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ATTRACTOR DIMENSIONS OF THREE-DIMENSIONAL
NAVIER-STOKES-a MODEL FOR FAST ROTATING
FLUIDS ON GENERIC-PERIOD DOMAINS: COMPARISON
WITH NAVIER-STOKES EQUATIONS

BONG-SIK KIM

ABSTRACT. We study the fractal and Hausdorff dimensions of the global
attractor for the three-dimensional Navier-Stokes-ov model for fast ro-
tating geophysical fluids. The Navier-Stokes- model is a nonlinear
dispersive regularization of the exact Navier-Stokes equations obtained
by Lagrangian averaging and tend to the Navier-Stokes equations as
a — 0%, We estimate upper bounds for the dimensions of the global
attractor and study the dependence of the dimensions on the parameter
«. All the estimates are uniform in «, and our estimates of attractor
dimensions remain finite when o — 07
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1. INTRODUCTION

We consider the three-dimensional rotating Navier-Stokes-a equations
(RNS-a) with periodic boundary conditions in a torus T% = [0,2ma;] x
[0, 27as] x [0, 2mas]:

1o )
(1) 8—:+(U~V)v+vjVu] +Qegxu = —-Vp+vAv+f

Vv=V-u=0 and ot x)|=0 = vo
u = (I-a*A)

where © = (z1,22,73) € T3, v = v(t,x) = (v1(t, ), va(t, z),v3(t, z)) is the
velocity field, p = p(z,t) is the pressure of a homogeneous incompressible
fluid, v is the viscosity, and f = f(x) is a divergence free body force. Q is
the Coriolis parameter, which is twice the angular velocity of the rotation
around the vertical unit vector eg = (0,0,1). The system (1) reduces to the
exact rotating Navier-Stokes equations (RNS) when o — 07.

Kim and Nicolaenko [8] established the existence and global regularity of
solutions of the system (1) and proved the existence of its global attractor.
In this paper, we estimate the fractal and Hausdorff dimensions of the global
attractor for the system (1) and give special attention to the limiting case
when o — 0T, that is, when the rotating Navier-Stokes-a equations (RNS-
a) tend to the exact rotating Navier-Stokes equations (RNS). We focus on
generic-period domains and eliminate nontrivial resonant parts (strict three-
wave resonant interactions). The generic domain parameters (ai,as,as)
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form a dense set of full Lebesque measure in R? for which the strict three-
wave resonant interactions are effectively annihilated [1].

Ilyin and Titi [7] estimated attractor dimensions for two-dimensional
navier-Stokes-a equations. Their estimates, however, blow up as a — 0T.
Gibbon and Holm [6] obtained length-scale estimates for NS-« equations in
terms of the Reynolds number, which blow up in the limit when o« — 07,
too. Several other time-averaged estimates related to NS-a equations don’t
remain finite in the Navier-Stokes limit, except the cases where there are
known equivalent upper bounds for the Navier-Stokes equations (see Table
1 in [6]). They analyzed the system in the context of the filtered velocity
u = (I — a®?A)v. Instead, we study the system from the perspective of the
non-filtered velocity v = (I — a?A)~tu. The Helmholtz inverse operator
Ra = (I — a?A)~! plays a crucial role in the process, leading to uniform
estimates that remain finite in the Navier-Stokes limit as o — 0F.

We consider domain parameters, a1, a2, and as, bounded away from both
zero and infinity. v and u are vector fields defined on D = T3 x [0, T for any
T > 0. Periodicity of the boundary conditions leads naturally to a Fourier
representation of the fields,

v = § vnel(’nlml/a1+n2z2/a2+n3/a3) — E Unezn-:c’
n

n
where v,,’s are Fourier Coefficients, n = (n1,n9,n3) € Z3 , and i = (711, 712, 713)
are wave numbers with 7; = nj/a; for j = 1,2,3. We set a; = 1 without
loss of generality and define the Fourier-Sobolev space of divergence free
periodic vector fields as follows:

H° = {v e[LATHP |v= Z VR vk = v g, vo =0, f-v, =0, ||v]|2 < oo} ,
nezs
with the norm
2 <12 2
loll3 = > 13> |val*.
nezs

Here v}, is the complex conjugate of v,,. The corresponding inner product is
denoted by < -, >5. We set H? = H when s = 0. Also, < -, >o=< -, >,
[l llo=1-1],and || - |1 = ]| - ||. We assume that

/ v(z,0)de =0 and / fx)yde =0 forallt>0.
T3 T3

This yields [psv(x,t)dz = 0 for all ¢ > 0, and allows for the use of the
Poincaré inequality.

We denote Pp, as the usual Leray projection onto the divergence free
subspace and introduce the Helmholtz inverse operator, Ry = (I —a?A)71,
which is given by

Rav = (I — a2A)_1v.
A bilinear operator B, on divergence free vector fields [8] is define by
B (u,v) = Pr, [(Rqu - V)v +v;V(Rqu);] = —Pr, [Rqv x curlv] .

This bilinear operator has a connection with the classical Navier-Stokes
bilinear operator
B(u,v) = P[(u- V)v].



Attractor dimensions of rotating NSE-«

Lemma 1.1. For every u,v,w € H'
< Ba(u,v), w>=< B(Ryu,v), w>— < B(w,v), Rau >
Proof.

< Ba(u,v),w > < —Pp[Rau x (V xv)], w >

3
= < PL(Rau-V)v+ > v V(Rau)s), w>
j=1

3
= < Pr(Rou-V)v], w>+< PL[ZUj - V(Rau);l, w>
j=1
3
= < B(Ryu,v), w>+< Zvj -V(Rqu);, w>
j=1
= < B(Rau,v), w>— < B(w,v), Rou >

For the second equality we use the identity, (a-V)b=V(a-b) — (b-V)a —
a x curlb — b x curla, to get

V(v Rau) — Rou X curlv = (Rau - V)v + (v V)Rou + v X curl Ryu.

Noticing that (v - V)Rqu + v X curl Ryu = Z?Zl v;V(Rqu)j, we can get
the equality. For the last equality, we directly calculate the second inner
product such as

I
g
2
&
S
U
8

I
|
\.
&
Q| Q
-~ Q@
<
Q
2
£
2
8

— < (w-V)v, Rou >
— < Prl(w-V)v], Rou >
= < —B(w,v), Rqu > .

Therefore, the result follows. W

Now we rewrite Eq(1) in terms of the unfiltered velocity v:

0
(2) a—: + QPLJP R + vAv + Bo(v,v) = f,
where A = —P;, APy, and J is a rotation matrix given by
0 -1 0
J={1 0 O

0 0 O
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In Fourier-Sobolev space, the action P;, on n-th Fourier component of a

vector field is given by Prv = Zn(ann)em'm and Ppv, = (v, — %ﬁlﬁ) with

2 nin nin:
n? 1m2 1n3

ag a3
1 ning n3 nans
Po=1-— a2 aZ  aza3
7] 2

nin3  na2ng n3

a3 azas a3

The Helmholtz inverse operator R, commutes with curl and, for each wave
number n,

1
Ra)n = ———.
(Ra)n 14 a?|nf?
Then, for each wave number n € Z3, the RNS-« equations have the form
vy, 1 19
W + WQ PnJPn'Un + 1/|n| Un + BQ(’U, 'U)n = fn,

where

(v X (T X Uy)).

1
By (v,v), = —iP, _
a(v,0) k2 14 a2|k[?
+m=n
The existence of unique regular solutions for all 2 greater than some thresh-
old Qg has been proved in [2] for « = 0 and in [8] for o > 0.

Theorem 1.2 ([2]). For every triplet of positive real numbers (a1, az,as),
the following result holds. Let s > 1/2 and vy € H*(T?®) a divergence-
free vector field. Then there exits a constant g > 0, depending on ||vgl|s,
| flls—1, v, and the domain parameter (a1, az,as), such that for all > Qq,
there is a unique global solution

v(t) € C([0,00) : H*(T3)) N L2((0, 00) : HSTL(T?))

to the three-dimensional rotating Navier-Stokes equations (o = 0 in (1)).
Furthermore, if f is independent of t, then there exists a global attractor for
the three-dimensional rotating Navier-Stokes equations bounded in H®; such
an attractor has a finite fractal dimension and attracts every weak Leray
solution as t — +o00.

Theorem 1.3 ([8]). For every triplet of positive real numbers (a1, a2, as),
the following result holds. Let s > 5/2 and vo € H*(T3) a divergence-
free vector field. Then there exits a constant Q, > 0, depending on ||volls,
l|flls—1, v, and the domain parameter (a1, aa,as3), such that for all Q@ > Q,
there is a unique global solution

v(t) € C([0,00) : H¥(T*)) N L2((0,00) : H¥(T?))
to the equation for any o > 0. Moreover, all the estimates are uniform in
a (i.e., the estimates don’t blow up as o — 07 ). If f is independent of t,

then there exists a global attractor for the system (1) bounded in H® and its
fractal dimension is finite.

Remark: The solutions of the three-dimensional rotating Naiver-Stokes-
« equations uniformly converge in L? to those of the three-dimensional ro-
tating Navier-Stokes equations as o — 0 (see Section 8 of [8]).
We consider the Eq. (1) in the limit as Q@ — 400, which gives resonant
limit a-equations. Working with the resonant limit a-equations on specific
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periodic domains (generic periods), we obtain upper estimates of the di-
mensions of the global attractor for the resonant limit a-equations, which
approximate the dimensions of the global attractor for three-dimensional
RNS-a equations on generic-period domains:

Theorem 1.4. (Main Result). Let A, be the global attractor of the Eq.(4)
in H. Then its Hausdorff dimension dg(Ay,) and the fractal dimension
dp(Agy) are finite and satisfy, for an absolute constant K, the estimate

dH(Aoz) < K, <,0_V>2 and dF(-Aa) < 2dH(-Aa)

Ve

where ¢, &, ¢1, and d are absolute constants, K (o) = (%’)3/2 (24c(a)+1)3/283/2,

A0) = it [k + 2| A = 20PN, and i the first eigen-

value of A = —PpAPy,. In particular, for « = 0, the global attractor has a

sharp upper bound
R 6/5
dH(Ao) < K (PV>
)

\3/2
Observe that lim, g+ K(a) = (%W) = Ky < oo so that the

estimates doesn’t blow up when o — 0. In general, Ko # K.

Accepting the point of view that the dimension of a global attractor for
Navier-Stokes equations is associated with the number of degree of freedom
in turbulent flows [4], then these finite dimension estimates gives a rigor-
ous justification that asymptotic dynamics of turbulent rotating fluids can
be described by two-dimensional and three-component (2D-3C) non-steady
Navier-Stokes equations when 2 is large enough. Also, the attractor dimen-
sions are related to the fundamental length scale £ of turbulent flows, below
which wave interactions do not affect its dynamics. For « equations, the
fundamental length scale in terms of the fractal dimension dp(A,) is

far <qu(r;a)> <t~ <df<r;o))'

As shown in [1, 2, 8], the estimates depend crucially on the period of
the torus, aq,as,as. If we omit the nonlinearity in (1) and the viscous and
forcing terms, we end up with the system

O+ (I —a?A)"1QJv=~Vp, V. v=0,
which describes the propagation of waves, called Poincaré waves or inertial

waves. The corresponding dispersion law relating the pulsation w to the
wavenumber ¢ € R3 is

() = i&l%.
Therefore, the two-dimensional part of the initial data evolves according to
two-dimensional Euler or Navier-Stokes equations, and the three-dimensional
part generates waves, which propagate very rapidly in the domain with a
speed of Q. Chemin et al. [3] detailed well about the propagation of high-
speed waves in the fluid, and we brief their explanation here. The time

average of these waves vanishes, but they carry a non-zero energy. The
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wavenumbers of these waves are bounded as 2 — oo and a priori no short
wavelengths are created. On periodic flows, Poincaré waves persist for long
times, and interact not only with the limit two-dimensional flow, but also
with themselves. A wave £ interacts with a wave ¢ and generates another
wave & provided

! 4
E+¢=¢" and £—§+§~—3 = 23 where £ = <§—1,€—2,§—3>,
gl g 1grl a1 a2 ag

which are the usual resonance conditions in the three-wave interaction prob-
lem. In the periodic case, all the components of £, & and £’ are integers,
and the above conditions turn out to be Diophantine equations which do not
have integer solutions for almost all (a1, as,as3) except the trivial solutions
given by symmetries. Therefore, generically in the sizes of the periodic box,
the waves do not interact with themselves and only interact with the two-
dimensional underlying flow. Mathematically to handle these resonant wave
interactions, Babin, Mahalov and Nicolaenko [1, 2] introduced the Poincaré
group operator (see Section 2). Then they utilized methods of small de-
nominators and Diophantine incommensurability conditions on the domain
geometrical parameters a1, as, a3 to investigate the fast singular oscillating
limits of Eq.(1) as 2 — oco. In that approach, the collective contribution to
the dynamics made by fast Poincaré waves is accounted for by rigorous es-
timates of wave resonances and quasi-resonances via small divisor analysis.
We start off the next section by applying such an approach to derive the
resonant limit a-equations.

2. RESONANT LIMIT a-EQUATIONS

Poincaré propagator Eo(Qt) = e FPL/PLRa is defined as the unitary
group solution E,(—Q¢)®g = ®(t) (E,(0) = I is the identity ) to the linear
Poincaré problem:

WP+ QPLJPLR,® =0, ®|i—g= P9, with V- Py = 0.
Denote M, = PJP R, and My, = (M), = mgmanJPn for each
wavenumber n. The matrix M,, has the eigenvalues, +iw,(n), where

ng

<) = W a2l

1
J
In Fourier space,

1
E,(Qt), = cos(Quant)] + m sin(Qwant) Ry,

17 1 : 1
= S|t [T —i Ry ) +e ™ on! (T+i—R, ||,
2 d 7]

where the matrix ¢R,, is the Fourier transform of the curl vector; (curlv), =
iR,v, = 11 X vy, with
0 —ng N9
R, = 3 0 —nq
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Next, we set V() := Eo(Q2t)v(t). Under this transformation, the equation
(2) becomes

(3) %—Z+VAV:BQ(Qt,X/,V)+Ea(Qt)f,

where

Bo(Qt,V,V) = Eo(Qt)PL{{RaBa(—Qt)V] x [curl(Ey(—Q)V)]}
_Ea(ﬂ t)Ba (Ea(_ﬂ t)V, Ea(_ﬂ t)V).

For each wave number n € Z3,

L Ba(Q8)0 PalBa(— Q) Vi x (11 % Ea(— Q) Vin)],

Baﬂtav7‘/;rl71:i—v
(8 Vi Voo = i B

which is explicitly time-dependent with rapidly varying coefficients. This

suggests that, for Q >> 1, the dynamic mechanisms of (3) evolve over
two different time scales; the first one being induced by the fast Poincaré
waves and the second given by the evolution of the Poincaré “slow envelope”
V(t). Ba(Q2t,V,V) contains resonant terms ({2¢-independent terms) and
nonresonant terms (Q ¢-dependent terms), and we can decompose it as

B,(Qt,V,V) = B,(V,V) + B2¢(Qt,V,V).

Observe that B3*¢(Q1t,V, V) contains all nonresonant terms and Ba(V, V),
“the resonant bilinear operator”, contains all resonant terms. Averaging
over fast time scale in the limit {2 — co removes the nonresonant operator:

2w
lim ZL/ B¢(Qs,V,V)pds =0,
0

and we arrive at the resonant limit a-equations;

(4) 58—1: + vAw = By(w,w) + f
w(0) = v(0)
where
N 1 2
By(w,w) = lim —/ B, (2 s,w,w)ds
Q—o0 27 0
N 2
= lim — E,(2s)f ds.

The existence of regular solutions of the resonant limit a-equations (4)
was established in [2, 8] based on rigorous a priori estimates of the (bilin-
ear) resonant limit operator By (w,w). The estimates were uniformly in .
Bootstrapping from global regularity of the resonant limit a-equations, the
existence of a global regular solution of the full 3D RNS-« for large 2 (The-
orem 1.2 and 1.3) was proved. The convergence of the solutions to those
of the exact RNS equations as o — 07 was also proved in the context of
attractors [8].
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3. RESONANT SET AND OPERATOR SPLITTING

Let H be any Hilbert space and @ the x3-averaging of u € H:

1 2mras
u(t, 1, o, x3) dxs.
27ra3/0 (t,z1, 0, 23) das

Denote H = {u(t,z1,72)|u € H}. Then H is a closed subspace of H, and
any v € H has a unique representation v = 7+ ut € HEBHL. Note that
ut = 0. This defines orthogonal projections P, and PbL =I—-PFP,on H as
1

ﬂ(t, x1, 5172) =

Pou=17 and Pjru=u

We call P, a barotropic projection and PbJ- a baroclinic projection, which make
an orthogonal decomposition H = H @ H+ with H = P,H and H* = P} H
(For more details, see §3.4, [8]).

Lemma 3.1. For any finite dimensional subspace S C H with dim(S) = d,
there exists an orthonormal basis {$i}y ;< in H, such that {¢i}, ;<4 and

{#i}a, 1 1<i<a orthonormally span P,S and P8, respectively. (Lemma 4.2.2,
[9])-

Let’s set Dy(k, m,n) = wak £ Wam £ Wan, where I = 1,2, ..., 8 is the com-
bination of signs £. The resonant nonlinear interactions of Poincaré waves
for By(w,w) in (4) are present when the Poincaré frequencies satisfy the
resonant relation D;(k, m,n) = 0, and we define the corresponding resonant
set K by

K= {(k,m,n) €73 twak + Wam £ Wan =0, n = k—i—m}.
We can decompose the resonant set K into three groups for further analysis;
pure 2D interactions (Kap), two wave interactions (K), and three wave
interactions (K*).

(i) Kap = {(k,m,n) € K|ks = m3 = n3 = 0} corresponds to pure two
dimensional horizontal interactions (i.e., depends on z1, x2 and does
not depend on z3 in physical space.)

(i) K = {(k,m,n) € K|ksmanz = 0, k3 +m?+n3 # 0} is the set of
two wave resonances. Here ks3msng = 0 represents that one or two
of k3, m3 and ng would be zero. But, if two of them are zero, we
have 1-wave interaction which are excluded. It requires the second
condition k3 + m3 + n3 # 0. This is the case when one of the three
frequencies w, equals zero and two remaining w, are nonzero; for
example, {(k,m,n) € K‘éqn = 0,Wak + Wam = 0,war # 0 # Wam} =
K1y = (K1 N Ky) \ Kop. K can be expressed in the way of

K = K14 U Koy U K3y,
where Ky = (K; N Ky) \ Kap for j =1,2,3 and
Ky = {(k,m,n) € K|ng =0,k = —1ng # 0, || = |k|}
Koy = {ks=0,m3=m3#0,|m|=|n|}
Ky = {m3=0,ks=n3#0,k|l =|nl}

Formally there exist three more 2-wave cones, but they are empty
sets [1].
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(iii) K* = {(k,m,n) € Klksmsns # 0} is the set of strict three wave
resonances.

Then the resonant limit operator Ea(w,w) on K has the following repre-
sentation:

Ba(w,w) = B (W, W) + Bfy (W, w") + By (wh, w™)
where

. 1
Blw,w) = iy ———P,[W x (1 X Wy,
7 (w0, W) %1+a2|k‘2 [k x ( )]

1

= —Z'E ——P,[(m - W)W,

2 1+()¢2U€|2 n[( Ic) m}
2D

- 1
B?I(ﬁ,wl) = —ig _ Pn[(m-m)wi]
2172 m
ailta ||

7 1 .
+-N ———— P, [(Wy - wH)m + (k- wi)w
2;M1+0‘2‘k|2 (W - wi )i+ ( )Wk]

S

i ]. 1 — - 1\—
K34

) 1 1 .

5 2 T ez ap e [P { X wd) x e x )}

QKZMl—kaQ\ﬁPWQ |7 X 3 (kX wy) X (Th X W)

B?Il(wlvwl) = Z kan(wliaw#z)a
(k,mn)eK*

where Qpmn(Uk, V) is a bilinear form in vy, vy, € C? with the estimate

|kan(vkavm)| < |ﬁlH1}k||Um|
In this paper, we consider the catalytic a-limit system, that is, the reso-
nant co-limit equations not including the strict three-wave resonant operator
B¢,;. As pointed out in [1], there exist a generic set of domain parameters
(a1,as,a3), dense in R}f and of full Lebesque measure, for which B{;; is
identically zero. Defining

B (w, w) = B (@, ®) + By (@, w")
the resonant limit a-equations (4) take the form
(5) W s v vt Bew,w) = f
w(0) =wy, V- -w=0,
where Bg is a bilinear operator of the catalytic system;
Bf(w,w) = PrL(Raw-Vp)w = PL[R,wW X curl @]
B (w,wh) = PpL(Rew - V)wt = PL[Ro@ x curlw?].
Egs.(5) has a unique solution w € L>(0,T; H') N L*(0,T; H?) for a >
0 with T < oo [8, 9]. Hence the semigroup S,(t) : H — H is defined:
Sa(t)wo = w(t), where w(t) is the solution of (5). The semigroup S, (t) has
an absorbing ball in H and a global attractor A, C H [8].

47
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4. ATTRACTOR DIMENSIONS

We now estimate the dimension of the global attractor A,. Attractor
dimension is associated with the number of degrees of freedom for turbu-
lent rotating fluids for the Coriolis parameter 2 large. The focus is on the
estimation of the dimensions uniform in «, no blow up as o — 0%.

We consider the variational equation corresponding to Eq. (5):

do

(6) o = Le(w)®
o0) = ¢

with

Le(w)® = —vA® — BY(w,®) — BY(®,w)

«
c
= —VvA® — B?(U_),(i)) - B?((i),if)) - B?I(qu)l) - B?I((i)awl)

Following the standard procedure as in section 13.4, [10], we can show that
the equations (6) have a unique solution:

Lemma 4.1. If w is a solution of Eq. (5), then Eq. (6) possesses a unique
solution

A(t,wp)é = ®(t) € L*(0,T; HY)n C([0,T); H), VT > 0.

Furthermore, for every t > 0, the flow wg — Sat(wo) generated by the limit
a-equations (5) is uniformly differentiable on A, with the differential

DSy (wo) = A(t,wp) : £ € Ay — P(t) € H,

where @ is the solution of (6). In particular, the linear operator A(t,wo) is
compact for all t > 0.

Now we are ready to apply the following theorem to estimate the fractal
dimension of the global attractor. Set

1 t
TRn(Ay) = sup sup limsup—/ Tr (L(s;wg)P(")(s)> ds,
wo€Aq P(n)(0) t—o0 t Jo

where Tr(M) is the trace of M.

Theorem 4.2. ([10], Theorem 13.16) Suppose that Sa(t) is uniformly dif-
ferentiable on A, and that there ezists a to such that A(t,wo) is compact for
all t > tg. If TR, (Ay) <0 then dimg(A,) < n.

Let ®q,..., o be solutions of the linearized system (6) with correspond-
ing initial conditions &7, ...,&N. Let @é1,...,¢n be the orthonormal system
spanning {®1,...,®x}. Then the trace at time ¢t > 0 can be sought like

N

(7) Tr (Le(t) P (@1(t), -, N (1) = > (Le(t)i(t), di(1))

i=1
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Using ¢ = ¢ + ¢ and bilinearity of the operators B¢ and B, the inner
product on the right-handed side of (7) can be expressed as

~(Lt)éi, 6) = (vASi+B}(w,6) + B} (31, 0).6:)
+(vAs! + Biy(0,01) + By (b1, w"), 1)
+ (VA + B} (0,60) + B} (61,10), 6 )
+(vAdt + By (@, 61) + Bfy(bi,wt), o1 )

B, is the skew-symmetric limit bilinear form. We collect the following
properties from [1, 2, 8, 9.

Lemma 4.3. For any w,$ € H'
1) (vAGi, &7 ) = v (Adi, &) = v (Po(Agy), Py (Agy)) =
) (VA di) = 0. Similar to 1.
(3) B (w, ¢2) PyBo(w, ¢i).
4) (Bf(@, 1), 67") = (Bi (@, i), Py-¢i) = (P B (@, 1), 6i) = (0,61) =
0, since Py, and Pb are self-adjoint.
(5) Similarly, (B$ (¢, @), ¢;) =0.

With Lemma 4.3 we can reduce the above inner product.
(L)1 Gi) = (vAGi+ Bi(@,65) + B (1,10), 6
+ (Bi1(@,0) + By (b1, wh). &)
+ (vt + Bfy(@,6F) + By (Ji,wh), oF )

Corollary 4.4. (9], Cor 8.2.18, p45) If f € P,H,h € H and g € P;-HNV,
then

<B?I(fa g)ah> =0.

_ Proof. From Lemma 3.4 in [8] with the self-adjoint property of P;. (h €
H so that h = P,h). A

From this corollary we obtain
(Bfs(@,61) + By (31, w"). 1) = 0.
From Theorem 4.2 of [8]
<B?1(15¢7¢%)»¢¢L> =0
Thus, by the construction of (¢;)1<i<n, for each i either ¢; =0 or qbf- =
(Bis(éiwh), ot ) =0
([9], p58 with Lemma 4.2.2), and
~(Lelt)di 61) = (vAGi + Bf(@,) + Bi(di, @), 5) + (vAst, ot ).

In summary,
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Lemma 4.5. Let ®1,...,dy be solutions of the linearized system (6) with
corresponding initial conditions &1, ...,En. Let ¢1,...,¢n be the orthonormal
system spanning {®1,...,@n} in H. Then the trace at time t > 0 is given
by

N

Tr (Le(t) Py (1(t), o, B (1)) = D (Le(t)bi, 1)
i=1
N
= =" [(vAGi+ By (0,0) + B} (91, 0),61) + (vAst 01 )|
i=1

Now let’s estimate for the Time-Averaged Trace in Lemma 4.5.
4.1. A Priori Estimates.

4.1.1. Estimate 1. Refer to Theorem 4.2.4 (p58) in [9]. We may use

Ny B ~ Ny ~ ~
> (B G0 d) = [ |3 (Radi x curla) - Gude
i=1 T =1

Instead, we will follow the line below. Denote 51 =< gz_Si1,q_5i2,$i3 >. By
Lemma 1.1,

Ny
z <B?( ¢z> Z <B(Ra¢za ¢z> <B ¢za a¢_5i>]
i=1
N —_
Z <PL a¢i . ) } ¢z> <PL [(¢1 ) ] u¢7>]
i=1
=) [((Radhi - V) @, i) — ((¢i - V) @, Radi)]
=1
(since Py, is self—adjoint and Pro; = ¢;.)
Ny . 2 3
Z |:/ Z Z a¢1 D wk‘bzk dx _/ Z Z¢ZJD wk (y¢1) ]
i=1 | /T =1 k=1 G=1 k=1
Ny 2 3
=/ ZZ{ oz¢z D wk¢1k _¢27D wk( a¢z) }
T2 1=1 =1 k=1
Then,

2

N, 3
/TZZ Z a(/)z - D; wk¢zk d)LJD wlc( ad)) ]

11]1k1

Ny 2 3
+

/TZZZZ[ Radi) ;Di wkfﬁm] dx

i=1j=1k=1

J. zz? 50,01 (3150,




Attractor dimensions of rotating NSE-« 51

We only need to estimate the first term on the right-handed side because
the second term can be estimates similarly.

Ny 2 3 Ny 2
/A ZZZ [(Rud_)z)j Djwkd_)ik] dz| < / ZZZ[ a¢1 Djwkd_)ik] dx
T2 21 =1 k=1 T2 1521 j=1 k=1
Here,
Ny 2 3 Np 2 B
ZZ [ ()z@bz D wkd)zk} < ZZ [ a¢z Djwkqbik}
i=1 j=1 k=1 i=1 |j=1 k=1
Ny 2 3 1/2 2 3 1/2
SIS Dm@?| |2 (Radi@)? 34(0)
i=1 7=1k=1 J=1k=1
N [ 2 3 12
= V@) Y |3 (Radi(2)2 Y B(a)
i=1 | j=1 k=1 |
I 3 12
<IVa(@) Y |D (Radil)); Y Gle)
i=1 | j=1 k=1 |

1/2

Ny 3 3 1/2
Z 3 (Radi(e))’ [Z J»f,c(x)]
i=1 | [4=1 k=1

N1 3 V2N s 1/2
< wat) [z_z Rui) ] P

1=1 k=1
Ny 12§, 1/2
o(x)| lz |Raq3¢<x>r2] [Z \@(wﬂ}
- 1/2
< |Va(e [lef I] (ZI@ )

(Why do we need the last inequality? It is to get the estimate |[p[[3 <
a1 ||#i||? so that we can combine two nonlinear-term estimates to have
||@|[> and be able to estimate [T ||@(s)||?ds. Otherwise, we will have

¢
|p"/2||o = N and get additional ||@|| term and have to estimate ff” [|@w(s)|| ds:

192118 = Jo 1o (@) da = 332 [ 16a(w) P = 332 || il[§ = No).

Integrating both sides and using Holder’s inequality, we obtain

IN

. N, 2 N,
[, Ivat) {2 m(,a‘si(xn?] {Z @(m)ﬁ} da
: i=1

i=1

Ipall [ | IV0(@)o(e) do

A

< lpallocll@lllplL2,
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- 1/2 _ )
where po (@) = [ [Radi(@)?]  and p(z) = SN |6i(@) 2 with || pa oo =
sup,ets |pa(2)|. Therefore, we get the estimate

Ny

> (BH&i ), i)

i=1

(8) < 2[[palloo|plz2|l@]]

4.1.2. Estimate 2 (||pal|so Estimate). Let 6; = ¢; and v; = (1 — a2A)~16;.
Then,

12 1/2
pa() = lz (1~ 2A)_19i|2] = {Z |vi|2]

i=1
For § = 0; € H, we have v = v; € H3. With the Sobolev embedding
theorem, we can infer that the existence of a dimensionless constant c(«)
depending on « such that

[0]loc < Cllvll2 = C[[(1 = a?A)~16]]2 < c(a)]|6]]o.

Now we will compute the conatnat c¢(a), following the same process as in
[7]. Suppose that &,&,....6n € R and 37", &5 = 1. Then, using the
orthonormality of the §; (j = 1,2,...,m = N1), and the above inequality we
obtain

S gui@)| < (@) &]]
j=1

Jj=1

(a) [ / (i @-@-(m)) 2 dx]

. 1/2 . 1/2
c(a) (Z &'Ej%‘) = c(a) (Z 5?) = c(a)
A j=1

1/2

,j=1

Using the representation v; = vj1 - €1 + vj2 - e2 we find that

2 2 2
[Z 5;‘”;‘(»”6)] < (Z éjvjl(x)) + (Z Ejvﬂ(ﬂf)) < ¢(a)?
Jj=1 j=1 j=1

First, we set

€ = vji ()
T (T (vji(2))2)1?
and later set
¢ = vj2(2) _
T (X (vja(x))?) /2

Substituting these into the above inequality one after another, we obtain

Z lvj(z)|* = Z vi1(z))? + Z vja(2))? < 2¢(a)?

j=1
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To compute ¢(a), we use the Fourier Series

0j(x) = Y ape™™,  Z§ =72{0}, x=(21,72), k= (k1 ko)

kez?
so that
2 A\—1g. _ ajk ke
(1=a’A)10(x) = > TraEd
kez?
Thus,
2A\—1p. |ajk|
|(1—a”A)7 ()] < Z HTW
kez?
1/2 1/2
1 2
< .
< | X 1+ a2[kP)2 D> lajul
keZ3 keZg
cj(a)[1051]o
= ¢j(a), (since [|6;lo=1),
where

1
2 _
) = > (1 + a2[k]2)2
kez?

= i L where
= (1+a?X,)?’

Dpp=1,2,..y = {k* =k} + k2, ki = ki/a; for i = 1,2, (k1, ko) € Z3}

> 1
Z m for an absolute constant c;
=1

IN

oo

1
= 7T/ 35t
(1+C¥C12 ;

1
—~ (1+a? c1p)

o0

- (1+a2012+ 1 1-|-a2clx2

1
1+a c1 [1—!—@ 2¢q a201]

Then we can set
ZC N1 ]. + 1
- 1 +a2c |14+a2¢; ale |’
lpallZ < 2N1¢%(a),

Pla) = {1+1].

14+a2c; |1+a2c; o

Observe that lim,_,g+ c¢?(a) = 2 < oo.

Therefore,

where

53
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4.1.3. Estimate 3. This is a new term that the exact Navier-Stokes equations

don’t have.

N1 Nl

N (Bi@.6ndi) = Y [(B(Raw

i—1 i=1

(Note that (B(

N1

¢Z)a ng> - <B((Z_5i7 (Z)i)a Rau—]>]

RaW, $;), ;) = 0 by skew-symmetry)

= Z(B((ﬁi,Rau_}),d_ﬁ} by skew-symmetry

Ny
i=1

Then,

Ny

Z <B?(wv$i’d_’i>

i=1

i=1 j=

T2

JT2

(B

IN

=

]

Q2

)§|
—_

IN

=

)

e

£

z
—_—

j=1k=1

/. S5 Dy (Ra i d

1 k=1

D (R k) ik dw]

N

2 3 1 271/2
k= 1

j=1 1 \i=

N1
< /Tz |V(Row)| p(x) dz,  where p(x) = Z |6:(z)[2

IRawl[ |p|L2

<
< ol ]plr2

A

N
< w(CzZH@Hz)
i=1

1/2

(by the Lieb-Thirring inequality; see p59 [9] for detail),

where ¢; is an absolute constant

and
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4.1.4. Collection of Estimate 1, 2, and 3.
Tr(Ly(t) Py (®1(t), ..., O (1))

= _VZ||¢z(t H2 +2Hpa||oo (CZZ||¢1|2> "U)H + HwH <QZH¢Z||2>

i=1 i=1

v, :
—u2||¢ (B +2v/2Nic(a) |w||<c12|¢z|2> +||w||<c12|a>i|2>
Ny 1/2
= v G0N + (2 2N1c<>+1)w|<c12|@|2>

i=1

v (2v2N1c(a) + ) ¢
52”4» 01 + o

||@||* by Young’s inequality

o MY  (2VENCla) +1)°

Clii_2
n - @]

Hence,

%/0 Tr(Ly(5)Pu (B1(5), .. B (s)) ds <

Ni(Ny +1 24/2 +1 1

—CcoV A1 1M+ 1) + ( Nie(a) q / o S)HQdS
4 2v

The estimate of the remaining trace follows [9, p 60]:

t
%/ Tr(APN (1 (s),..., BN (s)) ds > %Co)\ll/N;/?).
Jo

Therefore,
1 t . . N2 N5/3
;/ Tr(Le(s)Pn(®1(5), ..., Pn(s)) ds < —vAjcop———2— +4 2
0
2
22N +1 1/t
2o +1) U as
2v t Jo

4.2. Dimensions. Let qy(t) = 1 [ Tr(Lo(s)Py(®1(s), ..., D (s)) ds. Then,

() < vh (C:(Nl Nu/s) (2\/ Nyc(w) +1 cz 1 / ||w(8|2d9>

202

; 5/ 2v/2Nic(a) +1) ¢
limsupgn(t) < wvi (—C—O(le +N2d/3) + ( 10((v2) ) a e) ,
t—o0 4 2v

where € = v A1 limsup,_, o, SUp,,,ex % fg |[@(s)||? ds with X = A

To estimate gy in terms of N (= Nj + Ns), a technical lemma is needed.

Lemma 4.6. ([9]) Let ¢ > 0. Then there exists a constant ¢ = ¢(q) > 0
such that

214y > ofa+y)?
for all x,y > 0.
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Proof. The result is true when ¢ = 0 with ¢ = 1 for all x,y > 0. It is
also valid when = y = 0 for any ¢ > 0. Thus it will be sufficient to prove
that, for any ¢ > 0, there exists a constant ¢ > 0 such that

zl+y? 1+ (y/x)

@ty 1+ (y/a)s = °

whenever z,y > 0. By setting z = y/x, we can define a strictly positive and
continuous function on (0, o)

flz) =

1+ 24
(1+2z)2

Notice that
lim f() = lim f(z) =1,

and we can continuously extend f on (0,00) to fe on [0,00). Clearly f.(0) =
1 and since lim,_,o+ fe(z) = 1, there exists zg > 0 such that

£.2) 2 5

whenever z > zp. Since [0, zo] is compact, f. has an absolute minimum
mo = fe(z1) > 0 for some z; € [0,2p]. Choosing ¢ = ¢(¢) = min{1/2,mp}
proves the lemma. W

We can make the constant ¢ in the Lemma 4.6 more precisely.

Corollary 4.7.
1 if 0<g<l1
c(q) = ;
(a) { QQ%] if  qg>1.
Proof. We can assume zy > 1 without loss of generality. To find a
minimum mg > 0 of f, on [0, zg],
fiz)=0 & @ (14+2)"—q(l+29)(1+2)71 =0
e ql+2)7 -1 =0
& 2971 - 1=0, since ¢ >0 and (1+2)7 1 £0
o =1,
e Case 1. When ¢ =1
20 =1 for all z € (0,20); i.e., fi(2) = 0 so that f.(z) = 1 for all
z € (0, 20). Since fe(0) =1 and mgo = fe(20) = 1 by the continuity

of fe on [0, zp]. It implies ¢ = 1.
e Case 2. When 0 < g<1

Al =1s =la17=1

21-q
Taking the logarithm of both sides yields
(1-¢)lnz=0«<2=1 sincel —q > 0.

By the first derivative test in calculus, f. has a local maximum at
z =1 on [0, 2], with fe(1) =2/27 > 1, so that the minimum must
be fe(0) = 1, which is less than fe(zp). Thus ¢ = 1.
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e Case 3. When ¢ > 1
Similar to Case 2 with ¢ > 1. f. has an absolute minimum at z =1
on [0, 2], with f.(1) =2/29 = 2179 < 1. Thus, ¢ = 2179

This proves the corollary. W
By Corollary 4.7,

1/3
N2+ NP> NP4 NGB > e <g> N5/3 = G) N5/3,
So,

—dN°3 +

(2v2vNe(a) +1)% e) where d = —2

i <
tlg&qN(t) < vh 202 4yc

(8Nc*(a) + 4v2VNe(a) + 1) 6)

202

IN
R
>

e

V2

= v\ <—dN5/3 +

8v2Ne(a) + 4v2Ne(a) + 1Cl6)

24N 1
< v\ (—dNS/3 + ﬁcw)
v
N(24 1
< wn (stm%cﬁ)
1%

We want to find the smallest N > 0 such that

sy V(@) +1)

2 cre < 0.
Setting the nonlinear equation
N(24c(a) +1
(9) N5/3 _ ( d(VQ) )cle
yields
1 [ced(24c(a) +1)3
N= 5 &
B (ﬂ)?)/? (24c(a) +1)e\ ¥/
- \d V2
cp\3/2 € \3/2
= () @@ +072(5)
so that

N> (2)3/2 (24c(a) + 1)3/2 <%>3/2‘

v

57
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Hence,
dn(As) < (%)3/2 (24c(a) +1)*/? (%)3/2
< (D) @aeo) + 172 (24) since ¢ < 2}
3
= K(a) (Z—Z)
where

3/2

Cl
— =Ky asa— 0"

K(a) = (d)3/2 (24¢(a)+1)*28/2 (24v2 + 1)jé

d

In particular, when o = 0, the exact rotating Navier-Stokes equations
don’t have the second term of the first inequality on page 17, and we get

better estimate:
~ 6/5
di(Ag) < K (p_)
11}

This completes the proof of our main result Theorem 1.4.
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