-order partial derivatives are equal to zero. The

formulas for coefficients a and b in the above lemma are
n

_ 62fk E * b= S 82fk E %

a= Z Ukwiwjm( 0,8,), b= kawm( 0, 8)-
ki, j=1 ki

For System (31), we obtain

d? f1 9% f 0% f4 % fs
—9 BCATL A T g,
a U1 81‘16JE5 * vatnw 833131‘5 + vatoata 8x231'4 T w2t 8$23I4
_ 2(pn + ) (pn + an) (pnBoNn + onpio + pnpio)

pn (ap + pn + )

Qf 2

b=2 _YJ4 Y5

U 0By P D0,
2Nhlff'uN'uBh

o (e w) (pn + an + i)
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Obviously, for any arbitrary parameter value, we have a,b > 0. It follows
that 8, = B, is the backward bifurcation point. In the same way as above
for System (6) with T'(I,) = vnIp, we get the coeflicients as follows

2 (pp 4 w) (o + ap + Y1) (aBoNp + poen + floyh + i)
fon (Qn + Yh + pn + pio)
b= 2pp iy Ny B, ‘
foo (pon =+ w) (pn + o =+ o + 70)

Since a < 0 and b > 0, then forward bifurcation occurs when Ry = 1. The
following theorem summarizes the results of the bifurcation analysis.

Theorem 6.2. If T(I},) = y,1p, then the direction of bifurcation system (6)
is backward at Ry = 1, and if T(I}) = yp1p, then the direction of bifurcation
system (6) is forward at Ry = 1.

This theorem shows that the system has backward bifurcation behavior
under the presence of treatment. The behavior does not depend on vacci-
nation parameter u.

Now, we present some numerical simulation performances to provide an
illustration and support the results of the above analysis, as shown in Fig-
ure 3. The solid line indicates that the equilibrium is stable, while the
dashed line indicates that the equilibrium is unstable. Forward bifurcation
is demonstrated in Figure 3 (a) and (b) where the system is under treatment
T(I) = vpIy. Figure 3 (c) and (d) show backward bifurcation where the
system is under treatment T'(I) = y,lp. In addition, we also present nu-
merical simulations to investigate the effect of vaccination and treatment on
the dynamic of the infected population in equilibrium condition. Here, we
varied, the values of u and Iy. The results can be seen in Figure 4. It shows
that an increase in vaccination caused a decrease in the infected population,
see Figure 4 (a). Furthermore, when the treatment parameter I increased,
the infected population also decreased, but it was accompanied by a greater
basic reproduction number, as we can see in Figure 4 (b). It follows that
more treatment leads to a larger basic reproduction number for existence of
an endemic equilibrium.

7. D1SCUSSION AND CONCLUSION

In this work, we have analyzed an SIR-SI model with vaccination and
treatment to study the transmission of an infectious disease in the host and
the vector population. The treatment in this model reflects that there are
limited resources for treatment of the infected population. Preventive mea-
sures in the form of vaccinations are also considered in this model. This vac-
cination allows people to become immune to the disease. For T'(I,) = vy I,
we got two equilibria, respectively, representing the disease-free and the en-
demic equilibrium. Their stability depends on the basic reproduction num-
ber. If Ry < 1, then the disease free is only equilibrium in System (6) and
it is locally asymptotically stable. If Ry > 1, then the endemic equilibrium
appears and we showed by using the Lyapunov function that it is globally
asymptotically stable. Furthermore, we showed analytically using the center
manifold theorem that the forward bifurcation always occurs at Ry = 1. For
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FIGURE 3. Forward and Backward bifurcation diagram. In
(a) and (b), forward bifurcation diagram for T'(I,) = vp1p
is described in plane Iy, vs Ry and I, vs Rp. In (c) and (d),
backward bifurcation diagram for T'(Ij,) = .1y is described
in plane I, vs Ry and I, vs Rg. The parameters used are
ap = 0.1y, = 0.125, up, = 0.002, ;' = 20,15 = 50,8, =
0.3, N}, = 10000, N,, = 4000.

T(I) = 1o, System (6) has two endemic equilibria. Analytically, this sys-
tem always shows backward bifurcation at Ry = 1. We showed numerically
that endemic equilibria become more difficult to exist because of treatment.
This study demonstrated that vaccination and adequate treatment lead to
better disease control.

In the future, we will develop an extended model by taking into account
seasonality. This is an important factor in epidemiology since in the reality,
some epidemics of infectious diseases are strongly related to the weather,
for example vector born diseases with mosquito as vector, such as dengue,
chikungunya, zika, etc.
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FIGURE 4. Backward bifurcation diagram when u and Iy
vary. In (a), the vaccination parameter u varies at 0.06, 0.08,
and 0.1. In (b), the treatment parameter Iy varies at a value
of 10, 30, and 50. The other parameters are the same in the
previous simulation

REFERENCES

[1] R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control,
Oxford University Press, 1992.

[2] J. Arino, C. C. McCluskey, and P. van den Driessche, ” Global results for an epidemic
model with vaccination that exhibits backward bifurcation”, SIAM J. Appl. Math. 64
(2003), 260-276.

(3] Z. Bai, Y. Zhou, and T. Zhang, ” Existence of multiple periodic solutions for an SIR

model with seasonality”, Nonlinear Anal.-Theor. 74(11) (2011), 3548-3555.

C. Castillo-Chavez, Z. Feng, and W. Huang. On the computation of ro and its role on

global stability, In: Castillo-Chavez C, van den Driessche P, Kirschner D, Yakubu A.-A,

editors, Mathematical approaches for emerging and reemerging infection diseases: an

introduction, Springer: New York, 2002, 229-250.

C. Castillo-Chavez and B. Song,” Dynamical models of Tuberculosis and their applica-

tions”, Math. Biosci. Eng. 1 (2004), 361-404.

(6] Y. Dumont, F. Chiroleu, and C. Domerg, ” On a temporal model for the chikungunya

disease: modeling, theory and numerics”, Math. Biosci. 213(1)(2008), 80-91.

J.C. Eckalbar and W.L. Eckalbar, ” Dynamics of epidemic model with quadratic treat-

ment”, Nonlinear Anal. Real World Appl. 12(1) (2011), 320-332.

[8] E. S. Nugraha, J. Naiborhu, N. Nuraini, and Ahmadin. ” Mathematical modeling for
control zika transmission”, ATP Conf. Proc. 1905 (2017), 030026.

[9] S. Elkahar and A. Kaddar, ” Stability Anaysis of an SEIR Model with Treatment”, Res.
Appl. Math. 1(2017), 1-16.

[10] L. Esteva and C. Vargas, ” Analysis of a dengue disease transmission model”, Math.
Biosci. 150(2) (1998), 131-151.

[11] X. Feng, Z. Teng, K. Wang, and F. Zhang, ” Backward bifurcation and global stability
in epidemic model with treatment and vaccination”, Discr. Cont. Dyn. Sys. Ser. B
19(4) (2014), 999-1025.

[12] A. B. Gumel, C. C. McCluskey, and J. Watmough, ” An SVEIR modelfor assessing
potential impact of an imperfect anti-SARS wvaccine”, Math. Biosci. Eng. 3 (2006),
485-512.

[13] J.K. Hale, Ordinary Differential Equations, Wiley: New York, 1969.

(14] D. Hidayat , E. S. Nugraha, and N. Nuraini, ” A mathematical model of chagas disease
transmission”, AIP Conf. Proc. 1937 (2018), 020008.

4

5

(7



Backward bifurcation of an Sir—Si model with vaccination and treatment

[15] https://www.unicef.org/immunization accessed in August 2, 2018.

(16] http://www.who.int/whr/1996 /media_centre/press_release/en/ accessed on June, 26
2018.

[17] Z. Hu, W. Ma, and S. Ruan, ” Analysis of SIR epidemic models with non linear
incidence rate and treatment”, Math. Biosci. 238(1) (2012), 12-20.

(18] R. M. May and R. M. Anderson, ” Transmission dynamics of HIV infection”, Nature
326(6109) (1987), 137-142.

[19] S. M. Moghadas, ” Modelling the effect of imperfect vaccines on disease epidemiology”,
Discr. Cont. Dyn. Syst. Ser. B 4 (2004), 999-1012.

[20] WO. Kermack and A.G McKendrick, ” A contribution to the mathematical theory of
epidemics”, Proc. R. Soc. B Biol. Sci. 115(772) (1927), 700-721.

[21] J. P. Tian and J. Wang, ” Global stability for cholera epidemic models”. Math. Biosci.
232(1)(2011), 31-41.

[22] P. Van den Driessche and J. Watmough, ” Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission”, Math. Biosci.
180(1-2) (2002), 29-48.

[23] W. Wang and S. Ruan, ” Bifurcations in an epidemic model with constant removal
rate of the infectives”, J. Math. Anal. Appl. 291(2) (2004), 775-793.

[24] W.D. Wang, ” Backward bifurcation of an epidemic model with treatment”, Math.
Biosci. 201(1-2) (2006), 58-71.

[25] J.Y. Yang, F.Q. Zhang, and X.Y. Wang, ” SIV epidemic models with age of infection”,
Int. J. Biomath. 2(01) (2009), 61-67.

[26] W. Yang, C. Sun, and J. Arino, ” Global analysis for a general epidemiological model
with vaccination and varying population”, J. Math. Anal. Appl. 372(1) (2010), 208-223.

[27] J. Zhang and X.N. Liu, ” Backward bifurcation of and epidemic model with saturated
treatment function, J. Math. Anal. Appl. 348(1) (2008), 433-443.

(28] J. Zhang, J. Jia, and X. Song, ” Analysis of an SEIR epidemic model with saturated
incidence and saturated treatment function”, Sci. World J. 2014 (2014), 1-11.

INDUSTRIAL AND FINANCIAL MATHEMATICS RESEARCH DIVISION, FACULTY OF MATH-
EMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI BANDUNG, JL. GANESHA NO.
10, BANDUNG 40132, INDONESIA

DEPARTMENT OF MATHEMATICS EDUCATION, STKIP Surya, JL. IMAM BonJoL No.
88, TANGERANG 15115, BANTEN, INDONESIA
E-mail address: edwin.setiawan@s.itb.ac.id

INDUSTRIAL AND FINANCIAL MATHEMATICS RESEARCH DIVISION, FACULTY OF MATH-
EMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI BANDUNG, JL. GANESHA NoO.
10, BANDUNG 40132, INDONESIA

E-mail address: nuning@math.itb.ac.id

INDUSTRIAL AND FINANCIAL MATHEMATICS RESEARCH DIVISION, FACULTY OF MATH-
EMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI BANDUNG, JL. GANESHA NoO.
10, BANDUNG 40132, INDONESIA

E-mail address: janson@math.itb.ac.id

87



